水稻叶形控制基因的克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最重要的粮食作物之一,叶片形态研究一直备受关注。叶片是植物体进行光合作用的最基本营养器官,大部分叶片形态改变都会影响到植物体的光合作用、蒸腾作用和抗逆性等生理功能,从而极大的影响到植株的生长和发育。
     为了研究水稻叶形态建成的控制机制和植物叶片结构组成的分子机理,我们从EMS化学诱变粳稻日本晴种子的M_2代中分离了两个水稻叶片极度卷曲的突变体H77、H28。同样,我们从~(60)Coγ-射线诱变的籼稻品种双科早处理的M_2代中获得的2份卷叶突变体材料K27和K92。本研究对这些卷叶突变体进行了等位性检测、叶片细胞形态学切片观察,突变性状遗传分析,卷叶控制基因的图位克隆及功能初步研究,主要结果如下:
     一、水稻卷叶突变体sll1的鉴定、遗传分析及基因精细定位
     1、等位性检测:对4份卷叶突变体进行正反交,并对F1植株进行表型鉴定。结果表明H77和H28两个卷叶突变体等位。暂时把这些卷叶突变类型称统为葱卷突变(shallot like leaf,sll),分别命名为sll1-1和sll1-2。
     2、从叶片细胞形态学切片观察和生理生化测定结果显示,SLL1基因的突变造成叶片维管束远轴面厚壁细胞的缺失,叶片叶绿素含量增加和纤维素含量的下降。
     3、遗传分析:sll1-1与3个正常平展叶籼稻品种NJ6、广四和粳稻品种日本晴作父本分别进行正反交,并对所有的杂交组合的F_1、F_2代的植株叶片表型进行分析。结果表明,在所有组合的F_1的全部植株均为正常平展叶,F_2代分离群体中的叶片正常株与突变株的分离比符合3:1。由此我们认为sil1-1的突变体的表型受隐性单基因控制。
     4、利用卷叶性状能稳定遗传的sill1-1突变体(粳稻)与籼稻品种南京6号(NJ6)杂交构建定位群体,运用SSR和STS标记,最终将SLL1基因精细定位在第9染色体长臂上物理距离为29.57Kb的区间内,共包含3个开放阅读框,预测分别编码一个合成蛋白、类似En/Spm转座子和MYB蛋白。
     二、水稻卷叶控制基因SSL1的克隆和初步功能研究
     1、测序结果表明突变体sill1-1、sll1-2基因组序列都发生了单碱基的替换(G到A)。根据cDNA水平检测发现sill1-1、sll1-2的突变事件分别发生在同一基因内部两个不同的剪接位点上,导致mRNA不能正常剪接。
     2、明确SLL1基因位于BAC克隆B1040D06的103061-108515的位置,其gDNA长度为5455bp,cDNA全长为1134bp,共编码377个氨基酸。共包含6个外显子(Exon)和5个内含子(Intron)。
     3、从RT-PCR的结果表明,SLL1基因在整个植株个器官中都有不同程度的表达。其中,叶、花和颖壳中的表达量最高,其次是根、最弱的是茎秆和叶鞘部分。
     4、我们通过构建植物表达载体SLL1::GUS转化水稻,在SLL1::GUS转基因植株的整个生长发育阶段,所有部位都能检测到GUS活性,但在各组织器官表达范围存在一定差异。在叶片泡状细胞中没有表达,而在维管束、气孔、导管等疏导组织中都有较强表达。在种子幼芽、叶片(包括叶鞘)、茎秆和种子颖壳中表达范围较广,主要在脉络系统中有较强的表达;而在根中只有中柱鞘、籽粒中只用疏导组织和花中只有雄蕊能检测到蓝色。
     5、通过互补试验,结果发现转入SLL1基因的卷叶突变体sll1叶片表型恢复正常。
     三、水稻卷叶突变体alm的遗传分析及基因精细定位
     1、等位性检测结果表明,卷叶突变体K27与K92等位。由于其卷曲程度没有sll1严重,为区别起见,我们将K92、K27突变体(adaxialized leaf mutant)分别命名为alm-1和alm-2。
     2、从叶片细胞形态学切片观察发现,ALM1基因功能的丧失造成了维管束两侧、靠近叶片近轴面的泡状薄壁细胞的增加,其维管束细胞结构正常。
     3、alm-1经过连续多代自交种植,确认突变性状能稳定遗传。对alm-1/NPB、alm-1/TN12个组合的F_1和F_2代植株的叶片表型调查,明确alm-1突变性状受1对隐性基因控制。
     4、通过构建alm-1/TN1定位群体,在F_2群体中共选出1,200多株卷叶表型个体,通过设计SSR和STS分子标记,最终将ALM1基因精细定位在第2染色体端粒附近物理距离为91Kb区域内,用GENSCAN软件预测认为该区域内包含14个开放阅读框(ORF)。
Rice is one of the most important crops in the world, and has become the model crop in plant for genetics and genomic studies. Leaf is a major vegetative organ, which plays an important role in photosynthesis, transpiration and resistance to the stress and ultimately affecting development and growth.
     In the present study, in order to systematically dissect the molecular mechanism of leaf morphogenesis and development, two ethyl methane sulfonate (EMS)-induced rice (Oryza sativa L.) mutants with rolling leaf from the progeny of Nippobare (O. sativa ssp. japonica), namely H77 and H28, were used. We also isolated another two rolling leaf mutants K27 and K92 from Shuang Kezao (O. sativa ssp. indica) which were induced by ~(60)Coγ-ray. We performed anatomical analysis of all these mutants and the genetic analysis; allelic test and mapping caused genes through map-based cloning strategy were also be conducted. The main results were as follows:
     The identification, genetic analysis and fine mapping of the rice mutant sll1
     1、The allelic test was performed between these four rolling leaf mutants. The identification of the phenotype of the F_1 plants that was derived from the reciprocal cross between these mutants mutually, showed that they were controlled by the same gene, which were designated as sll1-1 (shallot like leaf1-1, sll-l) and sil1-2.
     2、Through the anatomical and histological analysis, we have draw the conclusion that the mutation of gene SLL1, which lead to the increase of chlorophyll and reduction of the cellulose contents in rice leaf, caused the absence of the prothenchyma in the abaxial vascular bundle.
     3、Genetic analysis: we have constructed four segregated populations from the cross between sll1-1 and three other parents NJ6, GuangSi and nipponbare with normal leaf, and the analysis on the phenotype of the F_1 and F_2 was performed. The results showed that all the F_1 plants had normal leaf and the ratio of normal rice plants to mutant rice plants tallied with 3:1 rule. Therefore, the phenotype of the mutant sill1-1 was controlled by single recessive gene.
     4、The progeny from the cross between sll1-1 and a O. sativa ssp. indica parent NJ6 were used as the mapping population. The caused gene SLL1 was finely located into a region of 29.57Kb on the long arm of chromosome 9, which had 3 ORF and were presumed to be a synthetic enzyme, alike En/Spm transposon and MYB-domain containing protein, respectively, according to the annotation.
     The isolation of SLL1 and the gene function analysis
     1.The results of sequence analysis showed that there is a single substitution in the sequence of mutant Sll-1 or sll-2 (G to A). Amplification of the cDNA showed that the substitution occurred at different splice sites of the same gene, which lead to the abnormal splice.
     2. The SLL1 gene was located at 103061-108515 of the BAC clone, and the length of gDNA was 5455 bp. The analysis of gene structure and the amplification of the cDNA showed the length of FL-cDNA was 1134bp, with 6 exons and 5 introns, which coding a 377 amino acids protein.
     3. The results of RT-PCR showed that the SLL1 gene expressed to different extents in the different organs of the whole plants, which expressed highly in flower, leaf and glume, then inferiorly at root and poorly at stem and sheath.
     4. The transformation of SLL1::GUS was conducted. All the organ were detected to have different GUS activity in all the growth and development period, and the high level expression was detected in vascular bundle, stoma and conduit in contrast to no expression in vesicular cell. The GUS expression was detected in yang plant, leaf, stem and glume of seed, and highly at venation system, but poorly at rooting and flower which only the culm sheath, kernel and stamen could be stained.
     5. The result of complement test showed that SLL1 gene could recover the leaf phenotype of the mutants.
     The genetic analysis and fine mapping of ALM1
     1、Allelic test showed the mutant K27 and K92 which exhibits a phenotype of rolling leaf was controlled by the same allele. Due to the gentle phenotype when compared with slll, we nominated K92、K27as alm-1(adaxialized leaf mutant-1) and alm-2, repectively.
     2、Anatomical and histological analysis showed that the lose of function of ALM1 caused the increases of the cell number of vesicle parenchymatous cell, though the cells in vascular bundle were normal.
     3、Investigation on the phenotype of the cross of alm-1/NPB、alm-1/TN1 showed that the mutant was controlled by one recessive gene.
     4、The population for gene mapping was established from alm-1/TN1, and about 1,200 plants with mutant phenotype were selected in the F_2 generation. The gene was finely located in 91 Kb on the chromosome 2, which was forecasted to have fourteen ORF by GENSCAN software.
引文
1.陈宗祥,胡俊,陈刚等.RL(t)卷叶基因对杂交稻经济性状的影响.作物学报,2004,30(5):465-469
    2.陈宗样,陈刚,胡俊等.RL(t)卷叶基因在杂交稻中的遗传表达及效应研究.作物学报,2002,28(6):847-851
    3.董继新,董海涛,何祖华等.一个水稻与稻瘟病菌(Magnaporthe gfsea)互作相关新基因的克隆.农业生物技术学报,2001,9(1):41-44
    4.高艳红,吕川根.水稻卷叶性状的研究进展.金陵科技学院学报,2006,22(1):62-66
    5.顾兴友,顾铭洪.一种水稻卷叶性状的遗传分析.遗传,1995,17(5):20-23
    6.郭龙彪,钱前.栽培稻抗旱性的田间评价方法.中国稻米,2003(2):26-27
    7.国外农学—水稻编辑部.水稻的生理生态(水稻译文集之三),上海科学技术出版社,1981年6月.
    8.黄海.植物叶发育调控机理的研究进展.植物学通报,2003,20(4):416-422
    9.黄骥,张红生,曹雅君等.水稻功能基因的电子克隆策略.中国水稻科学,2002,16(4):295-298
    10.黄骥,张红生,曹雅君等.一个新的水稻C2 E2型锌指蛋白cDNA的克隆与序列分析.南京农业大学学报,2002,25(2):110-112
    11.郎有忠,张祖建,顾兴友等.水稻卷叶性状生理生态效应的研究Ⅰ.叶片姿态、群体构成及光分布特征.作物学报,2004,30(8):739-744
    12.郎有忠,张祖建,顾兴友等.水稻卷叶性状生理生态效应的研究Ⅱ.光合特性、物质生产与产量形成.作物学报,2004,30(9):883-887
    13.李林川,瞿礼嘉.生长素对拟南芥叶片发育调控的研究进展,植物学通报,2006,23(5):459-465
    14.李仕贵,马玉清,何平等.一种未知的卷叶基因的识别和定位.四川农业大学学报,1998,16(4):391-393
    15.林慧贤,刘筱斌,李发强等.水稻小GTP蛋白基因Osrab5B基因的克隆和鉴定.高技术通讯,2001,11(3):9-14
    16.凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,42-215
    17.陆江锋.水稻凹叶性状对物质生产和产量形成的影响的研究[D].扬州:扬州大学农业部作物栽培与生理重点开放实验室.2002.
    18.吕川根,宗寿余,邹江石等.水稻叶片形态因子及其在F_1代的遗传.2005,31(8):1074-1079
    19.吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较分析[J]。中国农业科学,2003,36(6):633-639
    20.钱前,程式华.《水稻遗传学和功能基因组学》,北京:科学出版社,2006
    21.邵元健,陈宗祥,张亚芳等.一个水稻卷叶主效QTL的定位及其物理图谱的构建.遗传学报,2005,32(5):501-506
    22.邵元健.水稻卷叶性状的遗传分析及卷叶基因的精细定位.博士学位论文,2005.江苏:扬州大学.
    23.沈福成,刘传秀.水稻株型改良的理论与实践.贵州科技出版社,1990.
    24.沈福成.水稻卷叶性状遗传初探.贵州农业科学,1983,(3):9-12
    25.沈革志,王新其,殷丽青等.T-DNA插入水稻群体中卷叶突变体RL-A2的遗传分析.实验生物学报,2003,36(6):459-464
    26.松岛省三.稻作的理论与技术[M].庞诚,译.北京:中国农业出版社,1981:249-250
    27.唐向荣,吴昊,贾明等.水稻双链RNA结合蛋白同源基因OsRBP的克隆及其表达的分析.植物生理与分子生物学学报,2002,28:41-45
    28.王广立,潜忠兴,刘宝先等.水稻10kD醇溶蛋白基因克隆序列分析及对植物百脉根的转化.植物学报,1994,36(5):351-357
    29.王家保,王令霞,陈业渊等.不同光照度对番荔枝幼苗叶片生长发育和光合性能的影响.热带作物学报,2003,24(1):48-51
    30.谢明,陈新,瞿礼嘉等.一种水稻蛋白酶抑制剂基因的克隆及其结构分析,植物学报,1996,38(6):444-450
    31.徐是雄,徐雪宾.稻的形态与解剖.北京:农业出版社,1984
    32.扬守仁.水稻理性株型育种的理论和方法初论.中国农业科学,1984(1):6-13
    33.杨勤忠,杨佩文,王群等.水稻抗病基因同源序列的克隆及测序分析.中国水稻科学,2001,15(4):241-247
    34.余琳.叶卷曲基因调控机制的研究.博士学位论文,2005.上海:中国科学院上海植物生理生态研究所.
    35.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6
    36.翟文学,李晓兵,田文忠等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种[J].中国科学(C辑),2000,30(2):200-206
    37.张晓国等.水稻花药特异表达基因启动子的扩增及克隆.武汉大学学报(自然科学版),1997,43(4):480-484
    38.周炳炎.水稻理想株形与超高产育种途径的探讨[J].湖北农学院学报,1995,15(1):52-60
    39.周开达,马玉清,刘太清.杂交水稻亚种间重穗型组合选育——杂交水稻高产育种的理论与实践[J].四川农业大学学报,1995,13(4):403-407
    40.周开达,汪旭东,李仁贵,等.亚种间重穗型杂交稻研究[J].中国农业科学,1997,30(5):91-93
    41.周兆斓等.水稻cDNA文库的构建及巯基蛋白酶抑制剂cDNA的分离.中国科学(C辑),26,1996,(2):149-155
    42.朱德峰,林贤青,曹卫星.不同叶片卷曲度杂交水稻的光合特性比较.作物学报,2001,27(3):329-333
    43.朱雄涛,汪真.水稻高光效生理育种初探[J].福建稻麦科技,2003,(6):14-17
    44. Arnon. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology 1949, 24:1-15
    45. Arumugam-Pillai, M., Lihuang Z., Akiyama, T. et al.. Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice (Oryza sativa L.). Theor Appl Genet. 2002,105(1):34-42
    46. Asai, K., Satoh, N., Sasaki, H., et al.. A rice heterochronic mutant, moril, is defective in the juvenile-adult phase change. Development (Cambridge, England) 2002, 129:265-273
    47. Ashikari, M., Sakakibara, H., Lin, S., et ai.. Cytokinin oxidase regulates rice grain production. Science (New York, N.Y 2005, 309:741-745
    48. Ashikari, M., Wu, J., Yano, M., Sasaki, et ai.. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences of the United States of America 1999, 96:10284-10289
    49. Bohnert, H.U., Fudal, I., Dioh, W., et al.. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 2004, 16:2499-2513
    50. Bowman, J., Eshed, Y., Baum, S.F.. Establishment of polarity in angiosperm lateral organs. Trends Genet, 2002, 18:134-141
    51. Bowman, J.L., Y. Eshed, S.F. Baum. Establishment of polarity in angiosperm lateral organs. Trends Genet 2002, 18:134-141
    52. Bryan, G.T., Wu, K.S., Farrall, L., et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 2000, 12: 2033-2046
    53. Burk, D.H., Liu, B., Zhong, R. et al., Katain-like regulates normal cell wall biosynthesis and elongation. Plant Cell 2001, 13:807-827
    54. Byrne, M., Barley, R., Curtis, M. et al., Asymmetric leaves mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000, 408:967-971
    55. Chen, X., Shang, J., Chen, D., et al.. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 2006, 46:794-804
    56. Cho, S.M., Shin, S.H., Kim, K.S., et al.. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells 2004, 18(3):390-395
    57. Doi, K., Izawa, T., Fuse, T., et al.. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & development 2004, 18:926-936
    58. Eshed, Y., Baum, S. F., Perea, J.V. et al., Establishment of polarity in lateral organs of plants. Curt Biol 2001, 11(16): 1251-1260
    59. Gu, K., Yang, B., Tian, D., et al.. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice. Nature 2005, 435:1122-1125
    60. Haga, K., Takano, M., Neumann, R., et al..The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 2005, 17:103-115
    61. Hong, Z., Ueguchi-Tanaka, M., Umemura, K., et al..A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 2003, 15:2900-2910
    62. Hsiao, T.C., O'Toole, J.C., Yambao, E.B. et al., Influence of osmotic adjustment on leaf rolling and tissue death in rice[J]. Plant Physiol 1984, 75:338-341
    63. Huang, H..Recent progresses from studies of leaf development. Chinese Bulletin of Botany 2003,20(4):416-422
    64. Ichikawa, T., Nakazawa, M., Kawashima, M., et al. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J. 2003, 36(3) :421-429
    65. Ikeda, A., Ueguchi-Tanaka, M., Sonoda, et al.. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/DS. Plant Cell 2001, 13: 999-1010
    66. Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, et al..Crown rootlessl, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Plant Cell 2005, 17:1387-1396
    67. Ishikawa, S., Maekawa, M., Arite, To, et al.. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 2005, 46:79-86
    68. Itoh, H., Tatsumi, T., Sakamoto, T., et al.. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant molecular biology 2004, 54:533-547
    69. Itoh, H., Ueguchi-Tanaka, M., Sentoku, N., et al.. Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proceedings of the National Academy of Sciences of the United States of America 2001, 98:8909-8914
    70. Iyer, A.S., and McCouch, S.R.. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact 2004, 17:1348-1354
    71. Jantasuriyarat, C., Gowda, M., Wang, G.L., et al.. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol 2005, 138(1):105-115
    72. Jeon, J.S., Jang, S., Lee, S., et al.. Leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 2000, 12:871-884
    73. Jones, A.M.. Programmed cell death in development and defense. Plant physiol 2001, 125:94-97
    74. Jones-Rhoades, M.J., Bartel, D.P.. Computational identification of plant microRNAsand their targets, including a stress induced miRNA. Mol Cell, 2004, 14, 787-799
    75. Kaneko, M., Inukai, Y., Ueguchi-Tanaka, M., et al.. Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 2004, 16:33-44
    76. Kaplan, D.R., Hagemann, W.. The relationship of cell organism in vascular plants. Bioscience 1991, 41:693-703
    77. Kaufman, P.B.. Development of the shoot of Oryza sativa L. Ⅱ. Leaf histogenesis. Phytomorphology 1959, 9:277-311
    78. Kaufman, P.B.. Development of the shoot of Oryza sativa L. Ⅲ. Early stages in histogenesis of the stem and ontogeny of the adventitious root. Phytomorphology 1959, 9:383-404
    79. Kawakatsu, T., Itoh, J., Miyoshi, K., et al.. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell 2006, 18:612-625
    80. Keller, C.P., Van Volkenburgh E.. Auxin-induced epinasty of tobacco leaf tissues. A nonethylene-mediated response. Plant Physiology 1997, 113: 603-610
    81. Kerr, J.F.R., Wyllie, A.H., Currie, A.R.. Apoptoisis: a basic biological phenomenon with wild-eanging implications in tissue kinetics. Br J Cancer 1972, 26:239-571
    82. Kerstetter, R. A., Bollman, K., Taylor, R. A. et al., KANADI regulates organ polarity in Arabidopsis. Nature 2001, 411: 706-709
    83. Kerstetter, R.A., Poethig, R.S.. The specification of leaf identity during shoot development. Armu. Rev. Cell Dev. Biol. 1998, 14:373-398
    84. Khush, G. S., Kinoshita, T.. Rice karyotype, marker genes, and linkage group[C]. 1991:83-108
    85. Khush, G. S.. Varietal needs for different environments and breeding strategies. Muraliharan K S, Siddiq E A. New frontiers in rice research. Directorate of rice research, Hyderabad, India 1990, 68-75
    86. Kim ,K.N., Lee, J.S., Han, H., et al.. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol. 2003, 52(6):1191-1202
    87. Kinoshita, T.. Gene analysis and linkage map. In: Tsunoda S, Takahashi N, eds. Biology of rice.JSSP/Elsevier, Tokyo, 1984, 187-274
    88. Kinoshita, T.. Report of the committee on gene symbolization, nomenclature and linkage groups. RGN 1987, 4:3-37
    89. Kojima, S., Takahashi, Y., Kobayashi, Y., et al.. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 2002, 43:1096-1105
    90. Komatsu, K., Maekawa, M., Ujiie, S., et al.. LAX and SPA: major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences of the United States of America 2003a, 100:11765-11770
    91. Komatsu, M., Chujo, A., Nagato, Y., et al.. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development (Cambridge, England) 2003b, 130:3841-3850
    92. Komori, T., Ohta, S., Murai, N., et al.. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J 2004, 37:315-325
    93. Konishi, S., Izawa, T., Lin, S.Y., et al.. An SNP caused loss of seed shattering during rice domestication. Science (New York, N.Y 2006, 312:1392-1396
    94. Lee, R.C., Feinbaum, R.L., Ambros, V..The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell 1993,75:843-854
    95. Lee, R.H., Wang, C.H., Huang, L.T., et al.. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot. 2001 May; 52(358):1117-1121
    96. Lee, S., Jung, K.H., An, G., et al.. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant molecular biology 2004, 54:755-765
    97. Li, C., Zhou, A., and Sang, T.. Rice domestication by reducing shattering. Science (New York, N.Y )2006, 311:1936-1939
    98. Li, X., Qian, Q., Fu, Z., et al.. Control oftillering in rice. Nature 2003a, 422:618-621
    99. Li, Y., Qian, Q., Zhou, Y., et al.. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of dee plants. Plant Cell 2003b, 15:2020-2030
    100. Lwata, N., Ornura, T.. Studies on the trisomies in rice plants(Oryza sativa L.). Jpn J Breed 1975, 25:363-368
    101. Ma, J.F., Tamai, K., Yamaji, N., et al.. A silicon transporter in rice. Nature (2006) 440:688-691.
    102. Margis-Pinheiro, M., Zhou, X.R., Zhu, Q.H., et al.. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep. 2005, 23(12):819-833
    103. Martin, G.B., De-Vicente, M.C., Tanksley, S.D.. High-Resolution. linkage analysis and physical characterisation of the Pto bacterial, resistance locus in tomato. Mol Plant-Microbe Interact 1993, 6:26-34
    104. McConnell, J.R., Emery, J., Eshed, Y. et al., Role of PHABULOSA and PHAVOLUTA in detemining radial pattering in shoots. Natrue 2001, 411:709-713
    105. McConnell, JR., Barton, M.K.. Leaf polarity and meristem formation in Arabidopsis. Development 1998, 125:2935-2942
    106. Michelmore, R. W., Paran, I., Kesseli, R. V.. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genome regions by using segregating populations[J]. Proc Natl Acad Sci USA 1991,88:9828-9832
    107. Miyoshi, K., Ahn, B.O., Kawakatsu, T., et al.. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:875-880
    108. Mori, M., Nomura, T., Ooka, H., et al.. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant physiology 2002, 130:1152-1161
    109. Moulia. Biomimeties Biomechanics of leaf rolling[M]. [s.n.], 1994:267-281
    110. Murray, M.G., Thompson, W. F..Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 1980, 8(19):4321-4325
    111. Nagpal, P., Walker, L.M., Young, J.C. et al., AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 2000, 123:563-574
    112. Nelson, J.M., B. Lane, M. Freeling. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development 2002, 129:4581-4589
    113. Nishimura, A., Ashikari, M., Lin, S., et al.. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proceedings of the National Academy of Sciences of the United States of America 2005,102:11940-11944
    114. Nonomura, K., Miyoshi, K., Eiguchi, M., et al.. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 2003, 15:1728-1739
    115. Nonomura, K., Nakano, M., Fukuda, T., et al.. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 2004a, 16:1008-1020
    116. Nonomura, K.I., Nakano, M., Murata, K., et al.. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics 2004b, 271: 121-129
    117. Ochman, H., Geber, A.S., Hartl, D.L.. Genetic applications of an inverse polymerase chain reaction. Genetics 1988,120:621-623
    118. Ortega, D., Raynal, M., Laudie, M., et al., Flanking sequence tags in Arabidopsis thaliana T-DNA insertion lines: a pilot study. C R Biol 2002, 325 (7) :773-780.
    119. Otsuga, D., DeGuzman, B., Prigge, M.J. et al., REVOLUTA regulates meristem initiation at lateral positions. Plant J. 2001, 25:223-236
    120. Parick, J.K., Jeffery, C. Y., Michael R. S.. T-DNA as an insertional mutagen in arabidopsis. Plant Cell 1999,11:2283-2290
    121. Pasquinelli, A.E., Ruvkun, G.. Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 2002, 18:495-513
    122. Paul, R. M., Lcah, C., Adflano, M. et al., A resource of mapped dissociation launch pads for targeted insertional mutagenesis. Plant Physiology 2003,132:506-516
    123. Perez-Perez, J.M., Ponce, M.R., Micol, J.L.. The ULTRACURVATA2 gene of Arabidopsis encodes an FK506-binding protein involved in auxin and brassinosteroid signaling. Plant Physiol 2004, 134:101-117
    124. Presting, G.G., Mapping multiple co-sequenced T-DNA integration sites within the Arabidopsis genome. Bioinformatics 2003,19(5) :579-586
    125. Price, A. H., Young, E. M., Tomos, A.D.. Quantitative trait loci associated with stomatal conductance leaf rolling and heading date mapped in upland rice (Oryza sativa L. )[J]. New Phytologist 1997, 137:83-91
    126. Qi, Y., Sun, Y., Xu, L., Huang. H.. ERECTA is required for protection against heat-stress in the AS1/AS2 pathway to regulate adaxial-abaxial leaf polarity in Arabidopsis. Planta 2004, 219:270-276
    127. Reinhardt, D., Mandel, T., Kuhlemeier, C.. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 2000, 12:507-518
    128. Ren, Z.H., Gao, J.P., Li, L.G., et al.. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature genetics 2005, 37:1141-1146
    129. Rhoades, M.W.,Reinhart, B.J., Lim,et al. Prediction of plant microRNA targets.Cell 2002, 110:513-520
    130. Sano, H., and Youssefian, S.. A novel ras-related rgpl gene encoding a GTP-binding protein has reduced expression in 5-azacytidine-induced dwarf rice. Mol Gen Genet 1991, 228:227-232
    131. Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M., et al.. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 2002, 416:701-702
    132. Sasaki, A., Itoh, H., Gomi, K., et al.. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science (New York, N.Y )2003, 299:1896-1898
    133. Sato, Y., Sentoku, N., Miura, Y., et al.. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. The EMBO journal 1999, 18:992-1002
    134. Sauter, M., Rzewuski, G., Marwedel, T., et al.. The novel ethylene-regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. J Exp Bot. 2002 Dec, 53(379):2325-2331.
    135. Sawa, S., T. Ito, Y. Shimura, K. Okada. FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems. Plant Cell 1999, 11: 69-86.
    136. Sawa, S., Watanabe, K., Goto, K. et al., FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains, Genes Dev. 1999, 13:1079-1088
    137. Scanlon, M. J.. Developmental complexities of simple leaves. Curr Opin Plant Biol 2000, 3:31-36
    138. Scanlon, M.J.. NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development 2000, 127: 4573-4585.
    139. Shiozaki, N., Yamada, M., Yoshiba, Y.. Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. Theor Appl Genet 2005, 110:1177-1186
    140. Siegfried, K. R., Eshed, Y., Baum, S. F. et al., Members of the YABBY gene family specify abaxial cell fate in Arabidopsis, Development 1999, 126:4117-4128
    141. Song, W.Y., Wang, G.L., Chen, L.L., et al.. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (New York, N.Y ) 1995, 270:1804-1806
    142. Song, W.Y., Yano, M., Yananouchi, U., et al.. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995, 270(5243): 1804-1806
    143. Sun, X., Cao, Y., Yang, Z., et al.. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 2004, 37: 517-527
    144. Sun, Y., Zhou, Q., Zhang, W. et al., ASYMMYTRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta 2002, 214:694-702
    145. Sunkar, R., Girke, T., Jain, P.K., et al.Cloning and charac-terization of microRNAs from rice. Plant Cell, 2005, 17(5): 1397-1411.
    146. Sunkar, R., Zhu, J. K.. Novel and stress regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 2004,16:2001-2019.
    147. Sussex, I .M.. Experiments on the cause of dorsaiventrality in leaves. Nature 1954, 174:351-352
    148. Sussex, I.M.. Morphogenesis in Solanum tuberosum L.: experimental investigation of leaf dorsiven trality and orientation in the juvenile shoot. Phytomorphology 1955, 5: 286-300
    149. Suzaki, T., Sato, M., Ashikari, M., et al.. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development (Cambridge, England) 2004, 131:5649-5657
    150. Sweeney, M.T., Thomson, M.J., Pfeil, B.E., et al.. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 2006, 18, 283-294
    151. Takahashi, Y., Shomura, A., Sasaki, T., et al.. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proceedings of the National Academy of Sciences of the United States of America 2001,98:7922-7927
    152. Talbert, P., Adler, H.T., Parks, D.W., et al., The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 1995, 121:2723-2735
    153. Tanabe, S., Ashikari, M., Fujioka, S., et al.. A novel eytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 2005, 17, 776-790
    154. Tanksley, S.D Nelson, J.C.. Advanced baekcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet 1996, 92:191-203
    155. Temnykh, S., Park, W.D., Ayres, N., et al.. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L). Theor Appl Genet 2000, 100:697-712
    156. Thitamadee, S., Tuchihara, K., Hashimoto, T.. Microtubule basis for left-handed helical growth in Arabidopsis. Nature 2002, 417:193-196
    157. Tian,Q., Reed, J.W.. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 1998, 126:711-721
    158. Timmermans, M.C., Hudson, A., Becraft, P.W. et al., ROUGH SHEATH2:a Myb protein that represses knox homeobox genes in maize lateral organs primordial. Science 1999, 284:151-153.
    159. Tsiantis, M., Schneeberger, R., Golz, J. F. et al., The maize rough sheath2 gene and leaf development programs in monocot and dicot plants, Science 1999, 284: 154-156.
    160. Tsukaya, H.. Organ shape and size: a lesson from studies of leaf morphogenesis. Cur. Opin. Plant Biol 2003, 6:57-62
    161. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., et al.. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 2005, 437:693-698
    162. Updegraff, D.M.. Semimicro determination of cellulose in biological materials. Anal. Biochem 1969.32:420-424
    163. Updegraff, D.M..Semimicro determination of cellulose in biological materials[J]. Analytical Biochemistry 1969, 32:420-424
    164. Vogler, H., Kuhlemeier, C.. Simple hormones but comlex signalling. Curr Opin Plant Biol 2003, 6:51-56
    165. Waites, R., Hudson, A.. phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus, Development 1995, 121:2143-2154.
    166. Waites, R., Selvadurai, H.R., Oliver, I.R. et al., The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrihinum.Cell, 1998, 93:779-789
    167. Wang, Z., Zou, Y., Li, X., Zhang, Q., et al.. Cytoplasmic male sterility of rice with boro Ⅱ cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 2006, 18:676-687
    168. Wang, Z.X., Yano, M., Yamanouchi, U., et al.. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 1999, 19:55-64
    169. Wang, Z.Y., Zheng, F.Q., Shen, G.Z., et al.. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J 1995, 7:613-622
    170. Wellburn, A.R.. The spectral determination of chlorophylls a and b, as well total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 1994, 144:307-313
    171. Xiong, G.S., Hu, X.M., Jiao, Y.Q., et al.. LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Research 2006, 16 (3): 267-276
    172. Yamaguchi, T., Nagasawa, N., Kawasaki, S., et al.. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 2004, 16:500-509
    173. Yamamuro, C., Ihara, Y., Wu, X., et al.. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 2000, 12:1591-1606
    174. Yamanouchi, U., Yano, M., Lin, H., et al.. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences of the United States of America 2002, 99:7530-7535
    175. Yano, M. Genetic and molecular dissection of naturally occurring variation. Current opinion in plant biology 2001, 4:130-135
    176. Yano, M., Katayose, Y., Ashikari, M., et al.. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12:2473-2484
    177. Yoshimura, S., Yamanouchi, U., Katayose, Y., et al.. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95:1663-1668
    178. Zeng, L.R., Qu, S., Bordeos, A., et al.. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 2004, 16:2795-2808
    179. Zgurski, J.M., Sharma, R., Bolokoski, D.A. et al.. Asymmetic auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves. Plant Cell 2005, 17:77-91
    180. Zhang, K., Qian, Q., Huang, Z., et al.. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant physiology 2006, 140:972-983
    181. Zhenyu Gao, D.Z., Xia Cui, et al.. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Science in China 2003, 46:661-668
    182. Zhu, Q.H., Ramm, K., Shivakkumar, R., et al.. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant physiology 2004, 135:1514-1525
    183. Zhu, Y., Nomura, T., Xu, Y., et al.. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 2006, 18:442-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700