卧龙自然保护区不同海拔的中国沙棘(Hippophae rhamnoides subsp.sinensis)天然群体的遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国沙棘是一种雌雄异株、风媒传粉的灌木或乔木,在中国西南的卧龙自然保护区有广泛的分布。本研究以采集于四川卧龙自然保护区5个海拔(1800m、2200m、2600m、3000m、3400m)梯度的中国沙棘天然群体为材料,以ISSR和AFLP标记技术研究其遗传多样性水平及其遗传结构,旨在了解卧龙地区中国沙棘天然群体的遗传多样性水平以及遗传多样性在群体间、群体内以及雌雄亚群体间的分布和特征,为中国沙棘树种的遗传改良及种质资源保存提供遗传研究背景与实验依据。同时探讨ISSR、AFLP和RAPD三种标记对中国沙棘天然群体的遗传变异水平和群体间遗传结构的评估能力和各自的优缺点。研究得出以下主要结论:
     1.ISSR和AFLP分析都表明卧龙自然保护区的中国沙棘群体拥有较高的遗传变异水平(h=0.249,H_T=0.305)。出现这种结果的主要原因可能与卧龙自然保护区多变的气候条件和生境的异质度大有关。
     2.ISSR和AFLP都揭示出卧龙自然保护区中国沙棘群体的遗传多样性随着海拔的增加发生显著的变化,表现为中海拔群体(2200m和2600m)比高海拔群体(3000m和3400m)和低海拔群体(1800m)有更高的遗传多样性的趋势。出现这种趋势的可能解释是低海拔群体处在相对高温和相对干旱的环境,高海拔群体受到低温和紫外线胁迫,而中海拔群体存在中国沙棘生长的适宜环境。
     3.ISSR和AFLP分析都表明:卧龙自然保护区中国沙棘的遗传结构遵循分布范围广、交配系统以异交为主的木本植物的通常模式,即大多数的遗传变异存在于群体内,只有少部分的遗传变异存在于群体间。
     4.经Mantel检测表明,卧龙自然保护区中国沙棘群体间的海拔距离和对应遗传距离之间存在显著的正相关关系,即随着垂直海拔距离的增加,群体间的遗传距离也随之增加。Mantel检测结果以及聚类分析将卧龙自然保护区5个不同海拔的中国沙棘群体分为低、中、高海拔群体三组的研究结果都表明,海拔很可能是限制群体间基因交流的主要因素。
     5.ISSR分析发现同一海拔的雌雄亚群体首先聚类的研究结果表明,同一海拔的雌雄亚群体在遗传上最相似。方差分析结果表明只有3.8%的总遗传变异存在于雌雄亚群体间,这可能与雌雄植株间的交配和遗传物质的混合有关。
     6.ISSR、AFLP和RAPD分析都表明卧龙自然保护区不同海拔的中国沙棘天然群体的遗传多样性水平较高。它们的分析结果估算得到的Nei's平均基因多样度(h)分别为0.249、0.214和0.170。从该结果可以看出ISSR和AFLP比RAPD检测到更多的遗传多态性,这很可能是不同标记检测的基因组的位点不同所致。
     7.依据对不同标记系统的比较分析,认为ISSR、AFLP和RAPD三种分子标记系统都能成功地用于调查卧龙自然保护区不同海拔的中国沙棘群体的遗传变异水平及遗传变异结构,提供关于中国沙棘天然群体多态性水平和遗传变异分布的有用信息。在三者中,AFLP具有最高效能指数和标记指数,在确定种间分类关系或鉴别个体方面是一种比较理想的标记。
Hippophae rhamnoides subsp. sinensis, a dioecious and deciduous shrub species, occupies a wide range of habitats in the Wolong Nature Reserve, Southwest China. Our present study investigated the pattern of genetic variation and differentiation among five natural populations of H. rhamnoides subsp. sinensis, occurring along an altitudinal gradient that varied from 1,800 to 3,400 m above sea level in the Wolong Natural Reserve, by using ISSR and AFLP markers to guide its genetic improvement and germplasm conservation. And, comparative study of ISSR, AFLP and RAPD was performed to detect their capacity to estimating the level and pattern of genetic variation occurring among the five elevation populations of H. rhamnoides subsp. sinensis, and to discuss their application to the study on plant genetics. The results were list following:
     1. The ISSR and AFLP analysis conducted for the H. rhamnoides subsp. sinensis populations located in the Wolong Natural Reserve of China revealed the presence of high levels of genetic variation (h=0.249, H_T=0.305). Besides such features as relatively wide distribution, dominantly outcrossing mating system, and effective seed dispersal by small animals and birds, it is sometimes argued that hard climatic conditions and heterogeneous habitats may also contribute to high levels of diversity.
     2. Genetic diversity of H. rhamnoides subsp. sinensis populations was found to vary significantly with changing elevation, showing a trend that mid-elevation populations (2,200 m and 2,600 m) were genetically more diverse than both low-elevation (1,800 m) and high-elevation populations (3,000 m and 3,400 m). H. rhamnoides subsp. sinensis is thought to be stressed by drought and high temperature at low elevations, and by low temperature at high elevations. The high genetic variability present in the mid-elevation populations of H. rhamnoides subsp. sinensis is assumed to be related to a greater plant density in the middle altitudinal zone, where favorable ecological conditions permit its continuous distribution covering the zone from 2,200 m to 2,600 m above sea level.
     3. The genetic structure of H. rhamnoides subsp. sinensis revealed by ISSRs and AFLPs followed the general pattern detected in woody species with widespread distributions and outcrossing mating systems. Such plants possess more genetic diversity within populations and less variation among populations than species with other combinations of traits.
     4. In the present study, Mantel tests showed positive correlations between altitudinal distances and genetic distances among populations or subpopulations. The observed relationship between altitude and genetic distances, and the result of the cluster analysis including populations or male subpopulations and classifying the groups into three altitude clusters suggest that altitude is a major factor that restricts gene flow between populations and subpopulations.
     5. The analysis of molecular variance showed that only 3.8% of the variability resided between female and male subpopulations. Such a very restricted proportion of the total molecular variance between female and male subpopulations is due to common sexuality and mixing of genetic material between females and males.
     6. The analysis based on ISSRs, AFLPs and RAPDs all revealed relatively high levels of genetic variation among different altitudinal populations of H. rhamnoides subsp. sinensis in Wolong Natural Reserve of China. Their estimates of mean Nei's gene diversity is equal to 0.249, 0.214 and 0.170 respectively, suggesting the higher capacity of detecting genetic variation of ISSR and AFLP than RAPD. It might be ascribed to their distinct sensitivity to different type of genetic variation.
     7. Based on the coparative study on ISSR, AFLP and RAPD, we drew a conclusion that they all successfully reveal some useful information concerning the level and pattern of genetic vatiation occurring among different elevation populations of H. rhamnoides subsp. sinensis. AFLP is a ideal tool to taxonomic study and individual identification for their highest efficiency index and marker index among the three marker systems.
引文
1. 包文芳,孙一楠.沙棘属植物化学成分研究概况.中国药物化学杂志,1997,7(1):66-70.
    2. 曹亚玲.吕荣森.中国沙棘属植物核型研究.植物分类学报,1989,27(2):118-123.
    3. 陈灵芝.中国的生物多样性—现状及其保护对策.北京:科学出版社,1993:1-9.
    4. 陈明云,吴钦孝.黄土丘陵半干早区人工沙棘林水文作用研究.中国科学院水利部水土保持研究所博士论文,2002.
    5. 陈纹。孙坤.沙棘属几个中国特有类群的遗传多样性研究.西北师范大学硕士学位论文,2004.
    6. 董玉琛.生物多样性及作物遗传多样性.作物品系资源,1995,3:1-5.
    7. 杜金昆,姚颖垠,倪中福.普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究.遗传学报,2002,29(5):445-452.
    8. 冯维波.生物多样性的丧失与保护的经济学分析.生物多样性,1994,92(1):44-48.
    9. 葛颂.马尾松GOT,LDH和MDH同工酶的遗传方式和连锁关系.植物学报,1987,14(6):428-435.
    10. 葛颂.遗传多样性及其检查方法.生物多样性研究的原理与方法,北京:中国科技出版社:1994:123-140.
    11. 葛孝炎,史国富,马翠英.沙棘化学成分研究概况.中草药,1986,17(8):42-44.
    12. 胡建忠.沙棘对泻溜红土改良及其生长规律.水保持通报,1993,13(4):44-50.
    13. 胡守荣,夏铭.林木遗传多样性研究方法概况.东北林业大学学报,2001,29(3):72-75.
    14. 李根前,唐德瑞,赵一庆.沙棘属植物资源与开发利用.沙棘,2000,13(2):22-26.
    15. 李海生.ISSR 分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,2004,39(2):19-21.
    16. 李洪梅,蓝登明.沙棘种内遗传多样性研究.内蒙古农业大学硕士学位论文,2003.
    17. 李俊清.植物遗传多样性及保护研究进展.植物研究,1998,18(2):227-242.
    18. 李俊清.中国水青冈种内种间遗传多样性的初步研究.生物多样性,1996,4(2):63-68.
    19. 李坤.浅议沙棘植物的起源与演化.沙棘,1994,7(3):1-3.
    20. 李力.青岛耐冬山茶居群的遗传多样性分析.生物多样性,1996,4(1):1-6.
    21. 李敏.沙棘在中国西部发展中的地位和作用.沙棘,2002,15(3):1-4.
    22. 李全忠,沈达信.建平县人工沙棘水土保持林减流减沙效益试验研究.沙棘,1991,4(3):7-14.
    23. 廉永善,陈学林,王峰.沙棘的种下类型研究.西北师范大学学报(自然科学版),1997,33(1): 36-46.
    24. 廉永善,陈学林.沙棘的生态地理分布及其植物地理学意义.植物分类学报,1992a,30(4):349-355.
    25. 廉永善,陈学林.沙棘属植物的系统分类.沙棘,1996,9:15-24.
    26. 廉永善,陈学林.深化基础研究促进沙棘开发利用事业—论沙棘属植物生物学研究与水土保持业.沙棘,1992b,5(2):1-3.
    27. 廉永善.江孜沙棘分类学地位的研究.沙棘,1990,12:24-30.
    28. 廉永善.沙棘属的新发现.植物分类学报,1988,26(3):235-237.
    29. 廉永善.沙棘属植物的性状演化及其意义.沙棘,1991,4(2):16-20.
    30. 梁万福,李宝常,廉永善.青海产四种沙棘的核型分析.沙棘,1997,10(4):5-10.
    31. 刘尚武,何廷农.青藏高原的植物分类.植物分类学报,1978,16(2):106-108.
    32. 刘琰,徐炳声.中华沙棘的核型研究.武汉植物研究,1988,6(2):195-197.
    33. 刘艳玲,廉永善,陈学林.棱果沙棘等三种三亚种的同工酶比较研究.沙棘,1998,11(1):12-18.
    34. 鲁先文.中国沙棘的基因流研究.西北师范大学硕士毕业论文。2005.
    35. 吕荣森.沙棘在中国西部生态环境建设中的作用.沙棘,2003,16(1):3-7.
    36. 马克平.试论生物多样性的概念.生物多样性,1993,1(1):20-22.
    37. 内蒙古沙棘资源普查组.内蒙古沙棘资源的分析与研究.沙棘,1990,3(3):14-17.
    38. 祁建民,周东新,吴为人,林荔辉,方平平,吴建梅.RAPD和ISSR标记检测黄麻属遗传多样性的比较研究.中国农业科学2004,37(12):2006-2011.
    39. 钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000。42(7):741-750.
    40. 邱芳,伏健民.遗传多样性的分子检测.生物多样性,1998,6(2):143-150.
    41. 阮成江,李代琼.沙棘水分生理生态特性研究.陕西杨陵中国科学院国家水利部水土保持研究所硕士论文,1999.
    42. 尚占环,姚爱兴.生物遗传多样性研究方法及其保护措施.宁夏农学院学报,2002,23(1):66-69.
    43. 沈浩,刘登义.遗传多样性概述.生物学杂志,2001,18(3):4-7.
    44. 生利霞,刘洪章.沙棘主要性状评价与性别标记研究.吉林农业大学硕士论文,2004.
    45. 施立明.遗传多样性及其保护.生物科学信息,1990,2:158-164.
    46. 孙毅.沙棘在沙地治理利用中的生态经济功能.沙棘,1993,6(1):36-38.
    47. 田春杰,钟杨.中国沙棘、云南沙棘和江孜沙棘居群的化学成分与遗传多样性分析.复旦大学博 士论文.2003.
    48. 田良才.山西省沙棘种质资源考察初报.沙棘,1989,2(1):5-9.
    49. 土小宁,何振祥,曹锋.沙棘几个抗旱生理指标的测定与分析.沙棘,1991,4(3):36-38.
    50. 王柏青,王耀辉.中国沙棘的染色体核型分析.北华大学学报(自然科学版),2000,1(5):407-409.
    51. 王伯荪,彭少麟.植被生态学—群落与生态系统.北京:中国环境科学技术出版社,1997:7.
    52. 王静,卢淑雯.沙棘的开发及利用.北方园艺,138(58):58-59.
    53. 王占孟.沙棘林改良土壤、保持水土、改善生态环境的效应.沙棘,1994,7(3):14-18.
    54. 夏铭.生物多样性研究进展.东北农业大学学报,1999,30(1):94-100.
    55. 忻耀年.不同沙棘种和亚种籽及油的生化成分研究初报.沙棘,1996,9(1):32-34.
    56. 徐永旭.青海省的沙棘资源.沙棘,1993,6(2):1-9.
    57. 杨顺利,李月峰.右玉县大力发展沙棘资源加快脱贫致富步伐.沙棘,1996,9(1):42-43.
    58. 杨一平.红皮云杉天然群体遗传多样性及遗传分化的研究.植物学报,1993,35(6):458-465.
    59. 尹祚栋.甘肃省的沙棘资源及其开发利用.沙棘,1988,1(1):5-9.
    60. 于关伟,段永平.关于生物多样性保护的若干问题.生物学教学,1996(8):40-42.
    61. 于倬德,敖复.论沙棘与黄土高原的生态农业.沙棘,1992,5(1):1-6.
    62. 苑增武,王福森,戴玉玮,董希文,姜永范.沙棘地理变异规律的研究.防护林科技(全国沙棘工作会议专辑),1995(4):82-86.
    63. 张海英,许勇,王永健.分子标记技术概述.长江蔬菜,2001(2):4-6.
    64. 张辉,苏雪,孙坤,鲁先文,马建勤,陈学林,马瑞君.祁连山两侧中国沙棘不同居群的遗传多样性研究.西北植物学报,2006,26(4):702-706.
    65. 张吉科。张小民.沙棘根瘤内生菌研究进展.沙棘,1992,5(2):4-9.
    66. 张玉胜.沙棘根系的结瘤与固氮.沙棘,1990,3(3):38-39.
    67. 赵利锋,李珊,潘莹,阎桂琴,赵桂仿.华山新麦草自然居群沿海拔梯度的遗传分化.西北植物学报,2001,21(3):391-400.
    68. 周延清,景建洲,李振勇,张宝华,贾敬芬.利用RAPD和ISSR分子标记分析地黄种质遗传多样性.遗传,2004,26(6):922-928.
    69. 朱晓琴.苍术种内遗传多样性分析.植物资源与环境,1995a,4(2):1-6.
    70. 朱晓琴.鹅掌楸遗传多样性的等位酶论证.植物资源与环境,1995b,4(3):9-14.
    71. 朱玉民.浅谈生物多样性概念及意义.天津农业科学,1996,12:42-43.
    72. Allard RW. The genetics of inbreeding populations. Advances in Genetics Incorporating Molecular Genetic Medicine, 1968, 14: 55-131.
    73. Aradhya KM, Mueller-Dombois D, Ranker TA. Genetic structure and differentiation in Metrosideros polymorpha (Myrtaceae) along altitudinal gradients in Maui, Hawaii. Genetical Research, 1993, 61: 159-170.
    74. Barbier EB, Burgess JC, Folke C. Paradise lost? London: Earthscan Publications Ltd, 1994. Coyne J A. 1994 Ernst Mayr and oringin of species. Evolution, 1994,48:19-30.
    75. Bartish GI. Assessment of genetic diversity using RAPD analysis in a germplasm collection of sea buckthorn. Agric. Food Science in Finland, 2000, 9: 279-289.
    76. Bartish IV, Jeppsson N, Bartish GI, Lu R, Nybom H. Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers. Plant Systematics Evolution, 2000, 225: 85-101.
    77. Bartish IV, Jeppsson N, Nybom H. Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Molecular Ecology, 1999, 8: 791-802.
    78. Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 1991, 196: 80-83.
    79. Becker J, Vos P, Kuiper M. Combined mapping of AFLP and RFLP markers in barley. Molecular Genetics and Genomics, 1995, 249: 65-73.
    80. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theoretical and Applied Genetics, 2003, 107: 736-744.
    81. Bellusci F, Pellegrino G, Palermo AM, Gargano D, Musacchio A. Genetic differentiation of the endemic orophyte Campanula pollinensis along an altitudinal gradient. Plant Biosystems, 2005, 139: 349-356.
    82. Bergmannn F. The allelic distribution at an acid phosphatase locus in Norway spruce (Picea abies) along similar climatic gradients. Theoretical and Applied Genetics, 1978, 52: 57-64.
    83. Beveridge T, Li TSC, Oomah BD, Smith A. Sea buckthorn products: Manufacture and Composition. Journal of Agricultural Food Chemistry, 1999, 47: 3480-3488.
    84. Bos M, Harmans H, Vrieling K. Gene flow in Plantago. 1. Gene flow and neighbourhood size in P. lanceolata. Heredity, 1986, 56: 43-53.
    85. Bruford MW, Cheesman DJ, Coote T, Green HA, Haines SA, O'Byan C, Williams TR. Microsatellites and their application to conservation genetics. In: Smith T B, Wayne R K. Molecular Genetic Approaches in Conservation. Oxford: Oxford University Press, 1996: 237.
    86. Camacho FJ, Liston A. Population structure and genetic diversity of Botrychium pumicola (Ophioglossaceae) based on inter-simple sequence repeats (ISSR). American Journal of Botany, 2001, 88: 1065-1070.
    87. Castiglione S, Wang G, Damiani G, Bandi C, Bisoffi S, Sala F. RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp) clones. Theoretical and Applied Genetics, 1993, 87: 54-59.
    88. Charters YM. PCR analysis of oilseed rape cultivars (Brassica rapus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers. Theoretical and Applied Genetics, 1996, 92: 442-447.
    89. Chen Y, Hu B, Xu F, Zhang W, Zhou H, Qu L. Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China. Ferns Microbiology Letters, 2004, 230: 153-158.
    90. Cheng YJ, Meng HJ, Guo WW, Deng XX. Universal chloroplast primer pairs for Simple Sequence Repeat analysis in diverse genera of fruit crops. Journal of Horticultural Science & Biotechnology, 2006,81(1): 132-138.
    91. Clegg MT, Allard RW. Patterns of genetic differentiation in the slender wild oat species Avena barbata. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69: 1820-1824.
    92. Coart C, Lamote V, De Loose M, Van Bockstaele E, Lootens P, Roldan R. AFLP markers demonstrate local genetic differentiation between two indigenous oak species [Quercus robur L. and Quercus petraea (Matt.) Liebl.] in Flemish populations. Theoretical and Applied Genetics, 2002, 105: 431-439.
    93. Darmer G. Biol Zentrabl 1947, 66: 166-170.
    94. Dawson IK, Chalmers KJ, Wangh R, Powell W. Detection and analysis of genetic variation in Hordeum spontaneum population from Israel using RAPD markers. Molecular Ecology, 1993, 2: 151-159.
    95. De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M. Validation of criteria for the selection of AFLP markers to assess the genetic variation of a breeders' collection of evergreen azaleas. Theoretical and Applied Genetics, 1999, 103(8): 1254-1265.
    96. Di-Giovanni F, Kevan PG. Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal of Forest Research, 1991, 21: 1155-1170.
    97. Don D, Korshikov II, Mudrik EA. Elevation-Dependent Genetic Variation of Plants and Seed Embryos in the Crimea Mountain Population of Pinus pallasiana. Russian Journal of Ecology, 2006, 37(2): 79-83.
    98. Don D. Prodr. F1. Nepal. 68.1825.
    99. Ettl GJ, Peterson DL. Genetic variation of Subalpine fir (Abies lasiocarpa (HOOK.) NUTT.) in the Olympic Mountains, WA, USA. Silvae Genetica, 2001, 50: 3-4.
    100. Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E. RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theoretical and Applied Genetics, 1999, 98: 434-447.
    101. Fang DQ, Roose ML. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and Applied Genetics, 1997,95(3): 408-417.
    102. Frankham R. Relationship of genetic variation to population size in wildlife. Conservation Biology, 1996,10:1500-1508.
    103. Fuentes JL, Escobar F, Alvarez A, Gallego G, Duque MC, Ferrer M, Deus JE, Tohme JM. Analyses of genetic diversity in Cuban rice varieties using isozyme,RAPD and AFLP markers. Euphytica, 1999, 109: 107-115.
    104. Galen C, Shore JS, Deyoe H. Ecotypic divergence in alpine Polemonium viscosum: Genetic structure, quantitative variation, and local adaptation. Evolution, 1991,45: 1218-1228.
    105. Galen L, Kevan PG. Scent and color, floral polymorphisms and pollination biology in Polemonium viscosum Nutt. American Midland Naturalist, 1980, 104: 281-289.
    106. Gamperle E, Schneller J. Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. Flora, 2003, 197: 203-213.
    107. Gao XQ, Trajkovski V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of seabuckthorn (Hippophae rhamnoides) during maturation. Journal of Agricultural Food Chemistry, 2000,48(5): 1485-1490.
    108. Garcia-Mas J, Oliver M, G_mez-Paniagua H, de Vicente MC. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theoretical and Applied Genetics, 2000, 101: 860-864.
    109. Gehring JL, Delph LF. Fine-scale genetic structure and clinal variation in Silene acaulis despite high gene flow. Heredity, 1999, 82: 628-637.
    110. Gehring JL, Monson RK. Sexual differences in gas exchange and response to environmental stress in dioecious Silene latifolia (Caryophyllaceae). American Journal of Botany, 1994, 81: 166-174.
    111. Grant SA, Hunter RF. Ecotypic differentiation of Calluna vulgaris L. in relation to altitude. New Phytologist, 1962,61:44-55.
    112. Hallauer AR. Corn breeding. In: Sprague G F, Dudley J W. (Eds) Corn and corn improvement, 3~(rd) edition. Agronomy Monograph 18, American Society of Agromomy Madison / WI, 1988.
    113. Hamrick JL, Godt MJW, Sherman-Broyles SL. Factors influencing levels of genetic variation in woody plant species. New Forests, 1992,6: 95-124.
    114. Hamrick JL, Godt MJW. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London Series B 351, 1996: 1291-1298.
    115. Hamrick JL, Godt MJW. Isozymes and the analysis of genetic structure in plant populations. In Isozymes in Plant Biology (Soltis, D.E. and Soltis P.S. eds.), Discorides Press, Portland, OR, 1989, pp. 87-105.
    116. Hartl DL, Clark AG. Principles of Population Genetics. Sunderland: Sinauer, 1989.
    117. Heywood JS. Spatial analysis of genetic variation in populations. Annual Review of Ecology Evolution and Systematics, 1991, 22: 335-355.
    118. Huang JC, Sum M. Genetic diversity and relationship of sweet potato and its wild relatives in Ipomoea series Batatas (Convolvulaceae) as revealed by inter-simple sequence repeat (ISSR)and restriction analysis of chloroplast DNA. Theoretical and Applied Genetics, 2000, 100: 1050-1060.
    119. Huang JC. Genetic diversity and relationships of sweptotato and its wild relatives in ipomoea series Batatas (Convolvlaceae) as revealed by ISSR and restriction analysis of chloroplast DNA. Theoretical and Applied Genetics, 2000, 100: 1050-1060.
    120. Jain SK, Bradshaw AD. Evolutionary divergence among adjacent plant populations. 1. The evidence and its theoretical analysis. Heredity, 1966, 110: 407-441.
    121.Jeppsson N. Genetic variation and fruit quality in sea buckthorn and black chokeberry. Doctoral dissertation of Swedish University of Agricultural sciences, 1999.
    122. Jian SG, Shi SH, Zhong Y. Genetic diversity among south China Heritiera littoralis delected byinter-simple sequence repeats (ISSR) analysis. Journal of Genetics and Molecular Biology, 2002,13(4): 272-276.
    123. Jones MH, Macdonald SE, G. Henry HR. Sex- and habitat-specific responses of a high arctic willow, Salix arctica, to experimental climate change. Oikos, 1999, 87:129-138.
    124. Khairallah M,刘新芝,彭泽斌,Warburton M,李新海,张世煌.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27(8):725-733.
    125. Krischik VA, Denno RF. Patterns of growth, reproduction, defense, and herbivory in the dioecious shrub, Baccharis halimifolia (Compositae). Oecologia, 1990, 83: 182-190.
    126. Lewontin RC. The apportionment of human diversity. Evolutionary Biology, 1972, 6: 381-398.
    127. Li A, Ge S. Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) Detected by ISSR markers. Annals of Botany, 2001,87: 585-590.
    128. Li C, Ren J, Luo J, Lu R. Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations. Acta Physiologiae Plantarum, 2004, 26: 123-129.
    129. Li C, Xu G, Zang R, Korpelainen H, Berninger F. Sex-related differences in leaf morphological and physiological responses in Hippophae rhamnoides along an altitudinal gradient. Tree Physiology, 2007, 27: 399-406.
    130. Li C, Yang Y, Junttila O, Palva ET. Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes. Plant Science, 2005, 168:1365-1370.
    131. Li TSC, Schroeder WR. Sea buckthorn (Hippophae rhamnoides L.): A multipurpose plant. HortTechnology, 1996, 6(4): 370-380.
    132. Li TSC. Research and development of sea buchthorn in Canada- a success story. Proceeding of International Symposium on Sea Buckthorn (H. rhamnioides L.) Bejing, China. 1999.
    133. Liu ZM, Zhao AM, Kang XY, Zhou SL, L6pez Pujol J. Genetic Diversity, Population Structure, and Conservation of Sophora moorcroftiana (Fabaceae), a Shrub Endemic to the Tibetan Plateau. Plant Biology, 2006, 8: 81-92.
    134. Loveless MD, Hamrick JL. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology evolution and Systematics., 1984, 15: 65-95.
    135. Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN. Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theoretical and Applied Genetics, 1996, 93:1103-1111.
    136. Lu R. A new sea buckthorn resource- H. goniocarp. Proceeding of International Symposium on Sea Buckthom (H. rhamnioides L.) Bejing 1999, China.
    137. Lu R. Sea buckthorn - A multipurpose plant species for fragile mountains. ICIMOD Occasional Paper No. 20. Kathmandu, Nepal, 1992, 26 p.
    138. Lu XW, Sun K, Ma RJ, Zhang H, Su X, Wang ML. Fruits foraging patterns and seed dispersal effect of frugivorous birds on Hippophae rhamnoides ssp. sinensis. Chinese Journal of Ecology, 2005, 24(6):635-638.
    139. Lu Z, Wang Y, Peng Y, Korpelainen H, Li C. Genetic diversity of Populus cathayana Rehd populations in southwestern China revealed by ISSR markers. Plant Science, 2006, 170:407-412.
    140. Ma RJ, Lu XW, Sun K, Wang ML, Zhang H, Su X. Effects of Cyanopica cyana ingestion on seed germination of Hippophae rhamnoides ssp. sinensis. Acta Bot. Boreal. Occident. Sin., 2005, 25(3):472-477.
    141. Maguire TL, Peakall R, Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.)Vierh.(Avicenniaceae) detected by AFLPs and SSRs. Theoretical and Applied Genetics, 2002, 104: 388-398.
    142. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research,1967, 27: 209-212.
    143. Mayr E. An animal species and evolution. Combridge. Mass: Harvard University Press, 1963.
    144. McDermott JM, McDonald BA. Gene flow in plant pathosystems. Annual Review of Phytopathology,1993, 31: 353-373.
    145.Mcneely JA.保护世界的生物多样性.李文军译.生物多样性译丛(一).北京:中国科学技术出版社。1992:1-194.
    146.Merrell DJ.生态遗传学.黄瑞复译.北京:科学出版社,1991:25-36.
    147. Mickevich ME Taxonomic congruence: Rohlf and Sokal's misunderstanding. The Systematic Zoology., 1980, 29: 162-176.
    148. Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molecular Breeding, 1997,3: 127-136.
    149. Mitton JB, Sturgeon KB, Dabis ML. Genetic differentiation in ponderosa pine along a steep elevational transect. Silvae genetica, 1980, 29: 100-103.
    150. Nan P, Shi S, Peng S, Tian C, Zhong Y. Genetic diversity in Primula obconica (Primulaceae) from central and south-west China as revealed by ISSR markers. Annals of Botany, 2003,91: 329-333.
    151. Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70: 3321-3323.
    152. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583-590.
    153.Nevo E, Beiles A, Storch N. Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theoretical and Applied Genetics, 1983,64: 123-132.
    154. Oyama K, Ito M, Yahara T, Ono M. Low genetic differentiation among populations of Arabis serrata (Brassicaceae) along an altitudinal gradient. Journal of plant Research, 1993, 106: 143-148.
    155. Ozenda P. La vegetation de la chaine alpine dans I' espace m on tagnard europeen. Masson, paris, 1985.
    156. Pan R, Zhang Z, Ma Y, Sun Z, Deng B. The distribution characters of sea buckthorn (H. rhamnioides L.) and its research progress in China. Proceeding of International Symposium on Sea Buckthorn (H. rhamnioides L.) Xi'an. China.p.1-16. 1989.
    157. Peakall R, Smouse PE. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, 6: 288-295.
    158. Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics, 1998, 97: 1248-1255.
    159. Persson HA, Nybom H. Genetic sex determination and RAPD marker segregation in the dioecious species sea buckthorn (Hippophae rhamnoides L.). Hereditas, 1998, 129: 45-51.
    160. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalsky A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996,2:225-238.
    161.Premoli AC. Isozyme polymorphisms provide evidence of clinal variation with elevation in Nothofagus pumilio. Journal of Heredity, 2003, 94: 218-226.
    162. Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 1999,98(1): 107-112.
    163. Price SC. Estimates of population different liation obtained from enzyme polymorphisms and quantitative characters. Heredity, 1984, 75: 141-142.
    164. Qian W. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theoretical and Applied Genetics, 2001,102: 440-449.
    165. Qinghai-Tibet Plateau Expedition Team of Chinese Academy of Sciences. Physical Geography in Tibet. Beijing: Science Press, 1982. (in Chinese)
    166. Rehfeldt GE. Adaptation of Picea engelmannii populations to the heterogeneous environments of the Intermountain West. Canadian Journal of Botany, 1994, 72: 1197-1208.
    167. Reisch C, Anke A, Rohl M. Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic and Applied Ecology, 2005, 6: 35-45.
    168. Rieger R, Michaelis A, Green M. Glossary of genetics (Fifth edition). Springer Verlag, German, 1991: 209.
    169. Rohlf FG. Consensus indices for comparing classifications. Mathematical Biosciences, 1982, 59: 131-144.
    170. Rousi A, Arohonka. C-bands and ploidy level of Hippophae rhamnoides. Hereditas, 1980, 92: 329-330.
    171. Rousi A. Observations on the cytology and variation of European and Asiatic populations of Hippophae rhamnoides. Annales Botonici Fennici, 1965,2: 1-18.
    172. Rousi A. The genus Hippophae. L. A taxonomic study. Annales Botonici Fennici, 1971, 8: 177-227.
    173. Ruan CJ, Qin P, Zheng JW. Genetic relationships among some cultivars of sea buckthorn from China, Russia and Mongolia based on RAPD analysis. Scientia Horticulturae, 2004, 101: 417-426.
    174. Ruan CJ. Genetic relationships among sea buckthorn varieties from China, Russia and Mongolia using AFLP markers. Journal of Horticultural Science & Biotechnology, 2006, 81(3): 409-414.
    175. Ruiz R, Dendauw J, Van Bockstaele E, Depicker A, De Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 2000, 6(2): 125-134.
    176. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 1997, 95:714-722.
    177. Sáenz-Romero C, Guzmán-Reyna RR, Rehfeldt GE. Altitudinal genetic variation among Pinus oocarpa populations in Michoacán, Mexico Implications for seed zoning, conservation, tree breeding and global warming. Forest Ecology and Management, 2006, 229: 340-350.
    178. Sáenz-Romero C, Tapia-Olivares BL. Pinus oocarpa isoenzymatic variation along an altitudinal gradient in Michoaca'n, Mexico. Silvae Genetica, 2003, 52: 237-240.
    179. Saghai-Maroof MA, Allard RW, Zhang Q. Genetic diversity and ecogeographical differentiation among ribosomal DNA (rDNA) alleles in wild and cultivated barley. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87: 8486-8490.
    180. Schall BA. Comparison of methods for assessing genetic variation in plant conservation biology, In Falk D A and K E Holsinger (eds.) Genetics and Conservation of Rare Plants, New York: Oxford University Press. 1991: 123-124.
    181. Schuh RT, Farris JS. Methods for investigating taxonomic congruence and their application to the Leptopodomorpha. Systematical Zoology, 1981, 30:331-351.
    182.Scolbrig OT.生物多样性—有关的科学问题与合作研究建议.马克平译.北京:中国科学技术出版社.1992:195-236.
    183. Seman K, Bjornstad A, Stedje B. Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analyses. Genetic Resources and Crop Evolution, 2003, 50: 649-661.
    184. Shchapov HS. On the karyology ofHippophae rhamnoides L.. Citologia I Genetika Moskva 13(1): 45-47 (in Russian)
    185. Spiess EB. Genes in population (2nd edition). New York: john Wiley & Sons, 1989: 773-774.
    186. Sprent JI, Parsons R. Nitrogen fixation in legume and nonlegume trees. Field Crops Research, 2000, 65: 183-196.
    187. Sun K, Chen X, Ma R. Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Systematics and Evolution, 2002, 235: 121-134.
    188. Tang X. Breeding in Sea Buckthorn (Hippophae rhamnoides) Genetics of Berry Yield, Quality and Plant Cold Hardiness. Doctoral Thesis. 2002.
    189. Tian CJ, Lei YD, Shi SH, Nan P, Chen JK, Zhong Y. Genetic diversity of sea buckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New Forests, 2004a, 27: 229-237.
    190. Tian CJ, Nan P, Shi SH, Chen JK, Zhong Y. Molecular genetic variation in Chinese populations of Three Subspecies of Hippophae rhamnoides. Biochemical Genetics, 2004b, 42: 259-267.
    191. Tigerstedt PMA. Genetic structure of Pinus abies population as determined by the isozyme approach. Proceeding of the joint IU FRO meeting. S. 02. 04. 1-3 Stockholm, 1974, 283-291.
    192. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Molecular Ecology, 2002,11: 139-151.
    193. Vos P, Hogers R, Bleeker M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414.
    194. Wang L, Guo J, Zhao GF. Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers. Biochemical Systematics and Ecology, 2006, 34: 310-318.
    195. Wang XR, Chhatre VE, Nilsson MC, Song W, Zackrisson O, Szmidt AE. Island Population Structure of Norway Spruce (Picea Abiles) in Northern Sweden. International Journal of Plant Sciences, 2003, 164(5): 711-717.
    196. Wang X, Griffin KL. Sex-specific physiological and growth responses to elevated atmospheric CO_2 in Silene latifolia Poiret. Global Change Biology, 2003, 9: 612-618.
    197. Wang Y, Luo J, Xue X, Korpelainen H, Li C. Diversity of microsatellite markers in the populations of Picea asperata originating from the mountains of China. Plant Science, 2005, 168: 707-714.
    198. Waser NM. Competition for pollination and sequential flowering in two Colorado wild flowers. Ecology, 1978, 59: 934-944.
    199. Weiblen GD, Thomson JD. Seed dispersal in Erythronium grandiflorum (Liliaceae). Oecologia, 1995, 102:211-219.
    200. Wen CS, Hsiao JY. Altitudinal genetic differentiation and diversity of Taiwan Lily (Lilium longiflorum var. formosum; Liliaceae) using RAPD markers and morphological characters. International Journal of Plant Science, 2001, 162: 287-295.
    201. Wolfe AD, Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In Molecular Systematics of Plants: DNA Sequencing (Soltis, P.S., Soltis, D.E. and Doyle, J.J. eds.), Kluwer, New York, 1998, pp. 43-86.
    202. Wright S. The genetic structure of populations. Annals of Eugenetics, 1951, 15: 324-354.
    203. Wu ZY, Raven PH. Flora of China. Vol. 4. Science Press and Missouri Botanical Garden, Beijing, China and St. Louis, USA, 1994, 287 p.
    204. Yang B, Kallio H. Composition and physiological effects of Sea Buckthorn (Hippophae) lipids. Trends in Food Science & Technology, 2002, 13: 160-167.
    205. Yang B. Lipophilic Components of Sea Buckthom(Hippophae rhamnoides)Seeds and Berries and Physiological Effects of Sea buckthorn Oils. Doctoral dissertation of University of Turku, 2001.
    206. Yang TW, Yang YA, Xiong Z. Paternal inheritance of chloroplast DNA in interspecific hybrids in the genus Larrea (Zygophyllaceae). American Journal of Botany, 2000, 87: 1452-1458.
    207. Yao Y, Tigerstedt P. Isozyme studies of genetic diversity and evolution in Hippophae. Genetic Resources and Crop Evolution, 1993, 40: 153-164.
    208. Yao Y. Genetic diversity evolution and domestication in sea buckthorn (Hippophae rhamnoides). Doctoral dissertation of University of Helsinki, 1994.
    209. Yeh FC, Yang RC, Boyle T. POPGENE, version 1.32 edition, Software Microsoft Window-Based Freeware for Population Genetic Analysis. University of Alberta, Edmonton, Alta, 1997.
    210. Yin TM, Zhang XY, Huang MR, Wang MX, Qiang Z, Tu S, Zhu L, Wu R. Molecular linkage maps of the Populus genome. Genome, 2002,45: 541-555.
    211. Young AG, Hill JH, Murray BG, Peakall R. Breeding system, genetic diversity and clonal structure in the subalpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biological Conservation, 2002, 106: 71-78.
    212. Yu Z, Lian AF. Discussion on the problems of origin, classification, community and resource of sea buckthorn in China. Proceeding of International Symposium on Sea Buckthorn (H. rhamnioides L.) Xi'an. China.p.21-30, 1989.
    213.Zabeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Application, 1992, publication number EP 0534858.
    214. Zabeau M, Vos P. Selective restriction fragment amplification: general method for DNA fingerprinting In: European Patent Application EP 534858A1,1993.
    215. Zhang X, Korpelainen H, Li C. Microsatellite variation of Quercus aquifolioides populations at varying altitudes in the Wolong Natural Reserve of China. Silva Fennica, 2006, 40: 407-415.
    216. Zhmyko TG, Gigienova El, Vmarov AV. Vitamins from the oils of Hippophae rhamnoides fruit. Khim prir soedin, 1978(3): 313-317.
    217. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700