北方主要木质藤本植物光合效率及其对水分与光照的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着全球性生态环境问题的加剧,恢复和重建植被生态功能已成为人们关心的生态学热点问题之一,光因子胁迫、干旱缺水和大气中CO2浓度不断升高是影响植被分布及生长的重要生态因子。对光合气体交换参数的研究主要集中在农作物和经济林领域,对系列水分梯度下藤本植物的光合生理变化规律研究较少。为此,本文综合应用SPAC界面水分传输理论与植物水分利用效率理论,以五叶地锦(Parthenocissus quinquefolia)、三叶地锦(Parthenocissus semicordata)、大叶扶芳藤(Euonymus fortunei)、小叶扶芳藤(E.f.var.minimus Rhed.)、美国凌霄(Campsis radicans Seen)、蛇葡萄(Ampelopsis brevipedunculata)、紫藤(Wisteria sinensis Sweet)、金银花(Lonicera japonica Thunb)、爬藤卫矛(Euonymus scandens Graham)、常春藤(Hedera neaplensis var. Sinensis)等14种藤本植物幼苗作为试验材料,研究木质藤本植物光合作用效率过程与节水生理机制,确定出主要光合作用效率参数与根-土界面水分含量及叶-气界面光量子通量的定量关系,探索根-土界面水分驱动光合作用的气孔限制机理和叶绿素荧光动力学机制,为干旱瘠薄荒山植被恢复中优良藤本植物选择及其合理的立地配置提供理论与技术依据。获得以下主要研究成果:
     (1)叶片光合作用效率的光响应过程及其土壤水分驱动效应
     藤本植物的光合作用、蒸腾作用及水分利用效率与土壤湿度和光照强度密切相关,而且有明显的阈值响应。确定出14种藤本植物正常生长所允许的土壤水分最大亏缺程度、土壤湿度上限值和适宜的土壤湿度范围,以及有利于植物生长和水分高效利用的适宜光合有效辐射强度及上、下限值。其中以紫藤为例说明如下:
     ①维持紫藤正常生长(同时具有较高光合速率(Pn)和水分利用效率(WUE))的土壤湿度范围,在重量含水量(Wm)为13.1%~22.6%、相对含水量(Wr)在46.5%~80.6%之间,最佳土壤湿度在Wm为19.9%(Wr为70.9%)左右。
     ②紫藤对光照环境的适应性较强,在PAR为600~1600μmol·m-2·s-1范围内,Pn和WUE都具有较高水平,饱和光强大约在PAR为800~1000μmol·m-2·s-1。
     ③紫藤正常生长所允许的最低土壤湿度在Wm为10.2%(Wr为36.2%)左右,此时允许的最高PAR在1000μmol·m-2·s-1左右,是紫藤叶片光合机构受到破坏的临界点。
     ④建立藤本植物叶-气界面水分传输效率对辐射强度的响应模型,如美国凌霄采用非直角双曲线模型进行模拟光响应过程较好,光响应曲线曲角接近于1,随着重量含水量Wm (5.5%~19.4%)、相对含水量Wr(20.1%~71.1%)的递增,光补偿点降低,光饱和点、最大净光合速率及表观量子效率均升高,在Wm为19.4%时,达到光补偿点最低(21.61μmol·m-2·s-1),光饱和点最高(1400μmol·m-2·s-1)。
     ⑤随着水分胁迫的加重,光合速率的下降由气孔限制向非气孔限制过渡。如紫藤光合作用非气孔限制的发生与土壤湿度与光照强度密切相关,在Wm为15.7%~22.6%(Wr为56.0%~80.6%)范围内,光合作用主要受气孔限制,受光照强度的影响较小;超出此范围后,受光照强度的影响较大,出现由气孔限制转变为非气孔限制的PAR临界值。
     (2)叶片光合作用效率的日动态及其对土壤水分胁迫的响应
     ①水分充足条件下,影响藤本植物光合作用的主要因子,可以归纳为两类,一类是大气温度和空气相对湿度,一类是光照强度;在重度水分胁迫条件下,一类是光照强度和大气CO2浓度,一类是空气相对湿度。
     ②在各种水分条件下,金银花品种的光合速率相对较高,特别是鸡抓花和花叶表现明显。在适度的水分胁迫下,爬藤卫矛、蛇葡萄、大叶扶芳藤的光合速率相对也较高;其次光合速率维持较高值的为美国凌霄、小叶扶芳藤、五叶地锦、三叶地锦、紫藤等几种藤本植物。在水分条件相对较好的情况下,与其他藤本植物相比较,紫藤、五叶地锦、常春藤均表现出较低的光合速率值。
     ③随着水分胁迫的加重,多数藤本植物蒸腾速率和水分利用效率表现出下降的趋势,其蒸腾速率的影响因子变化也较为复杂。从单一因子相关性分析和逐步回归方程中的综合影响因子来看,各水分胁迫下,环境因子对美国凌霄水分利用效率的影响较为复杂,多为4~5个环境因子共同影响,其中大气Ca、Ci、TL对其影响较大。
     ④随着水分胁迫的加重,藤本植物类群频率出现的高低,表现为光合速率、蒸腾速率大小以次为高、中等、低,且在对照和轻度水分胁迫下,以高、中等类群的藤本植物品种居多,中度和重度水分胁迫下,以相对低等类群的藤本植物品种居多。
     (3)不同土壤湿度下叶片光合作用效率对CO2浓度的响应
     ①土壤水分增高,有利于藤本植物在高CO2浓度下光合作用的进行,对其高浓度CO2的利用起到了促进作用。
     ②随着水分胁迫的加重,藤本植物CO2饱和点逐渐降低,在高CO2浓度下,响应曲线变化比较平缓。随着水分胁迫的加重,各CO2浓度下,14种藤本植物出现低光合速率值的机率明显增加。
     ③随着水分胁迫的加重,多数藤本植物的CE呈现下降的趋势;常春藤、三叶地锦、紫藤、大毛花、花叶等5种藤本植物的Г呈现增加趋势,其他几种藤本植物在轻度、中度水分胁迫条件下相差不是很大;多数藤本植物的RuBP最大再生速率表现出降低趋势。
     (4)叶绿素荧光动力学参数对水分胁迫的响应
     ①随着水分胁迫的加重,藤本植物的FV/Fm比值随之下降,光能转化幅度降低,影响光合电子传递的正常进行,从而影响藤本植物的光合作用。
     ②随着水分胁迫的加重,藤本植物的ΦPSⅡ值下降幅度依次增大。在对照和轻度、中度水分胁迫下,多数藤本植物的ΦPSⅡ值能够恢复到初始值大小,但严重的干旱胁迫会限制了PSⅡ反应中心的电子传递,降低了PSⅡ电子传递量子产量
     ③随着水分胁迫的加剧,藤本植物NPQ值增大,光抑制的现象加强,以热的形式耗散的那部分光能也随着增加,热耗散能力随着干旱胁迫的加剧而增强。
     ④随着水分胁迫的加重,藤本植物ETR日均值逐渐降低,下降幅度也依次增大。水分胁迫的加重降低光合电子传递速率,在一定程度上不能够有效耗散过剩的光能,从而导致光强过高和干旱胁迫加重对光合机构产生一定的破坏作用。
     (5)维持藤本植物高效用水和良好生长的适宜土壤水分阈值与有效辐射强度范围
     ①维持美国凌霄高效生理用水和高光合生产力存在的适宜水分条件,Wm为13.5%~19.4%,Wr为49.5%~71.1%,适宜的光合有效辐射范围(PAR)为800~1600μmol·m-2·s-1。其他依次为:
     ②紫藤Wm为13.1%~22.6%,Wr为46.5%~80.1%,PAR为600~1400μmol·m-2·s-1。
     ③常春藤Wm为17.6%~20.5%,Wr为63.8%~74.3%,PAR为600~1400μmol·m-2·s-1。
     ④蛇葡萄Wm为8.9%~19.8%,Wr为30.8%~68.5%,PAR为1000~1200μmol·m-2·s-1。
     ⑤五叶地锦Wm为9.7%~14.0%,Wr为33.7%~48.7%,PAR为600~1200μmol·m-2·s-1。
     ⑥三叶地锦Wm为8.9%~15.7%,Wr为28.6%~50.2%,PAR为400~800μmol·m-2·s-1。
     ⑦大叶扶芳藤Wm为9.8%~15.2%,Wr为34.0%~52.7%,PAR为600~1000μmol·m-2·s-1。
     ⑧小叶扶芳藤Wm为8.2%~18.3%,Wr为32.3%~72.2%,PAR为600~1200μmol·m-2·s-1。
     ⑨爬藤卫矛Wm为11.2%~21.2%,Wr为41.0%~77.7%,PAR为600~1000μmol·m-2·s-1。
     ⑩大毛花Wm为11.4%~19.8%,Wr为40.4%~70.3%,PAR为800~1400μmol·m-2·s-1。
     ○11秧花Wm为9.0%~17.2%,Wr为31.6%~60.5%,PAR为600~1200μmol·m-2·s-1。
     ○12花叶Wm为12.9%~17.9%,Wr为46.2%~64.2%,PAR为800~1200μmol·m-2·s-1。
     ○13蒙花Wm为12.0%~16.4%,Wr为43.3%~59.2%,PAR为600~1400μmol·m-2·s-1。
     ○14鸡抓花Wm为17.3%~22.3%,Wr为60.7%~78.2%,PAR为1000~1400μmol·m-2·s-1。
     (6)藤本植物的光适应性和水分适应性特征
     ①鸡抓花、爬藤卫矛、大叶扶芳藤、蒙花等4种藤本植物应属于典型的阳生植物。蛇葡萄、五叶地锦、常春藤等3种藤本植物则为一般的喜光性植物。美国凌霄、大毛花、紫藤、秧花等4种藤本植物属喜光耐阴植物。小叶扶芳藤、三叶地锦、花叶等3种藤本植物应为典型的阴生植物。
     ②在维持高光合速率的前提下,对土壤水分的耐水湿性由大到小排序依次为:小叶扶芳藤>紫藤>鸡抓花>爬藤卫矛>常春藤>三叶地锦>秧花>五叶地锦>大叶扶芳藤>美国凌霄>大毛花>蛇葡萄>花叶>蒙花。对土壤水分干旱的适应性由大到小排序依次为:三叶地锦>蛇葡萄>秧花>小叶扶芳藤>五叶地锦>大叶扶芳藤>大毛花>爬藤卫矛>蒙花>花叶>紫藤>美国凌霄>鸡抓花>常春藤。
In recent years, along with exacerbation of global eco-environmental problem, ecological function of vegetation restoration and reconstruction has been one of ecological hotspots regarded by people. Moreover, light stress, drought and rise of atmosphere CO2 concentration are important ecological factors, which influence distributing and growth of vegetation. Photosynthetic gas exchange parameters has been researched on crop and economic forest centralized mostly. Research on variety rule of photosynthesis physiological index of Lianas was rather little under a series of soil moisture grads. Therefore, using , synthetically the theory of water transport of soil-plant-atmosphere continuum interface and theory of plant water use efficiency, and regarding Parthenocissus quinquefolia、Parthenocissus semicordata、Euonymus fortunei、Euonymus fortunei minimus Rhed、Campsis radicans Seen、Ampelopsis brevipedunculata、Wisteria sinensis Sweet、Lonicera japonica Thunb、Euonymus scandens Graham、Hedera neaplensis var. Sinensis et al. as experimental materials, water transport process and water physiological saving mechanism of leaf-atmosphere interface of woodiness Lianas has been studied. Thereby, quantitative relation among water transport efficiency of leaf-atmosphere interface, soil water content of root-soil interface and quantum flux of leaf-atmosphere interface are established, and stomata limit mechanism of soil moisture in root-soil interface driving WUE of leaf-atmosphere interface and chlorophyll fluorescence kinetic mechanism are explored. These theoretical and technical gists are very useful at selecting and deploying reasonable sites for eximious Lianas, in the process of vegetation restoration and reconstruction of droughty and barren hills. The results as follow:
     (1) The response of leaves photosynthetic efficiency to the dynamic effecters of soil moisture
     The net photosynthetic rate (Pn)、transpiration rate (Tr) and water use efficiency (WUE) of Lianas leaves have notable threshold response value to the level of soil moisture and the variation of photosynthetic active radiation (PAR). We can ascertain some parameters for maintaining the natural growth and water efficient use of Lianas, such as : the maximal soil moisture deficit, the upper limit and fitting soil water content, the upper、lower limit and fitting value of PAR. For example, W. sinensis:
     ①In order to maintain the high-level Pn and WUE of W. sinensis ,synchronously, the fitting mass water content (Wm) is about 13.1%~22.6%, relative water content (Wr) is about 46.5%~80.6%, and the optimum Wm is about19.9% (Wr is 70.9%).
     ②The adaptability of W. sinensis to light conditions is very fargoing, and the high-level Pn and WUE is appeared in the PAR of 600~1600μmol·m-2·s-1, and the light saturation points of Pn and WUE are all about 800~1000μmol·m-2·s-1.
     ③The most deficient degree to Wm is 10.2% (Wr is 36.2%) for the normal growth of W. sinensis, in this situation, the leaf photosynthesis organ will be badly destroyed if the number of PAR exceeds 1000μmol·m-2·s-1, and it is the critical point of destructivity in leaf photosynthesis organ.
     ④Establishing the response model of water transport efficiency of the interface between leaf-atmosphere to PAR, we find that the non-rectangular hyperbola model is very good to simulate light-response curve, and the convexity is about 1.With the increase of soil mass water content (Wm is about 5.5%~19.4%)、relative water content(Wr) is about20.1%~71.1%, the number of light compensation point is decline while light saturation point、the maximum Pn、apparent quantity yield are all increase. When Wm is about 19.4%, the light compensation point is at the minimum of 21.61μmol·m-2·s-1, and light saturation point is at the maximum of 1400μmol·m-2·s-1.
     ⑤With the aggravating of soil moisture stress, the reason of Pn’decline is changed from stomatal limit to No-stomatal limit. For example, the Lianas of W. sinensis, the appearance of No-stomatal limit is nearly correlative with soil moisture and light intensity. The decline of Pn is caused mainly by stomatal limit in the range of Wm between 15.7% and 22.6%, in this situation; the Pn is not affected obviously by PAR. Out of this soil moisture situation, the Pn is affected obviously by PAR, and the critical turning point of PAR is appeared with the change from stomatal limit to No- stomatal limit.
     (2) The response of daily trends of leaves photosynthetic efficiency under soil moisture stress
     ①The primary factors influencing Pn of H. neaplensis var. can be sum up two species, one is air temperature and relative humidity, the other is light intensity under abundant soil moisture. One is light intensity and atmosphere CO2 concentration, the other is air relative humidity under severe soil moisture stress.
     ②On condition of all kinds of soil moisture, Pn of Lonicera japonica Thunb., especially the kind of L. j. cv.ungulata and L.j.cv. Variegatum,are correspondingly higher. On condition of moderate soil moisture stress, Pn of E. scandens、A. brevipedunculata、E. fortunei are correspondingly higher. Pn of Campsis radicans、E.f.var.minimus Rhed、P. quinquefolia、P. semicordata、Wisteria sinensis et al. are secondly higher. Compared with else Lianas, Pn of W. sinensis、P. quinquefolia、H. neaplensis var are lower although soil moisture condition is good.
     ③With aggravation of soil moisture stress, transpiration rate and water use efficiency of most Lianas represents descendant trend and the variety of factors influencing transpiration rate is rather complex. From compositive factors in single factor’s relativity analysis and stepwise regression equation, the influence of environmental factors on water use efficiency of C. radicans is rather complex under soil moisture stresss. Commonly, 4~5 environmental factors influence together water use efficiency of C. radicans, especially atmosphere CO2 concentration、intercellular CO2 concentration、leaf temperature.
     ④With aggravation of soil moisture stress, the order of Lianas’cluster frequency of Pn and Tr is high mean>middling mean>low mean. The high、middling mean amount of breed is larger under check and mild soil moisture stress, and the low mean amount of breed is larger under moderate and severe soil moisture stress.
     (3) The response of leaves photosynthetic efficiency on CO2 concentration under different soil moisture
     ①The increase of soil moisture is favorable for Lianas’photosynthesis under high CO2 concentration, and accelerates the use of high CO2 concentration.
     ②With the aggravation of soil moisture stress,the CO2 saturation point of Lianas is reduced, and the change of the response curve is very mild under high CO2 concentration.With the aggravation of soil moisture stress,the frequency of low Pn value is increase for all Lianas under every CO2 concentration.
     ③With the aggravation of soil moisture stress, some Lianas’carboxylation efficiency is reduced, and the CO2 compensation points of H. neaplensis var、P. semicordata、W. sinensis、L. j. cv.tomentosa、L. j.cv. Variegatum et al, Lianas is increased, and theГmean of other Lianas is almost equal under mild and moderate soil moisture stress. The maximal regeneration rate of RuBP is reduced for large quantities of Lianas.
     (4) The response of chlorophyll fluorescence kinetic parameters to soil moisture stress
     ①with the aggravation of soil moisture stress, the ration of Lianas’FV/Fm is declining, and the light translation extent is low. The decline of FV/Fm affects Photosynthetic electron transport natural progress and plant photosynthesis.
     ②with the aggravation of soil moisture stress, the decline extent of Lianas’ΦPSⅡis increased, in turn. In the soil moisture stress of check、mild、moderate, theΦPSⅡof some Lianas could renew the primary value, but the severe water stress could limit the electron transport of reaction center in the PSⅡ,reducing the quantum yield of electron transport in the PSⅡ.
     ③with the aggravation of soil moisture stress, the photoinhibition phenomenon is strengthen, accompanying the increscent of Lianas’NPQ, and heat dissipateion ability is also strength.
     ④with the aggravation of soil moisture stress, the daily mean of ETR is reduced , and the descending extent is increscent, in turn. The aggravation of soil moisture stress could reduce the Photosynthetic electron transport rate. In a certain, it could not consume superfluous light energy, and induce the breach of photosynthetic organ accompanying with the aggravation of soil moisture stress and intense light.
     (5) The fitting soil moisture threshold value and the effective range of photosynthetic active rate for maintaining different Lianas’high-efficiency water use efficiency and natural growth
     ①In order to maintain high-efficiency physiological using water and high-level photosynthetic productivity of Campsis radicans Seen, the fitting mass water content (Wm)is about 13.5%~19.4%, relative water content (Wr) is about 49.5%~71.1%, and the fitting photosynthetic active radiation (PAR) is in the range of 800~1600μmol·m-2·s-1. and the ordinal soil moisture content and PAR of other Lianas, as follows:
     ②For Wisteria sinensis Sweet , the fitting Wm is about 13.1%~22.6%, Wr is about 46.5%~80.1%, and the fitting PAR is in the range of 800~1600μmol·m-2·s-1.
     ③For Hedera neaplensis var. Sinensis , the fitting Wm is about 17.6%~20.5%, Wr is about 63.8%~74.3%, and the fitting PAR is in the range of 600~1400μmol·m-2·s-1.
     ④For Ampelopsis brevipedunculata , the fitting Wm is about 8.9%~19.8%, Wr is about 30.8%~68.5%, and the fitting PAR is in the range of 1000~1200μmol·m-2·s-1.
     ⑤For Parthenocissus quinquefolia , the fitting Wm is about 9.7%~14.0%, Wr is about 33.7%~48.7%, and the fitting PAR is in the range of 600~1200μmol·m-2·s-1.
     ⑥For Parthenocissus semicordata , the fitting Wm is about 8.9%~15.7%, Wr is about 28.6%~50.2%, and the fitting PAR is in the range of 400~800μmol·m-2·s-1.
     ⑦For Euonymus fortunei , the fitting Wm is about 9.8%~15.2%, Wr is about 34.0%~52.7%, and the fitting PAR is in the range of 600~1000μmol·m-2·s-1.
     ⑧For E.f.var.minimus Rhed , the fitting Wm is about 8.2%~18.3%, Wr is about 32.3%~72.2%, and the fitting PAR is in the range of 600~1200μmol·m-2·s-1.
     ⑨For Euonymus scandens Graham , the fitting Wm is about 11.2%~21.2%, Wr is about 41.0%~77.7%, and the fitting PAR is in the range of 600~1000μmol·m-2·s-1.
     ⑩For Lonicera japonica Thunb.cv.tomentosa , the fitting Wm is about 11.4%~19.8%, Wr is about 40.4%~70.3%, and the fitting PAR is in the range of 800~1400μmol·m-2·s-1.
     ○11 For Lonicera japonica Thunb.var , the fitting Wm is about 9.0%~17.2%, Wr is about 31.6%~60.5%, and the fitting PAR is in the range of 600~1200μmol·m-2·s-1.○12 For Lonicera japonica Thunb.cv. Variegatum , the fitting Wm is about 12.9%~17.9%, Wr is about 46.2%~64.2%, and the fitting PAR is in the range of 800~1200μmol·m-2·s-1.○13 For Lonicera japonica Thunb.cv.meng , the fitting Wm is about 12.0%~16.4%, Wr is about 43.3%~59.2%, and the fitting PAR is in the range of 600~1400μmol·m-2·s-1.○14 For Lonicera japonica Thunb.cv.ungulata , the fitting Wm is about 17.3%~22.3%, Wr is about 60.7%~78.2%, and the fitting PAR is in the range of 1000~1400μmol·m-2·s-1. (6) The characters of soil moisture adaptation and light adaptation for Lianas
     ①L. j. cv.ungulata、E. scandens、E. fortunei、L. j. cv.meng, et al Lianas belong to typical sun plants. A. brevipedunculata、P. quinquefolia、H. neaplensis var, et al Lianas belong to general photophilous plants. C. radicans、L. j. cv.tomentosa、W. sinensis、L. j. var , et al Lianas belong to helioskiophytes . E.f.var.minimus Rhed、P. semicordata、L. j.cv. Variegatum , et al Lianas belong to typical shade plants.
     ②In the precondition of maintaining high Pn, the order of waterlogging tolerance is E.f.var.minimus Rhed> W. sinensis > L. j. cv.ungulata > E. scandens > H. neaplensis var> P. semicordata> L. j. var> P. quinquefolia > E. fortunei > C. radicans > L. j. cv.tomentosa > A. brevipedunculata > L. j.cv. Variegatum > L. j. cv.meng . the order of drought tolerance is > P. semicordata > A. brevipedunculata > L. j. var > E.f.var.minimus Rhed > P. quinquefolia > E. fortunei > L. j. cv.tomentosa > E. scandens > L. j. cv.meng > L. j.cv. Variegatum > W. sinensis > C. radicans > L. j. cv.ungulata > H. neaplensis var.
引文
Ch.达尔文著,张肇骞译.攀缘植物的运动和习性[M].北京:科学出版社,1998.
    白琰,龙瑞军,刘玉冰.红砂的净光合速率与蒸腾速率的日变化特征[J].甘肃农业大学学报,2006,41(2):56~58.
    白月明,王春乙,温民.不同 CO2 浓度处理对冬小麦的影响[J].气象.1993.22(2):7~11.
    本文由林业科技管理编辑部根据甘肃省治沙研究所和中国林科院林业所提供的资料整理而成.几种灌木植物和攀缘植物在防沙治沙领域的开发现状与应用前景[J].林业科技管理,2001,(3):39~40.
    卜崇峰,刘国彬,赵姚阳.黄土丘陵沟壑区狼牙刺的光合特征及其水分利用效率[J].西北植物学报 2004,24(12):2189~2195.
    蔡 时 青 , 许 大 全 . 大 豆 叶 片 CO2 补 偿 点 和 光 呼 吸 的 关 系 [J]. 植 物 生 理 学报,2000,26(6):545~550.
    蔡锡安,彭少麟,赵平,等.三种乡土树种在二种林分改造模式下的生理生态比较[J].生态学杂志,2005,24(3):243~250.
    蔡 永 立 , 郭 佳 . 藤 本 植 物 适 应 生 态 学 研 究 进 展 及 存 在 问 题 . 生 态 学 杂 志[J].2000,19(6):28~33.
    蔡永立,宋永昌.藤本植物生活型系统的修订及中国亚热带东部藤本植物的生活型分析[J].生态学报,2000,20(5): 808~814.
    蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ叶片解剖特征的比较[J].植物生态学报,2001,25(1):90~98.
    蔡 永 立 , 宋 永 昌 . 中 国 亚 热 带 东 部 藤 本 植 物 的 多 样 性 [J]. 武 汉 植 物 学 研 究2000,18(5):390~396.
    蔡永立,王希华,宋永昌.中国东部亚热带青冈种群叶片的生态解剖[J].生态学报,1999,19(6): 844~849.
    蔡永立. 浙江天童森林公园藤本植物的基本特征[J].华东师范大学学报(自然科学版). 1999,(2):75~81.
    蔡永萍,李玲,李合生,等.霍山县 3 种石斛叶片光合特性及其对光强的响应[J].中草药,2005,36(4):586~590.
    藏得奎,齐爱收,徐兴东.山东木本攀缘植物及其在垂直绿化中的应用[J].山东农业大学学报,1996,27(1):8~16.
    曹慧,兰彦平,高峰,等.土壤水分胁迫对短枝型苹果树光合速率的研究[J].山西农业大学学报,2000,(4):356~359.
    曹军胜,刘广全.油松光合特性的研究[J].安徽农业科学,2005,33(4):608~609.
    曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J]. 西北植物学报,2006,26(2):0266~0275.
    柴宝峰,王孟本,李洪建,等.晋西人工防护林乡土树种抗旱性研究[J].水土保持学报,2000,14(1): 28~32.
    柴宝峰,王孟本,李洪建.三树种 P-V 曲线水分参数的比较研究[J].水土保持通报,1996, 16(4):35~42.
    常杰,葛滢,等.青冈常绿阔叶林主要物种叶片的光合特性及其群落学意义[J].植物生态学报,1999,23(5):393~400.
    常宗强,冯起,苏永红,等.额济纳绿洲胡杨的光合特征及其对光强和 CO2 浓度的响应[J].干旱区地理,2006,29(4):496~502.
    陈德祥,李意德,骆土寿,等. 海南岛尖峰岭热带山地雨林下层乔木中华厚壳桂光合生理生态特性的研究[J].林业科学研究,2003,16(5):540~547.
    陈德欣.高浓度 CO2影响下植物的生理响应[J].福建农业科技,2005,(2):58~59.
    陈光宙,何和明.海南岛 4 种药用藤本植物几项水份生理参数[J].中国野生植物资源,2000,19(2):40~42.
    陈恒彬,陈松河,罗智凤.厦门地区观赏藤本植物资源及其在园林绿化中的应用[J].亚热带植物科学,2003,32(4):36~42
    陈洪国,姜军权,孙全.桂花叶片水分含量及光合生理特性的研究[J].安徽农业科学,2006,34(3):417~418.
    陈洪国.四种常绿植物蒸腾速率、净光合速率的日变化及对环境的影响[J].福建林业科技,2006,33(1):76~79.
    陈金平,刘祖贵,段爱旺,等.土壤水分对温室盆栽番茄叶片生理特性的影响及光合下降因子动态[J].西北植物学报,2004,24(9):1589~1593.
    陈庭甫,刘玲,岳伟. 植物对 CO2 浓度升高的响应[J].安徽农学通报,2005,11(6): 96~97.
    陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79~86.
    陈永霞,杨永康.浙江楠苗期生长和光合特性研究[J].江苏林业科技,2005,32(1):8~10.
    程林梅,李占林,高洪文.水分胁迫对白羊草光合生理特性的影响[J].中国农学通报,2004,20(6):231~233.
    丛日春,胡雅君,刘洪庆.几种攀缘植物耐旱性研究[J].内蒙古林学院学报(自然科学版),1996,18(3):33~39.
    杜怡斌.河北野生资源植物志[M].保定:河北大学出版社,2000,12.
    方万泉.利用藤本植物保持水土[J].水土保持研究.2002,9(2):20.
    房 用 , 孟 振 农 , 孙 成 南 , 等 . 山 东 省 藤 本 植 物 资 源 现 状 及 应 用 [J]. 林 业 科 技 开发,2003,17(6):10~12.
    费松林,方精云,樊拥军,等.贵州梵净山亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J].植物学报,1999,41(9):1002~1009.
    冯宝春,陈学森,何天明,等.枣树抗旱性研究初报[J].石河子大学学报(自然科学版),2004,22(5):397~400.
    冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14~18.
    冯 金 朝 , 周 宜 军 , 周 海 燕 , 等 . 沙 冬 青 对 土 壤 水 分 变 化 的 生 理 响 应 [J]. 中 国 沙漠,2001,21(3):223~226.
    冯永军,史宝胜,董桂敏,等.叶绿素荧光动力学在植物抗逆性及水果保鲜中的应用[J]. 河北农业大学学报,2003,26(增刊):89~92.
    冯玉龙,王丽华,敖红,等.长白落叶松生理生态特性的 CO2 响应及意义[J].植物研究,1999,19(1):53~59.
    冯志立,冯玉龙,曹坤芳.光强对砂仁叶片光合作用光抑制及热耗散的影响[J].植物生态学报, 2002,26(1):77~82
    付芳婧,赵致,张卫星.水分胁迫下玉米抗旱性与光合生理指标研究[J].山地农业生物学报,2004,23(6):471~474.
    付为国,李萍萍,卞新,等.镇江北固山湿地芦苇光合日变化的研究[J].西北植物学报,2006,26(3):496~501.
    高峻,孟平,吴斌,等.杏-丹参林药复合系统中丹参光合和蒸腾特性的研究[J].北京林业大学学报, 2006,28(2):64~67.
    高素华,郭建平,康玲玲,等.我国北方多沙粗沙区常见树种水分利用效率的研究[J].中国生态农业学报,2006,14(1):90~92.
    高延军,张喜英,陈素英,等.冬小麦叶片水分利用生理机制的研究[J].华北农学报,2004,19(4):42 ~46.
    高玉葆,任安芝,刘峰,等.黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应[J].植物生态学报,1999,23( 3):193~204.
    龚吉蕊,赵爱芬,苏培玺,等.黑河流域几个主要植物种光合特征的比较研究[J].中国沙漠,2005,25(4):587~592.
    顾振瑜,文建雷,胡景江,等.应用 P-V 技术对元宝枫水分生理特点的研究[J].西北林学院学报,1999,14(4):17~22.
    关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293~297。
    郭江红,王百田,天晶会.黄土半干旱区土壤水分对侧柏叶片水气交换影响[J].水土保持学报,2004,18(2):157~160.
    郭连生,田有亮. 4 种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及抗旱性研究[J]. 应用生态学报,1994,5(1)32~36.
    郭连生,田有亮.对几种针叶树种耐旱性生理指标的研究[J].林业科学,1989,25(5):389~394.
    郭泉水,谭德远,刘玉军,等.梭梭对干旱的适应及抗旱机理研究进展[J].林业科学研究 2004,17(6):796~803.
    郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响[J].生态学报,2004,24(12):2716~2722.
    郭 学 民 , 徐 兴 友 , 孟 宪 东 , 等 . 河 北 省 藤 本 植 物 资 源 及 利 用 [J]. 河 北 林 果 研究,2004,2004,19(3):201~207.
    韩文军,廖飞勇,何平.大气二氧化碳浓度倍增对闽楠光合性状的影响[J].中南林学院学报,2003,23(2): 62~65.
    何贵平,陈益泰.不同抗旱杉木家系在水分胁迫下脯氨酸积累的差异[J].林业科技通讯,1990,11:15~17.
    何丽霞,江永清.杨树速生丰产水分生理指标的研究[J].甘肃林业科技,1992( 4) : 21~25.
    何梅.27 种乔灌木水分生态生理及耐临时性干旱的多种途径初探[J].贵州林业科技,1998,26(1):17~24.
    河北植物志编辑委员会.河北植物志(1~3 卷)[M].石家庄:河北科学技术出版社,1991.
    贺金生,陈伟烈,王勋陵.高山栎叶的形态结构及其与生态环境的关系[J].植物生态学报,1994,18(3):219~227.
    贺康宁,田阳,史常青,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1): 10~16.
    胡新生,王世绩.水分胁迫条件下 4 个杨树无性系气体交换特征比较[J].南京林业大学学报,1996,20( 3) : 19~25.
    黄成林,傅松玲,梁淑云,等.五种攀缘植物光合作用与光因子关系的初步研究[J].应用生态学报,2004,15(7): 1131~1134.
    黄成林,张敏,周大跃.安徽省木本攀援物区系基本特征的研究[J].安徽农业大学学报,1993.20(3):196~199.
    黄成林,周大跃,徐济中,等.木本攀援植物在现代城市垂直绿化中的应用[J].安徽农业大学学报,1995,22(1):48~52.
    黄俊,郭世荣,吴震,等.6 个不结球白菜品种光合作用特性的研究[J].西北植物学报,2006,26(6):1183~1189.
    黄启堂,郑建平,陈世品.福建省高速公路边坡绿化用藤本植物选择体系的研究[J].福建林业科技,2004,31(3):14~16.
    黄威康等.贵州植被[M].贵阳:贵州人民出版社,1988.
    黄玉清,王晓英,陆树华,等. 岩溶石漠化治理优良先锋植物种类光合、蒸腾及水分利用效率的初步研究[J]. 广西植物,2006,26(2):171~177.
    黄展帆.鼎湖山的藤本植物[A]见:热带亚热带森林生态系统研究编辑,热带亚热带森林生态系统研究(第一集),海口:海南人民出版社,1986,42~59.
    黄展帆.鼎湖山的藤本植物[J].热带亚热带森林生态系统研究,1985,3:42~59.
    蒋高明.植物暗呼吸作用对大气CO2浓度升高的响应[J].植物资源与环境,1997,6(3):54~60.
    蒋高明主编.植物生理生态学[M].北京:高等教育出版社,2004:65~68,161~169.
    蒋自立,江海东.高等级公路边坡植被的选择方案[J].江苏交通工程,2002,(2):35~37.
    接玉玲,杨洪强,崔明刚,等.土壤含水量与苹果叶片水分利用效率的研究[J].应用生态学报.2001,12(3):387~390.
    巨关升,武菊英,赵军锋,等.观赏狼尾草光合特性的研究[J].核农学报,2005,19(6):451~455.
    柯世省,金则新,陈贤田.浙江天台山七子花等 6 种阔叶树光合生态特性[J].植物生态学报,2002,26(3):363~371.
    柯世省,金则新,李钧敏.七子花苗期光合日进程及光响应[J].广西植物,2003,23(2):175~178.
    柯世省, 金则新,林恒琴,等.天台山东南石栎光合生理生态特性[J].生态学杂志,2004,23(3):1~5.
    雷泽湘,费永俊,陈中义,等.荆州古城墙野生被子植物名录Ⅰ草本和藤本植物[J].湖北农学院学报,1996,16(4):276~279.
    黎维英,林道清,林致盛,等.福建藤山自然保护区藤本植物多样性研究[J].福建林业科技,2003,30(1):28~31.
    黎志灵,黄世满.海南岛尖峰岭林区的藤本植物[J].热带林业,1996,24(3):114~118.
    李昌晓,钟章成.池杉幼苗对不同土壤水分水平的光合生理响应[J].林业科学研究,2006,19(1);54~60.
    李冠东,陈春和,姜仁国,等.连云港地区藤本檀物资源调查[J].连云港教育学院学报,1999,(4):23~25.
    李海梅,何兴元,陈玮.沈阳城市森林主要绿化树种丁香的光合特性研究[J].应用生态学报, 2004,15(12):2245~2249.
    李合生主编.现代植物生理学[M].北京:高等教育出版社,2001
    李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究[J].生态学报,2000,20(3): 417~422.
    李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1~10.
    李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92~97.
    李佳陶,余伟莅,李钢铁,等.不同地下水位胡杨蒸腾速率与叶水势的变化分析[J].内蒙古林业科技.2006(1):1~5.
    李昆,曾觉民,赵虹.金沙江千热河谷造林树种游离脯氨酸含量与抗旱性关系[J].林业科学研究,1999,12(1):103~107.
    李铭枢.几种灌木抗旱生理特性的研究[J].辽宁林业科技,1990, ( 5):9~15.
    李树华,许兴,何军,等.水分胁迫对牛心朴子光合生理特性影响的研究[J].西北植物学报,2004,24(1):100~104.
    李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26(2):0266~0275.
    李卫国,杨吉华,冀宪领,等. 不同桑树品种水分生理特性的研究[J].蚕业科学,2003,29(1): 24~27.
    李小磊,张光灿,周泽福,等.黄土丘陵区不同土壤水分下核桃叶片水分利用效率的光响应[J].中国水土保持科学,2005,3(1):43~47.
    李雪华,蒋德明,刘志民.山杏幼苗水分生理生态特性及凋萎湿度的研究[J].干旱区资源与环境,2004,18(5):168~172.
    李雪华,蒋德明,骆永明,等.不同施水量处理下樟子松幼苗叶片水分生理生态特性的研究[J]. 生态学杂志,2003,22(6):17~20.
    李雪芹,徐礼根,金松恒,等.4 种草坪草叶绿素荧光特性的比较[J].园艺学报,2006,33 (1): 164~167.
    李延菊,李宪利,高东升,等.扁桃叶绿素荧光特性的研究[J].落叶果树,2006(3):1~4.
    李彦连.崂南几种常见野生攀缘植物及其利用[J].特种经济动植物,2001(10):19
    梁松洁,张金政,张启翔,等.北方地区藤本类忍冬叶表皮结构及其生态适应性比较研究[J].植物研究,2004,24(4):434~438.
    梁霞,张利权,赵广琦.芦苇与外来植物互花米草在不同 CO2 浓度下的光合特性比较[J].生态学报,2006,26(3):842~848.
    梁新华,许兴,徐兆桢,等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001, 19(3):72~76.
    林月男,林湘.五种藤本药用植物物候观察[J].国土与自然资源研究,1997(2):63~64.
    刘 爱 琴 , 冯 丽 贞 . 干 旱 胁 迫 对 杉 木 无 性 系 光 合 特 性 的 影 响 [J]. 福 建 林 学 院 学报,1998,18(3):238~241.
    刘惠,赵平,蔡锡安,等.广东省茂名油页岩废渣堆放场主要树种的叶片气孔气体交换[J].热带亚热带植物学报, 2003,11(1):41~46.
    刘建伟,刘雅荣,王世绩.水分胁迫下不同杨树无性系苗期的光合作用[J].林业科学研究,1993,6(1):65~69.
    刘锦春,钟章成,何跃军,等.重庆石灰岩地区十大功劳的光合响应研究[J].西南师范大学学报(自然科学版) ,2005,30(2):316~320.
    刘静,王连喜,马力文,等.枸杞的生理因子与外界环境气象因子的日变化规律研究[J].干旱地区农业研究,2003,21(1): 77~82.
    陆明珍,徐筱昌,奉树成,等.高架桥下立柱垂直绿化植物的选择[J].植物资源与环境,1997,6(2):63~64.
    陆钊华,徐建民,陈儒香,等. 桉树无性系苗期光合作用特性研究[J].林业科学研究,2003,16(5):575~580.
    罗俊,林彦铨,吕建林,等.水分胁迫对甘蔗叶片光合性能的影响[J].中国农业科学,2000,33(4):100~102.
    罗俊,张木清,吕建林,等.水分胁迫对不同甘蔗品种叶绿素 a 荧光动力学的影响[J].福建农业大学学报,2000,29(1):18~22.
    罗青红,李志军,伍维模,等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究[J].西北植物学报,2006,26(5):983~988.
    骆耀平,潘根生.7 个茶树新品种不同供水水平的光合特性比较[J].浙江林学院学报,1996,13(2):130~135.
    毛志滨,刘友良,陆小清,等.江苏垂直绿化植物可利用资源状况及其评价[J].江苏林业科技,2000,27(5):53~55.
    孟令曾,张教林,曹坤芳,等.迁地保护的4种龙脑香冠层叶光合速率和叶绿素荧光参数的日变化[J].植物生态学报,2005,29(6):976~984.
    潘清华.扶芳藤遗传多样性及抗逆性选择研究(D).北京林业大学,2003.
    潘占兵,蒋齐,郭永忠,等.柠条蒸腾特征及影响因子的研究[J].中国生态农业学报,2006,14(2):70~71.
    彭培好,王金锡,王成善,等. 人工桤柏混交林光合生理生态机理研究[J]. 四川林业科技,2001,22(4): 19~23.
    綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,2006,17(5): 835~838.
    曲仲湘.我国南方森林中缠绕藤本植物的初步观察[A]见:曲仲湘论文集,北京:中国环境科学出版社 1990,167~179.
    曲 仲 湘 . 我 国 南 方 森 林 中 藤 本 植 物 的 初 步 观 察 [J]. 植 物 生 态 学 和 地 植 物 学 丛刊,1964,2(1):1~9.
    渠春梅,韩兴国,苏波,等.西双版纳片断化热带雨林常绿乔木幼树水分利用效率的边缘效应研究[J].植物生态学报,2001, 25( 1):1~5.
    阮成江,李代琼.黄土丘陵区沙棘林几个水分生理生态特征研究[J].林业科学研究,2002,15(1): 47~53.
    史胜青,袁玉欣,杨敏生,等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响[J].林业科学,2004,40(1):168~173.
    史胜青,袁玉欣,张金香,等.不同水分胁迫方式对核桃苗叶绿素荧光动力学特性的影响[J].河北农业大学学报,2003,26(2):20~24.
    宋永昌.浙江天童国家森林公园的植被和区系[M].上海:上海科学技术文献出版社,1995.
    苏 继 申 , 韩 三 江 . 南 京 地 区 藤 本 植 物 绿 化 方 式 及 其 生 态 效 应 [J]. 林 业 科 技 开发,2004,18(2):41~43.
    苏培玺,严巧娣.C4 荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报,2006,26(1):75~82.
    孙 国 荣 , 阎 秀 峰 , 刘 波 . 烤 烟 旺 长 期 气 孔 和 非 气 孔 限 制 对 水 分 胁 迫 的 反 应[J].2002,22(2):179~183.
    孙伟,王德利,王立,等.贝加尔针茅不同枝条叶片蒸腾特性与水分利用效率对瞬时 CO2 和光照变化的响应[J].生态学报,2004,24(11):2437~2443.
    索恩利(王天铎译).植物生理的数学模型[M].北京:科学出版社,1980,109~112.
    唐静,高建社,符军,等.毛自杨优良无性系抗旱性研究[J] .陕西林业科技,1995(1):6~11.
    滕建国, 高长启, 林玉梅,等.加拿大黄桦幼苗光合特性的研究 [J]. 吉林林业科技,2006,35(2):5~7.
    涂琼,王克勤.干旱地区造林树种的水分生理生态的研究进展[J].西北林学院学报,2003,18(3):26~30.
    王宝荣.西双版纳勐养自然保护区沟谷热带季节雨林藤本植物的行为研究[J].云南植物研究,1997(S):70~76.
    王继和,马全林,吴春荣,等.干旱沙区几种果树生理生态特性及其适应性研究[J].中国沙漠,2001,21: 22~29.
    王建林,于贵瑞,王伯伦,等.北方粳稻光合速率、气孔导度对光强和 CO2浓度的响应[J]. 植物生态学报,2005,29 (1):16~25.
    王建强,姚永锋,王小雄.高速公路绿化研究[J].西安公路交通大学学报,2001,21(3):78~80.
    王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素 a 荧光参数的影响[J].生物物理学报,1997,13(2):273~278.
    王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率的研究[J].生态学报,2002,22(5):723~728.
    王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报,2002,22(2):206~214.
    王克勤,王力.不同土壤水分下金矮生苹果叶片蒸腾速率研究[J].西南林学院学报,1999,19(1):8~13.
    王克勤.集水造林与水分生态[M].北京:中国林业出版社,2002,16~25.
    王淼,李秋荣,郝占庆,等.土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J]. 应用生态学报,2004,15(10): 1765~1770.
    王孝威,段艳红,曹慧,等.水分胁迫对短枝型果树光合作用的非气孔限制[J].2003, 23(9):1609~1613.
    王勋陵,王静.植物形态结构与环境[M].兰州.科学出版社, 1989.
    王雁,马武昌.扶芳藤、紫藤等 7 种藤本植物光能利用特性及耐荫性比较研究[J].林业科学研究,2004,17(3):305~309.
    王玉华,王丽芸.藤本花卉[M].北京:金盾出版社,1999.
    王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J].植物生态学报, 2000,24(6):739~743.
    王玉涛,马志波,马钦彦,等.北京地区4种阔叶树光合作用对CO2浓度及温度变化的响应[J].河北农业大学学报,2006,29(6):39~43.
    韦记青,蒋水元,唐辉,等.岩黄连光合与蒸腾特性及其对光照强度和 CO2 浓度的响应[J].广西植物,2006,26(3): 317~320 .
    韦振泉,林宏辉,何军贤,等.水分胁迫对小麦捕光色素蛋白复合物的影响[J].西北植物学报,2000,20(4):555~560
    吴彦琼,胡玉佳.外来植物南美蟛蜞菊、裂叶牵牛和五爪金龙的光合特性[J].生态学报,2004,24(10):2334~2339.
    吴珍,王新军.商洛藤本花卉资源调查与分析[J].商洛师范专科学校学报.2002,16(3):85~87.
    武康生.植物水分参数和耐寒性[J].北京林业人学学报,1988, 10(增):79~85.
    谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响[J].山东林业科技,2004,(2):6~7.
    谢田玲,沈禹颖,邵新庆,等.黄土高原4种豆科牧草的净光合速率和蒸腾速率日动态及水分
    利用效率[J].生态学报,2004,24(8):1678~1685.
    谢寅峰,沈惠娟,罗爱珍.水分胁迫下南方 4 种针叶树幼苗水分参数的测定[J].南京林业大学学报,1999, 23(1):41~44.
    徐程扬.紫椴幼树叶片的光合作用特征[J].东北林业大学学报,2001,29(2):38~43.
    许大全.光合作用效率[M].北京:科学出版社,2001:13~15.
    许大全编著.光合作用效率[M].上海:上海科学技术出版社, 2002.
    严昌荣,韩兴国,陈灵芝,等.北京山区落叶阔叶林优势种叶片特点及其生理生态特性[J].生态学报,2000,20(1): 53~60.
    杨建伟,韩蕊莲,魏宇昆,等.不同土壤水分状况对杨树、沙棘水分关系及生长的影响[J]. 西北植物学报,2002,22(3):579~586.
    杨金艳,杨万勤,王开运,等.木本植物对 CO2 浓度和温度升高的相互作用的响应[J].植物生态学报,2003,27(3):304~310.
    杨敏生,裴保华,朱之涕.水分胁迫下白杨派双交无性系主要生理过程研究[J].北京林业大学学报,1997,19( 2) : 50~56.
    杨明,董怀军,杨文斌,等. 四种沙生植物的水分生理生态特征及其在固沙造林中的意义[J]. 内蒙古林业科技,1994(2): 4~7.
    杨文斌,贾翠萍,任建民,等.榆树和柠条的水分生理生态特性研究[J].内蒙古林业科技,1998(2): 32~41.
    杨文斌,杨茂仁.蒸腾速率、阻力与业内外水势和光强关系的研究[J].林业科学,1991,27(5):545~548.
    杨 跃 军 , 孙 向 阳 , 王 保 平 , 等 . 泡 桐 叶 片 的 水 分 特 征 研 究 [J] . 北 京 林 业 大 学 学报,1999,21(6) :28~34.
    杨 芸 . 适 宜 南 京 城 市 绿 化 的 几 种 黄 山 野 生 藤 本 花 卉 品 种 [J]. 江 苏 林 业 科技,2001,28(6):31~32.
    易俗,黄忠良,欧阳学军.鼎湖山生物圈保护区层间植物物种多样性的研究[J].生物多样性,2001,9(1):56~61.
    余叔文.植物生理学和分子生物学[M].北京:科学出版社, 1992. 236~243.
    余亿德,卢和顶,汤葆莎.福厦高速公路生物护坡草坪的建植与养护[J].草业科学,2001,18(5):45~49.
    曾凡江,Andrea Foetzki,李向义,等.策勒绿洲多枝柽柳灌溉前后水分生理指标变化的初步研究[J]. 应用生态学报,2002,13(7): 849~853.
    曾凡江,张希明,李小明,等.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5): 611~614.
    曾小平,赵平,蔡锡安,等.不同土壤水分条件下焕镛木幼苗的生理生态特性[J].生态学杂志,2004,23(2):26~31.
    曾小平,赵平,彭少麟.鹤山人工马占相思林水分生态研究[J].植物生态学报,2000, 24(1):69~73.
    詹曾 DH 著.热带植物生态学[M].姚壁君等译.北京:科学出版社,1982.9~13.
    张大鹏.葡萄不同栽培方式叶幕光能利用的综合评估参数-叶幕受光指数[J].园艺学报,1995,22(4):323~330.
    张敦伦,乔勇进,郗金标,等.水分胁迫下 8 个树种几项生理指标的分析[J].山东林业科技,2000,(3):5~9.
    张光灿,刘霞,贺康宁,等.金矮生苹果叶片气态交换参数对土壤水分的响应[J].植物生态学报,2004,28(1):66~72.
    张建国,李吉跃,姜金璞.京西地区人工林水分参数的研究(I)[J].北京林业大学学报,1994,16(1):1~10.
    张金政,石雷,刘雪川.我国北方城市藤本花卉栽培及应用[J].中国园林,2002,(1):75~77
    张锦春,赵明,张应昌,等.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):0070~0076
    张木清,陈如凯,吕建林,等.甘蔗叶绿体荧光参数、MDA 含量及膜透性与耐旱性的影响[J].福建农业大学学报,1999,28(1):1~7
    张其水,李家和,陈雪娇.天然赤拷林下几种植物的生理生态特性研究[J].福建林学院学报,1991,11(1): 98~104.
    张启昌,赵影,其其格,等.东北红豆杉枝叶对不同 CO2 浓度的光合生理响应[J].北华大学学报(自然科学版)2006,7(1):66~70.
    张守仁,高荣孚,王连军.杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应[J].植物生态学报,2004,28(2):143~149.
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444~448.
    张岁歧,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1~19.
    张卫强,贺康宁,王正宁,等.光辐射强度对侧柏油松幼苗光合特性与水分利用效率的影响[J].中国水土保持科学, 2006,4(2):108~113.
    张喜焕,刘宁,郭建民.杨梅属两种植物光合特性对 CO2 浓度升高响应的比较研究[J].贵州科学,2006,24(2):71~74.
    张小全,徐德应. 温度对杉木中龄林针叶光合生理生态的影响[J].林业科学,2002,38(3): 28~33.
    张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,2000,36(3):19~26.
    张玉武,杨红萍.贵州梵净山国家级自然保护区藤本植物的研究—附梵净山藤本植物名录[J].武汉植物学研究,2001,19(4):269~298.
    张 玉 武 , 杨 红 萍 . 贵 州 梵 净 山 生 物 圈 保 护 区 藤 本 植 物 资 源 特 点 [J]. 贵 州 科学,2003,21(3):75~80.
    张玉武.贵州梵净山自然保护区藤本植物攀援方式及类型的研究[J].广西植物,2000, 20(4):301~312 .
    张正斌.作物抗旱节水的生理遗传育种基础[M]. 北京:科学出版社,2003.
    赵昌恒,方乐金.银木的光合与水分生理特性的研究[J].林业科学研究,2006,19(2):261~263.
    赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报, 2000,34(3):248 ~251.
    赵天宏,王美玉,张巍巍,等.大气 CO2 浓度升高对植物光合作用的影响[J].生态环境.2006.15(5):1096~1100
    郑淑霞,上官周平.8 种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报,2006,26(4):1080~1087.
    郑希伟,赵荣慧,宋秀杰,等. 辽西地区主要造林树种抗旱性的研究[J]. 林业科学,1990,26(4):353~358.
    周广胜.生态系统对干旱化的适应与调控机制.见:周广胜主编.中国东北样带(NECT)与全球变化-干旱化、人类活动与生态系统[M]. 北京:气象出版社,2002,3~8.
    周晓阳,张辉.不同耐旱性杨树气孔保卫细胞对水分胁迫的差异性反应[J].北京林业大学学报,1999,21( 5):1~ 6.
    周玉梅, 韩士杰,张军辉,等.CO2 含量升高对水曲柳幼苗净光合与水分利用的影响,东北林业大学学报,2001, 29(6): 29~31.
    周远瑞.华南藤本植物的生态学特性[J].植物生态学与地植物学丛刊,1984,8(3):199~205.
    朱教君,康宏樟,李智辉.不同水分胁迫方式对沙地樟子松幼苗光合特性的影响[J].北京林业大学学报, 2006,28(2):57~63.
    朱 万 泽 , 王 金 锡 , 薛 建 辉 . 引 种 台 湾 桤 木 的 水 分 生 理 特 性 [J]. 武 汉 植 物 学 研究,2004,22(6):539~545.
    朱万泽,吴永波,薛建辉.贡嘎山地区黄背栎的光合特性[J].南京林业大学学报(自然科学版), 2006,30(1):25~28.
    朱万泽,薛建辉,王金锡.台湾桤木种源对水分胁迫的光合响应及其抗旱性[J].水土保持学报,2004,18(4):170~174.
    朱 万 泽. 贡 嘎 山 地 区 黄 背 栎 光 合 作 用 日 变 化 及 光 合 响 应 [J]. 东 北 林 业 大 学 学报,2005,33(6):14~17.
    朱万泽.台湾桤木生理生态学特性及其与环境关系的研究[D].南京:南京林业大学,2002.
    自志强.陕林 3 号等杨树水分生理特性的研究[J] .甘肃林业科技,1992, (3):21~25.
    Appanah S, Putz, F E. Climber abundance in virgin dipterocarp forest and effect of pre-felling climber cutting on logging damage[J]. Malaysian Forester,1984,47:335~342.
    Ayensu E S, Stern W L. Systematic anatomy and ontogeny of the stem in Passifloraceae[J]. Contributions from the US National Herbarium,1964,34:45~71.
    Bader M R, Ruuska S, Nakano H. Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubiscooxygenase[J]. Biological Sciences, 2000, 1402 : 1433~1445
    Baker N R. A possible role for photosystem Ⅰ in environmental perturbations of photosynthesis [J].Physical Plant, 1991, 81 :563.
    Ballm C, Butterworth J A. Applications of chlorophyll fluorescence to forest ecology[J].Aust J Plant Physiol,1994,22:311~319.
    Bertamini M, Nedunchezhian N. Photoinhibition of photosynthesis in mature and young leaves of grapevine[J]. Plant Science,2003,164(4):635~644.
    Bhambie S.Correlation between form, structure, and habit in some lianas[J]. Proceedings of the Indian Academy of Sciences B, 1972,75:246~25.
    Bidwell R G S. Carbon nutrition of plants: photosynthesis and respiration[M]. In: Steward F C, Bidwell RGS(eds). Plant Physiology Vol VII, Energy and Carbon Metabolism. New York: Academic Press,1983,287~457.
    Bowes G. Facing the inevitable: plant and atmospheric CO2 [J].Annual Review of Plant Physiology and Plant Molecular Biology,1993, 44: 309~332.
    Boyer J S. in Kozlowski T T.(ed.):Water Deficits and Plant growth[M]. London: Academic Press, 1976, 4: 153~190.
    Butler W L. Chlorophyll fluorescence as a probe for electron transfer and energy transfer [A].Encyclopedia of plant physiology[C].Berlin:Springer Verlag,1997,5:149~167.
    Caspari H W, Green S R, Edwards W R N, et al. Transpiration of well-watered and water-stressed Asian pear trees as determined by Lysimetry Heat-pulse and estimated by a Penman-Monteith model[J]. Agric For Meteorol ,1993,67:13~27.
    Castell C,Terradas J D. Water relations,gas exchange,and growth of resprouts and mature plant shoots of Arbutus unedo L.& Quercus iles L[J]. Oecologia, 1994,98,201~211.
    Cowan I R, Lange O L, Green T G A. Carbon-dioxide exchange in lichens: determination of transportand carboxylation characteristics[J]. Planta,1992,187:282~294.
    Cure JD, Acock B. Crop response to carbon dioxide doubling: a literature survey[J]. Agriculture and Forest Meteorology,1996,38:127~145.
    Dau H. Molecular mechanisms and quantitative models of variable photosystem Ⅱ fluorescence [J]. Photochem Photobiol, 1994, 60 :1~23.
    Deng X, Li X M, Zhang X M, et al. Studies on gas exchange of Tamarix ramosissima Lbd[J]. Acta Ecologica Sinica ,2003,23(1):180~187.
    Dick man D I, Liu Z,Nguyen P V, et al.Photosynthesis, water relations and growth of two hybrid Populus genotypes during a severe drought [J]. Cana J For Res, 1992, 22(8): 1094~1106.
    Downton W J.Osmotic adjustment during water stress protects the photosynthetic apparatus against photoinhabition[J].Plant Sci Lett,1983,30:137~143.
    Evans J R, Klassen S, Clayton C, et al. Carbon isotope discrim ination and transpiration efficiency in common bean[J]. Crop Sci,1991,31(6):1511~1615.
    Farqugar G D,Von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 fixation in C3species. Planta, 1980,149:178~190.
    Farquhar G D, Sharkey T D.Stomatal conductance and photosynthesis[J].Ann.Res.Plant Physiol,1982,33:317~342.
    Filella I, Llusi J, Pinol J. Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions[J]. Environ Exp Bot, 1998,39:213~220.
    Franco A C, Lüttge U. Midday depression in savanna trees:coordinated adjustments in photo_chemical efficiency, photorespiration, CO2 assimilation and water use efficiency[J].Oecologia,2002,131,356~365.
    Frey N M. Dry matter accumulation in kernels of Maize[J]. Crop Science,1982,21:118~122.
    Gardiner D T.Re-vegetation status of reclaimed abandoned minedland in western North Dakota [J].Arid Soil Res Rehab,1993(7):79~84.
    Gares D M. Transpiration and leaf temperture[J]. Ann. Rev. plant physiiol, 1968,19:211~238.
    Gentry A H. Lianas and ’paradox’ of contrasting latitudinal gradients in wood and litter production[J].TropicalEcology,1983b,24:63~67.
    Gentry A H, Dodson C. Diversity and bio geography of neotropical vascular epiphytes[J]. Annals of the Missouri Botanical Gardon,1987,74:205~233.
    Chen G Y, Zhen H Y , et al. Photosynthetic Acclimation in Rice Leaves to Free-air CO2 Enrichment Related to Both Ribulose-1,5-bisphosphate Carboxylation Limitation and Ribulose-1,5-bisphosphate Regeneration Limitation[J]. Plant and Cell Physiology, 2005, 46(7): 1036~1044.
    Gilmore A M,Yamamoto H Y.Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts[J].Plant Physiol,1996,96:636~643.
    Givnish T J, Vermeij G J. Size and shapes of liane leaves [J]. American Naturalist, 1976, 110 : 131~160.
    Goldste G,Rada F,Azocar A.Cold hardiness and super cooling along an altitudinal gradient in Andean giant rosette species[J].Oecologia,1985,68:147~152.
    Goudriaan J,HvanLaar H. Modelling crop growth processes[M]. Drafe manuscript Issues in Production Ecology,Kluwer Academci Publishers,1993,137~148.
    Graham D F. Models of photosynthesis[J]. Plant Physiology, 2001, 125:42~45.
    Halle F R, Oldeman A A, Yomlinson P. Tropical trees and forests [M]. New York: Springer–Verlag Press. 1978.
    Harley P C, Arkey T D.An improved model of C3 photosynthesis at high CO2:Reversed O2sensitivity explained by lack of glycerate reentry into the chloroplast[J]. Photosynthetic Research, 1991,27:169~178.
    Havan X M, Tardy F. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophylls-cycle pigments [J].Planta, 1996, 198 :324~333.
    Heitoh J J. Water use efficiency and dry matter distribution in nitrogen and water-stressed winter wheat[J]. Agron J,1989,81:464~469.
    Heping Z , Lester P S, James I L M et al. Estimation of transpiration by single trees: comparison of sap flow measurements with a combination equation[J]. Agri For Meteorol,1997,87:155~169.
    Hill D. Crop water production function[J]. Advances in irrigation,1983,2:61~69.
    Hladik A.Phenology of leaf production in rain forest of Gabon: distribution and composition of food for folivores [M].In:G.Montgomery (ed.) .The Ecology of Arboreal
    Folivores,Smithsonian Institution Press, Washingtong, D C.1978 .51~71.
    Holmgren M.Combined effects of shade and drought on tulip poplar seedlings:trade-off in tolerance or facilitation[J].Oikos,2000,90:67~78.
    Hsiao T C. Plant responses to water stress[J]. Ann, Rev. Plant Physiol., 1973,24:519~570.
    Jensen M E. Water consumption by agricultural plant[M]. In:KozlowskiT, Water Deficit and Plant Growth. New York:Academic Press.1976.
    Johnson G N, Young A J, Scholes J D. The dissipation of excess excitation energy in British plant species[J]. Plant Cell and Enviroment,1993,16:673~679.
    Johnson H B, Polley H M, Mayeux H S.. Increasing CO2 and plant-plant interactions: effects on nature vegetation[J]. Vegetation, 1993,104/105:157~170.
    Kaoru K,Stephen S,Mulkey S.Seasonal leaf phototypes in the canopy of a tropical dry forest:photosynthetic characteristics and associated [J].Oecologia,1997,109:490~498.
    Kaplan D R. Heteroblastic leaf development in Acacia[J]. La Cellule, 1980,73:136~203.
    Kate M, Johnson G N. Chlorophyll fluorescence-apratical guide[J].J Exp of Bot,2000, 51(345):659~668
    Kause G H. Photoinhibition of photosynthesis ,evolution of damaging and protective mechanism[J ].Physicol Plant,1988,74:566.
    Kimball B A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations[J]. Agronomy Journal, 1989,(9~10):779~787.
    Kirkham M B, He H, Bolger T P, et al.Leaf photosynthesis and water use of big bluestem under elevated carbon dioxide[J]. Crop .Sci.,1991,31(6):1589~1594.
    Knapp A K, Smith M D.Variation among biomes in temporal dynamics of abovegroung primary production[J]. Nature, 2001,291:481~484.
    Kramer P F 著.林分生理专题讲演集[M].汪振儒译.北京:中国林业出版社,1982,55~78.
    Kramer P L. in Turner N C. et al.(eds):Adaptation of Plants to Water and High Temperature Stress[J].New York: John Wiley & Sons, 1980, 7~20.
    Krammer P J.Wate Relations of Plants [M] .New York and London: Academic Press,1983:354~359.
    Krause G H,Weis F. Chlorophyll fluorescence and photosynthesis:The basics[J].Ann Rev Plant Physiol Plant Mol Biol,1991,(42):313~349.
    Kuppers M. Water vpor and carbon dioxide exchange of leaves as affected by different environmental conditions[J]. Acta. Hortic .,1988,229:85~112.
    Lange O L,Kappen L,Schulze E D,et al(樊梦康等,译).水分与植物生活[M].北京:科学出版社,1985,113~124.
    Larcher W.Plant ecophysiology[M].Stuttgart:Verlag Eugen Ulmer Stuttgart,1991,1~3.
    Larcher W.植物生态生理学[M].第 5 版.李博译.北京:中国农业大学出版社,1997,78.
    Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J] .Plant, Cell and Environment, 2002, 25: 275~294.
    Lee D.W.&R.Graham. Leaf optical properties of rainforest sun and extreme-shade plants[J]. American Journal of Botany, 1986,73:1100~1108.
    Lee D W, Bone R A, Tersis S. Correlates of leaf optical properties in tropical forest sunand extreme-shade plants[J]. American Journal of Botany, 1990,77:370~380.
    Leishman M R,Hughes L French K, et al.Seed and seedling biology in relation to modeling vegetation dynamics under global climate change[J].Aust J Bot,1992,40:599~613.
    Lioyd J, Kriedemann P, Prior L, et al.Citrus leaf fluorescence:Water and salt effects[J].Acta Hort,1986,175:333~337.
    Long S P, Baker N R, Raines C A. Analyzing the responses of photosynthetic CO2 assimilation to long-term elevation of atmospheric CO2 concentration [J]. Vegetation, 1993, 104/105: 33~45.
    Long S P, Humphries S. Photoinhibition of photosynthesis in nature [J].Ann Rev Plant Physiol Plant Mol Biol, 1994, 45: 633~662. Lott E J. Listados floristicos de Mexico Ⅲ.La Estacion de Biologia Chamela, Jalisco[J].
    Universidad nacional Autonoma de Mexico,Mexico City.1985.
    Lu C M, Zhang J H.Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants[J].J Exp of Bot,1999, 50(336):1199~1206.
    Luquez V M, Guiamet J J, Montaldi E R. I.Net photosynthetic and transpiration rates in a chlotophyll-deficient isoline of soybean under well-watered and drought conditions[J].Photosynthetica, 1997,34:125~131.
    Massacci A, Iannellima. The effect of growth at lowtemperature on photosynthetic characteristics and mechanisms of photoprotection of maize leaves[J].J Exp Bot,1995,46:119~127.
    Massaccl A,Jones H G.Use of simultaneous analysis of gas-exchange and chlorophyll fluorescence quenching for analyzing the effects of water stress on photosynthesis in apple leaves[J].Trees-Structure-and-Function,1990,4(1):1~8.
    Mediavilla S,Escudero A. Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks[J]. For Ecol and Mgmt, 2004,197,281~294 .
    Medrano H, Keys A J ,Lawlor D W, et al. Improving plant production by selection For survival at low CO2 concentrations[J]. J Exp Bot, 1995,46:1389~1396.
    Methy M, Damesin C, Rambal S. Drought and photosysten II activity in two Mediterranean oaks[J]. Ann Sci For, 1996,53:255~262.
    Mielke M S ,Olive M A, Martinez C A, et al. Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture, Leaf water potential and microclimate variables[J]. Trees, 2000,14:263.
    Mitton J B, Garant M C, Yoshino A M. Variation in allozymes and stomatal size in pinyou(Pinusedulis,Pinaceae),associated with soil moisture[J]. American Journal of Botany,1998,85:1262~1265.
    Monteith J L. Owen P C. A thermocouple method for measuring relations humidity in the range 95%~100%[J]..J Sci Instruments,1958,(35):443~446.
    Montelth J L ,Unsworth M H, Principles of environmental Physics[M]. London: Edward Arnold ,1990:1~291.
    Montgomery,G, Sunquist M.Habitat selection and use by two-toed and three toed sloths[M].In:G.Montgomery(ed.).The Ecology of Arboreal Folivores. Simthsonian Institution Press,Washingtong, DC.1978,329~359.
    Muraoka H, Tang Y, Terashima I, et al. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllumin natural high light[J].Plant, Cell and Environment,2000,23,235~250.
    Nljs I, Ferris R, Blum H. Stomatal regulation in a changing climate:A field study using free air temperature increase(FATI) and free air CO2 enrichment[J]. Plant,Cell and Environment, 1997,20: 1041~1050.
    Nobel P S.Physicochemical and environmental plant physiological responses to environmental parameters[M].San Diego:Academic Press,1999.275
    Oconnor T G,Haines L M,Snyman H A.Influence of precipitation and species composition on phytomass of a semi-arid Africa grassland[J].. Journal of Ecology,2001,89:850~860.
    Ogawa H. Comparative ecological studies on three main types of forest vegetation in Thailand. Ⅱ[ J]..Plant biomass. Nature and life in south~east Asia,1965,4:49~80.
    Penalosa, J. Shoot dynamics and adaptive morphology of Ipomogea phillomega (Veff.) House (Convolvulaceae), a tropical rain forest liana[J]. Annals of Botany, 1983,52:737~754.
    Philip J R, Plant water relations some physical aspects [J] . Ann Rev. Plant Physical, 1996, 17: 245~268.
    Prentice I, Farquhar G, Fasham M, et al. The carbon cycleand atmospheric carbon dioxide[M]// Houghton J T, Ding Y,Griggs D J, et al. eds. Climate Change 2001: The Scientific Basis.Contributions of Working Group I to the Third Assessment Report of the Intergovernment Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2001: 183~238.
    Putz F E, Mooney H A.. The biology of vines[M]. London: Cambridge University Press. 1991, 1~353.
    Putz F E, Chai P. Ecological studies of lianas in National Park, Sarawak[J]. Malasia J.Ecol, 1987, 75:523~531.
    Putz F E. The natural history of lianas on Barro Colorado Island, Panama[J]. Ecology, 1984, 65: 1713~1724.
    Ray T S. Cyclic heterophylly in Syngonium(Araceae) [J].American Journal of Botany, 1987,74:16~26.
    Reich P,Walters M,Ellsworth D.Photosynthesis,nitrogen relations in Amazonian tree species I.Patterns among species and communities [J].Oecologia,1994,97:62~72.
    Richard L A. Ogata G. Thermocouple for vapor pressure measurement in biological and soil systems at high humidity[J].Science,1958,128:1089~1090.
    Richards P W.张宏达,等译.热带雨林[M].北京:科学出版社,1959,102~108.
    Rohacek K. ChlorophyⅡ fluorescence parameters: the definitions, photosynthetic meaning and mutual relationships. Photosynthetica,2002, 40(1): 13~29.
    Russell A E, Raich J W, Vitousek P M. The Ecology of the climbing fern Dicranopteris linearis on Windward Mauna Loa, Hawaii[J]. Journal of Ecology, 1998,86:765~779.
    Schansker G, Van Rensen J S V. Performance of active photosystem Ⅱ centers in photoinhibition pea leaves[J]. Photosynth Res, 1999,62:175~184.
    Schimper A F W. Plant geography upon a physiologica basis[J].Weinheim, H.R. Engelmann(J.Cramer) and Wheldon Wesley,Ltd.1960(reprinted):192~201.
    Scholander P F.Sap pressure in vascular plant[J].Science,1965,148:39~46.
    Schreiber U, Bilger W, Neubauer G, In: Ecophysiology of Photosynthesis[J]. (eds Schulze, E-D and Caldwell, MM.),Springer-Verlag, Berlin, 1994.
    Seiler J R.Physiological morphological responses of three half sib families of loblolly pine to water stress conditioning[J]. Forest Sci,1988,34(2):487~495.
    Sharkey T D. Photosynthesis in intact leaves of C3 plants:physics, physiology and rate limitations[J]. Botanical Review, 1985,51:53~105.
    Sharkey T D. In:Current reseach in photosynthesis Vol 4(Baltschefishy. M. Ed.) Kluwer Academic Publishers[J].The Netherland, 1990,549~556.
    Sharkyt D. Water tress effects on photosynthesis [J].Photosynthetica,1990,24: 65~70.
    Shida A, Toma T. Leaf gas exchange andcanopy structure in wet and drought years in Macaranga conifera,a tropical pioneer tree.In: Guhardja E, Fatawi M eds. Rainforest Ecosystems of East Kalimantan: EI Nino, Drought, Fire,and Hunan Impacts.Tokyo [J] .SpringerVerlag, 2000, 129~142.
    Sims D A, Cheng W, Luo Y,et al. Photosynthetic acclimation to elevated CO2 in a sunflower canopy. J. Exp. Bot., 1999, 50:645~653.
    Smit J.Root growth and water use efficiency of Douglar fir (Pseudotsuga menziesi (Mirb) Franco) and Lodgepole pine (Pinus contorta Dougl.)seedlings[J].Tree Physiology, 1992,11(4):401~410.
    Standhill G.Water use efficiency[J].Advances in Agronomy,1986,39:139~154.
    Tear I D. Crop-Water Relations[M]. A Wiley-Interscience Publication,1982.
    Teskey R O, Hinckley T M. Moisture: Effects of Water Stress on Tree. In:T.M. Hennesey et al eds. Stress Physiology and Forest Productivity[M]. Martinus Nijhofl Puberlishers.1986,9~33.
    Teskey R O, Hinckley T M.Influence of temperature and water potential on root growth white oak[J]. Physiol Plant,1981,(52):363~369.
    Torrecilas A, Galego R, Perz-Pastor A, et al. Gas exchange and water relations of young apricot plants under drought conditions[J]. J Agr Sci, 1999,132:445~452.
    Torrecillas A , Alarcoon J J, Domingo R et al. Strategies for drought resistance in leaves of two almond culticars[J]. Plant Sci, 1996,118:135~143.
    Tuzet A,Perrier A,Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant,Cell and Environment, 2003,26,1097~1116.
    Usuda H, Shim G ,Oawara K.Phosphate deficiency in maize П. Enzyme activity[J]. Plant Cwuwue Physiol,1991,32(8):1313.
    Von Caemmerer S, Farquhar G D. Some relationship between the biochemistry of photosynthesis and the gas exchange of leaves[J]. Planta, 1981,153:376~387.
    Wallace J S .Increasing agricultural water use efficiency to meet future food production. Agriculture Ecosystems and Environment, 2000,82:105~119.
    Wang K Q,Yang X H. The response of transpiration rate of Malus pumila cv. Goldspur to illumination and soil moisture[J]. Forestry Studies in China,2001,3(2):18~25.
    Ward J K,Strain B R. Elevated CO2 studies: past, present and future[J]. Tree Physiol., 1999, 19:211~220.
    Watson R T, Rhode H, Oescheger H, et al.Greenhouse gases and aerosols. In: Houghton, J.T., G. I. Jenkins & J. J. Ephraums.eds. Climate change: IPCC Scientific Assessment[M]. Cambridge: Cambridge University Press, 1990. 1~40.
    Weis E, Berry J A.Plants and high temperatrue stress[J]. Symp Soc Exp Biol,1988, 42: 329~346.
    Zhang G C, Liu X, He K N. Fitting soil moisture environment of trees Growthon Loess
    Plateau in semi-arid region[J]. Journal of Soil and Water Conservation,2001,15(4):1~5. Zimmermann M H.Hydraumic archiecture of some diffuse-poroes trees[J]. Can J Bot,1978,56:2286~2295.
    Zur B. Jones J W. A model for the water relations, photosynthesis, and expensive growth of crop[J]. Water Resources Research,1981,17:311~320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700