无机粒子的表面修饰及其聚合物的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文详细介绍了无机粒子(无机粉体)表面修饰(表面改性)的发展过程,全面论述了无机粒子表面修饰在材料科学中的重要意义以及在复合材料中不可替代的功能性作用,无机粒子的表面修饰已成为“超细无机粉体技术和工程研究”的重要组成部分。论文综述了无机粒子表面修饰的各种方法及表征手段,掌握了该领域的最新进展和研究热点。
     论文立足于无机粒子表面修饰的新方法,详细研究了无毒环保阻燃材料——氢氧化镁;磁性材料——四氧化三铁、镍粒子的表面修饰,取得了如下成果:
     一、微米级及纳米级氢氧化镁(Mg(OH)_2)的表面修饰及表征。
     采用超声波方法将硬脂酸修饰在Mg(OH)_2表面,经红外(FT-IR)、X-射线光电子能谱(XPS)和元素分析(EA)分析证明硬脂酸键合在了Mg(OH)_2表面(即SA-Mg(OH)_2),包覆层厚度为1.3 nm。显微镜观察SA-Mg(OH)_2在二甲苯中分散均匀,将其在二甲苯中进行沉降实验及在液体石蜡中的粘度进行评价,均证明该修饰方法是成功的。
     将修饰后的氢氧化镁(SA-Mg(OH)_2)与聚丙烯复合,对修饰效果作了直接评价。复合材料的熔融指数显示SA-Mg(OH)_2可改善材料的流动性,材料的冲击强度和断裂伸长率也有所提高,表明SA-Mg(OH)_2与聚丙烯有良好的相容性。
     采用一步法将油酸修饰在纳米Mg(OH)_2表面,FT-IR证明油酸分子牢固地键合到了氢氧化镁表面上;漂浮实验测试氢氧化镁表面性质,发现当油酸用量为6%时氢氧化镁的活化指数达到98.9%,显示其表面呈强烈地疏水性。
     采用表面引发原子转移自由基聚合法(SI-ATRP)制备了聚苯乙烯接枝氢氧化镁纳米复合粒子(PS-Mg(OH)_2)。先合成了溴代异丁酸修饰的纳米氢氧化镁作为大分子引发剂,然后采用SI-ATRP方法获得了聚苯乙烯接枝修饰的氢氧化镁纳米粒子。FT-IR分析证明聚苯乙烯键合在了Mg(OH)_2表面;经由元素分析(EA)可知接枝率和单体转化率随反应时间线型增大,凝胶色谱(GPC)测试接枝的聚苯乙烯分子量分布较小(PDI<1.3),体现出明显的活性可控聚合特征,聚合12 h粒子的接枝率达到115%;TEM观察PS-Mg(OH)_2粒子在甲苯中呈现很好的分散性,将其在甲苯中进行沉降实验及评价在液体石蜡中的粘度,均证明PS接枝修饰Mg(OH)_2粒子能改善其在有机介质中的分散性。
     通过原位聚合法制备了聚苯乙烯接枝氢氧化镁纳米复合粒子(PS-Mg(OH)_2)。先合成了油酸修饰的纳米氢氧化镁粒子,后通过无皂乳液聚合制备了聚苯乙烯接枝氢氧化镁纳米复合粒子。FT-IR分析证明聚苯乙烯键合在了Mg(OH)_2表面;经由EA分析可知聚苯乙烯的接枝率为29.1%;透射电镜(TEM)观察到PS-Mg(OH)_2粒子均匀分散在了聚苯乙烯中;差式扫描量热法(DSC)、热失重(TGA)测试PS/PS-Mg(OH)_2复合材料的热性能,证明复合粒子能提高材料的热稳定性。
     二、磁性纳米粒子的合成、表面修饰及表征。
     采用接枝(“grafting from”)方法制备了聚苯乙烯接枝四氧化三铁纳米复合粒子(PS-Fe_3O_4)。先合成了γ-甲基丙烯酰氧基丙基三甲氧基硅烷修饰的四氧化三铁纳米粒子,然后与苯乙烯共聚,从而将聚苯乙烯接枝在Fe_3O_4粒子上。经FT-IR分析证明聚苯乙烯键合在了Fe_3O_4表面,EA可知聚苯乙烯的接枝率为71%;TEM观察到PS-Fe_3O_4复合粒子在甲苯中分散好,评价其在液体石蜡中的粘度,证明PS接枝修饰Fe_3O_4粒子能改善其在有机介质中的分散性;振动样品磁强计(VSM)测试复合粒子具有超顺磁性,XRD分析接枝聚合没有改变Fe_3O_4的结晶结构。
     制备了镍@二氧化硅@苯乙烯-丙烯腈-硅单体三元共聚物纳米复合粒子(Ni@SiO_2@AS)。先合成了二氧化硅包覆的镍粒子,后采用接枝(“grafting to”)方法将三元共聚物接枝到粒子上。二氧化硅包覆镍粒子核,保护了镍核不被氧化。FT-IR分析证明三元共聚物包覆在了粒子表面,由EA可知接枝率为3.5%;TEM观察到复合粒子在甲苯中分散好;VSM测试复合粒子具有镍的超顺磁性。Ni@SiO_2@AS纳米复合粒子在甲苯中分散性好,证明所采用的修饰方法是成功的,具有较高的实用性。该修饰方法为把纳米磁性镍粉分散到聚烯烃树脂(ABS、PS、AS等)中,制备优质聚烯烃/镍纳米复合材料提供了一条有价值的途径。
Surface modification of inorganic particles has been an important part of "ultrafine inorganic powders technology". This paper introduced the evolvement of the surface modification of inorganic particles (inorganic powders), described the importance of the surface modification of inorganic particles in materials science and composites. The surface modification methods and characterization techniques were present in detail as well. The latest development and study was hold.
     This paper focused on new surface modification methods, investigated how to modify magnesium hydroxide (a nontoxic and environmentally friendly material), iron oxide and nickel (magnetic materials), and achieved the following results:
     1. Surface modification and characterization of micron/nanometer magnesium hydroxide (Mg(OH)_2).
     The ultrasonic approach was utilized to modify magnesium hydroxide with stearic acid. Fourier transition infrared spectroscope (FT-IR), X-ray photoelectron spectroscope (XPS) and element analysis (EA) proved stearic acid was covalently bonded to Mg(OH)_2 particles' surface (SA-Mg(OH)_2), and the encapsulation thickness was 1.3 ran. SA-Mg(OH)_2 could be well dispersed in xylene, as been observed by microscopy. The success of this method was evaluated by the sedimentation of SA-Mg(OH)_2 in toluene and the viscosity of SA-Mg(OH)_2 in liquid paraffin.
     The composite of PP/SA-Mg(OH)_2 was prepared to evaluate this modification method directely. In contrast to the untreated magnesium hydroxide, the rheology and mechanical properties (failure tensile rate and impact strenth) of the composite of PP/SA-Mg(OH)_2 could be improved.
     The hydrophobic Mg(OH)_2 nanparticles were accomplished by a simple one-step wet precipitation method using oleic acid as the modifier, Because of the adsorption oleic acid onto their surface, Mg(OH)_2 nanoparticles became hydrophobic. And the hydrophobic Mg(OH)_2 nanoparticles could be dispersed in toluene well, which was favorable for the process and properties of Mg(OH)_2/polymer composites.
     Polystyrene grafted magnesium hydroxide (PS-Mg(OH)_2) nanoparticles were prepared by in situ polymerization. FT-IR proved PS chains were immobiled to Mg(OH)_2 particles' surface, and the grafting percentage was 29.1% by EA. TEM observed that magnesium hydroxide particles were dispersed in the composite with nanometer size, and PS/PS-Mg(OH)_2 nanocomposite had better thermal stability compared with neat PS resin.
     Polystyrene grafted magnesium hydroxide (PS-Mg(OH)_2) nanoparticles were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP). The macro-initiator, magnesium hydroxide nanoneedles modified by bromisobutyric acid, was synthesized first, followed by grafting reaction. FT-IR indicated that polystyrene had been successfully grafted onto the surface of Mg(OH)_2 nanoparticles. EA and GPC suggested polymerization with the controlled/"living" characteristics. By evaluating the sedimentation of SA-Mg(OH)_2 in toluene and the viscosity of SA-Mg(OH)_2 in liquid paraffin, a conclusion could be made that the dispersibility of Mg(OH)_2 nanoparticles in organic solvents could be remarkably improved by the grafting polymerization of PS.
     2. Preparation, surface modification and characterization of magnetic nanoparticles.
     PS grafted Fe_3O_4 nanoparticles (PS-Fe_3O_4) were accomplished by a "grafting from" process. The dispersibility of Fe_3O_4 nanoparticles in organic solvents could be remarkably improved by the grafting PS. The grafting polymerization did not change the crystalline structure of Fe_3O_4 nanoparticles, but lowered the saturation magnetization. In addition, Fe_3O_4 /cotton-fiber magnetic fiber was prepared via chemical deposition method.
     Nanoparticles of nickel coated by silicon coated by copolymer of polystyrene-acrylonitrile (Ni@SiO_2@SAN) were prepared by three steps: (i) the nickel metal nanoparticles is synthesized by chemical reduction using potassium borohydride; (ii) the nickel nanoparticles is coated by silicon and annealed; and (iii) the polystyrene-acrylonitrile chains are adsorbted on the surface of particles. The hybrid nanoparticles were resistant to oxidation, resulting from the protection of silicon. FT-IR proved polymer chains were immobiled to the particles' surface, and the grafting percentage was 3.5% by EA. TEM observed that the composite nanoparticles were dispersed well in toluene, and VSM suggested the particles maintained the supra-paramagnetism of nickel.
     The good dispersion of modified particles in organic mediums indicated that modification techniques were successful and could be utilized in future.
引文
[1] Harris PJF. Carbon nanotube composites. International Materials Reviews 2004, 49(1): 31-43.
    
    [2] Lourie O, Cox DM, Wagner HD. Buckling and collapse of embedded carbon nanotubes. Physical Review Letters 1998, 81(8): 1638-1641.
    
    [3] Wagner HD, Lourie O, Feldman Y, Tenne R. Stress-induced fragmentation of multiwall carbonnanotubes in a polymer matrix. Applied Physics Letters 1998, 72(2): 188-190.
    
    [4] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms incarbon nanotube-polystyrene composites. Applied Physics Letters 2000, 76(20): 2868-2870.
    
    [5] Giannelis EP. Polymer layered silicate nanocomposites. Advanced Materials 1996, 8(1): 29-35.
    
    [6] Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties anduses of a new class of materials. Materials Science and Engineering: R: Reports 2000, 28(1-2):1-63.
    
    [7] Vaia RA, Giannelis EP. Polymer nanocomposites: Status and opportunities. MRS Bull 2001,26(5): 394-401.
    
    [8] Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P. Carbonnanofibers for composite applications. Carbon 2004, 42(5-6): 1153-1158.
    
    [9] Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV. Improving the dispersionand integration of single-walled carbon nanotubes in epoxy composites through functionalization.Nano Letters 2003, 3(8): 1107-1113.
    
    [10] Safadi B, Andrews R, Grulke EA. Multiwalled carbon nanotube polymer composites:synthesis and characterization of thin films. Journal of Applied Polymer Science 2002, 84(14):2660-2669.
    
    [11] Fengge Gao. Clay/polymer composites: the story. Materials Today 2004, 7(11): 50-55.
    
    [12] Nicole Grobert. Carbon nanotubes-becoming clean. Materials Today 2004, 10(1-2): 28-35.
    
    [13] Somasuundaran, K. Adsorption of surfactants and polymers at t he solid-liquid interface. Colloids and Surfaces A :Physico Chem Eng Aspects 1997, 123-124(1-3): 491-513.
    
    [14] Chi, Jen, Shin.; Lungbor-hwa; Hon, Min-hsiung. Colloidal processing of titanium nitride with poly-(methacrylic acid) polyelectrolyte. Materials Chemistry and Physics 1999, 60(2), 150-157.
    
    [15] Bijsterbosch, H. D.; Cohen, O. S.; Fleer, G. J. Adsorption of graft copolymers onto silica and??titanium. Macromolecules 1998, 31(11): 8981-8987.
    
    [16]张淑霞,李建保,张波,等.TiO_2表面无机包覆的研究进展.化学通报2001,(2):71-75.
    
    [17]祖庸,王训,敦晓英,等.超细二氧化钛分散性研究.涂料工业1999,29(6):6-8.
    
    [18]袁荞龙,应圣康.Al_2O_3-SiO_2溶胶制备及在水溶性聚氨酯中分散行为.华东理工大学学报1 998,24(5):526-531.
    
    [19] Teofil, J. E.; Krysztafkie, W. A. Influence of silane coupling agents on surface properties of precipitated silicas. Applied Surface Science 2001, 172(1): 18-27.
    
    [20]李爱元,徐国材,邢宏龙.纳米粉体表面改性技术及应用.化工新型材料2002,30(10):25-28.
    
    [21]李国辉,李春忠,吕志敏.纳米氧化钛颗粒表面处理及表征.华东理工大学学报2000,26(6):639-641.
    
    [22]吴行,陈家钊,涂铭旌.电磁屏蔽涂料镍填料的表面偶联处理研究.功能材料2000,31(3):262-265.
    
    [23]章文贡,陈田安,陈文定.铝酸酯偶联剂改性碳酸钙的性能与应用.中国塑料1988,2(1):23-27.
    
    [24] Feket, E.; Pukanszkyb, T. A. et al. Surface modification and characterization of paniculate mineral filers. Journal of Colloid Interface Science 1990, 35(1): 201-209.
    
    [25]邹玲,乌学东,陈海刚,等.表面修饰二氧化钛纳米粒子的结构表征及形成机理.物理化学学报2001,17(4):305-309.
    
    [26]杜振霞,贾志谦,饶国瑛,等.改性纳米碳酸钙表面性质的研究.现代化工,2001,21(4),42-44.
    
    [27]李宗威,朱永法.TiO_2纳米粒子的表面修饰研究.化学学报2003,61(9):1484-1487.
    
    [28]徐僖,蔡燎原.聚烯烃的改性方法和成型基础理论的研究进展.现代塑料加工应用1995,7(1):1-8.
    
    [29] Michiel, L. C; Molsterling, A. S. et al. Grafting of polystyrene and poly(styrene-block-iso-prene) onto microparticulate silica and glass slides. Polymer 1992, 33(20): 4394-4400.
    
    [30] Peng Liu, Jinshan Guo. Organo-modified magnesium hydroxide nano-needle and itspolystyrene nanocomposite. Journal of Nanoparticle Research 2007, 9(4): 669-673.
    
    [31] Watson, K. J.; Zhu, J.; Nguyen, S. T.; Mirkin, C. A. Hybrid Nanoparticles with BlockCopolymer Shell Structures. Journal of the American Chemical Society 1999, 121(2): 462-463.
    
    [32] Skaff, H.; Ilker, M. F.; Coughlin, E. B.; Emrick, T. Preparation of CadmiumSelenide-Polyolefin Composites from Functional Phosphine Oxides and Ruthenium-Based??Metathesis. Journal of the American Chemical Society 2002, 124(20): 5729-5733.
    
    [33] Sieval, A. B.; Demirel, A. L.; Nissink, J. W. M.; Linford, M. R.; Van der Maas, J, H.; Dejeu,W. H.; Zuilhof, H.; Sudholter, E. J. R. Highly Stable Si-C Linked Functionalized Monolayers onthe Silicon(100) Surface. Langmuir 1998, 14(7): 1759-1768.
    
    [34] Huang, X.; Wirth, M. J. Surface Initiation of Living Radical Polymerization for Growth ofTethered Chains of Low Polydispersity. Macromolecules 1999, 32(5): 1694-1696.
    
    [35] Huang, X; Wirth, M. J. Surface-initiated radical polymerization on porous silica. AnalyticalChemistry 1997, 69(22): 4577-4580.
    
    [36] Jiang, W.; Irgum, K. Tentacle-type zwitterionic stationary phase prepared by surface-initiatedgraft polymerization of 3-[N,N-dimethyl-N-(methacryloxylethyl)-ammonium] propanesulfonatethrough peroxide groups tethered on porous silica. Analytical Chemistry 2002, 74(18): 4682-4687.
    
    [37] Luzinov, I.; Minko, S.; Senkovsky, V.; Voronov, A.; Hild, S.; Marti, O.; Wilke, W. Synthesisand Behavior of the Polymer Covering on a Solid Surface. 3. Morphology and Mechanism ofFormation of Grafted Polystyrene Layers on the Glass Surface. Macromolecules 1998, 31(12):3945-3952.
    
    [38] Ejaz, M.; Tsujii, Y.; Fukuda, T. Controlled grafting of a well-defined polymer on a porousglass filter by surface-initiated atom transfer radical polymerization. Polymer 2001, 42(16):6811-6815.
    
    [39] Huang, W.; Skanth, G; Baker, G. L.; Bruening, M. L. Surface-Initiated Thermal RadicalPolymerization on Gold. Langmuir 2001, 17(5): 1731-1736.
    
    [40] Watson, K. J.; Zhu, J.; Nguyen, S. T.; Mirkin, C. A. Hybrid Nanoparticles with BlockCopolymer Shell Structures. Journal of the American Chemical Society 1999, 121(2): 462-463.
    
    [41] Sidorenko, A.; Minko, S.; Gafijchuk, G; Voronov, S. Radical Polymerization Initiated from aSolid Substrate. 3. Grafting from the Surface of an Ultrafine Powder. Macromolecules 1999,32(14): 4539-4543.
    
    [42] Ingall, M. D. K.; Honeyman, C. H.; Mercure, J. V; Bianconi, P. A.; Kunz, R. R. SurfaceFunctionalization and Imaging Using Monolayers and Surface-Grafted Polymer Layers. Journal ofthe American Chemical Society 1999, 121(15): 3607-3613.
    
    [43] Jaworek, T.; Neher, D.; Wegner, G. et al. Electromechanical Properties of an Ultrathin Layerof Directionally Aligned Helical Polypeptides. Science 1998, 279: 57-60.
    
    [44] Von Werne, T; Patten, T. E. Preparation of Structurally Well-Defined Polymer-Nanoparticle??Hybrids with Controlled/Living Radical Polymerizations. Journal of the American Chemical Society 1999, 121(32): 7409-7410.
    
    [45] Shirai, Y.; Kawatsura, K..; Tsubokawa, N. Graft polymerization of vinyl monomers from initiating groups introduced onto polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups. Journal of Engineering Mathematics 1999, 36(4): 217-224.
    
    [46] Vestal, C. R.; Zhang, Z. J. Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe_2O_4/Polystyrene Core/Shell Nanoparticles. Journal of the American Chemical Society 2002, 124(48): 14312-14313.
    
    [47] Carrot, G; Rutot-Houze, D.; Pottier, A.; Degee, P.; Hilborn, J.; Dubois, P. Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering. Macromolecules 2002, 35(22): 8400-8404.
    
    [48] Carlmark, A.; Malmstrom, E. Atom Transfer Radical Polymerization from Cellulose Fibers at Ambient Temperature. Journal of the American Chemical Society 2002, 124(6): 900-901.
    
    [49] Zhou, Q.; Fan, X.; Xia, C; Mays, J.; Advincula, R. Living Anionic Surface Initiated Polymerization(SIP) of Styrene from Clay Surfaces. Chemistr of the Materials 2001, 13(8): 2465-2467.
    
    [50]_Fan, X.; Xia, C; Fulghum, T; Park, M.-K.; Locklin, J.; Advincula, R. C. Polymer Brushes Grafted from Clay Nanoparticles Adsorbed on a Planar Substrate by Free Radical Surface-Initiated Polymerization. Langmuir 2003, 19(3): 916-923.
    
    [51] Gert Boven, Michiel L. C. M. Oosterling, Ger Challa, Arend Jan Schouten. Grafting kinetics of poly(methyl methacrylate) on microparticulate silica. Polymer 1990, 31(12): 2377-2383.
    
    [52] Norio Tsubokawa, Hisanori Ishida. Graft polymerization of methyl methacrylate from silica initiated by peroxide groups introduced onto the surface. Journal of Polymer Science Part A: Polymer Chemistry 1992, 30(10): 2241-2246.
    
    [53]王勇,李瑞海,王贵恒.碳酸钙的表面辐照处理——丙烯酰胺在碳酸钙粉末上的接枝聚合.四川大学学报(工程科学版)1994,(4):19-24.
    
    [54] Korth, B. D.; Keng, P.; Shim, I.; Bowles, S. E.; Tang, C; Kowalewski, T.; Nebesny, K. W.; Pyun, J. Polymer-Coated Ferromagnetic Colloids from Well-Defined Macromolecular Surfactants and Assembly into Nanoparticle Chains. Journal of the American Chemical Society 2006, 128(20): 6562-6563.
    
    [55] Huang, X.; El-Sayed, I. H; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and PhotothermalTherapy in the Near-Infrared Region by Using Gold Nanorods. Journal of the American ChemicalSociety 2006, 128(6): 2115-2120.
    
    [56] Hong, R.; Emrick, T.; Rotello, V. M. Monolayer-Controlled Substrate Selectivity UsingNoncovalent Enzyme-Nanoparticle Conjugates. Journal of the American Chemical Society 2004,126(42): 13572-13573.
    
    [57] Medintz, Igor L.; Uyeda, H. Tetsuo; Goldman, Ellen R.; Mattoussi, Hedi. Quantum dotbioconjugates for imaging, labelling and sensing. Nature Materials 2005, 4(6): 435-446.
    
    [58] Howarth M, Takao K, Hayashi Y, Ting AY. Targeting quantum dots to surface proteins inliving cells with biotin ligase. The Proceedings of the National Academy of Sciences Online (US)2005, 102:7583-7588.
    
    [59] Leibler L. Nanostructured plastics: joys of self-assembling. Progress in Polymer Science2005, 30(8-9): 898-914.
    
    [60] Bhattacharya A, Misra BN. Grafting: a versatile means to modify polymers. Techniques,factors and applications. Progress in Polymer Science 2004, 29(8): 767-814.
    
    [61] Ruckenstein E, Li ZF. Surface modification and functionalization through the self-assembledmonolayer and graft polymerization. Advances in Colloid and Interface Science 2005, 113: 43-63.
    
    [62] Hult A, Johansson M, Malmstrom E. Hyperbranched polymers. Advances in Polymer Science1999, 143: 1-34.
    
    [63] Rozenberg BA, Sigalov G, editors. Heterophase network polymers: synthesis, structure,characterization. New York, London: Francis & Taylor. 2002.
    
    [64] Liu P. Modifications of carbon nanotubes with polymers. European Polymer Journal 2005,41(11): 2693-2703.
    
    [65] Denes FS, Manolache S. Macromolecular plasma-chemistry: an emerging field of polymerscience. Progress in Polymer Science 2004, 29(8): 815-885.
    
    [66] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organicpolymers on a nanoscale. Progress in Polymer Science 2003, 28(1): 83-114.
    
    [67] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. ChemicalReview 2006, 106(3): 1105-1136.
    
    [68] Koshio A, Yudasaka M, Zhang M, Iijima S. A simple way to chemically react single-wallcarbon nanotubes with organic materials using ultrasonication. Nano Letters 2001, 1(7): 361-363.
    
    [69] Wu W, Zhang S, Li Y, Li J, Liu L, Qin Y, et al. PVK modified single-walled carbon nanotubeswith effective photoinduced electron-transfer. Macromolecules 2003, 36(17): 6286-6288.
    
    [70] Blake R, Gunko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, et al. A genericorganometallic approach toward ultra-strong carbon nanotube polymer composites. Journal of theAmerican Chemical Society2004, 1269(33): 10226-10227.
    
    [71] Wang W, Lin Y, Sun Y-P. Poly(N-vinyl carbazole) functionalized single-walled carbonnanotubes: synthesis, characterization, and nanocomposite thin films. Polymer 2005, 46(20):8634-8640.
    
    [72] Wang Y, Igbal Z, Malhotra SV. Functionalization of carbon nanotubes with amines andenzymes. Chemical Physics Letters 2005, 402: 96-101.
    
    [73] Bustos E, Mannquez J, Orozco G, Godinez LA. Preparation, characterization, andelectrocatalytic activity of surface anchored, Prussian Blue containing starburst PAMAMdendrimers on gold electrodes. Langmuir 2005, 21(7): 3013-3021.
    
    [74] Masahiko Arai, Kunio Arai, Shozaburo Saito. Soapless emulsion polymerization of methylmethacrylate in water in the presence of calcium sulfite. Journal of Polymer Science Part A:Polymer Chemistry Edition 1982,20(4): 1021-1029.
    
    [75] Mikio Konno, Koichi Shimizu, Kunio Arai, Shozaburo Saito. Soapless emulsionpolymerization of methyl methacrylate in water in the presence of barium sulfate. Journal ofPolymer Science Part A: Polymer Chemistry Edition 1987, 25(1): 223-230.
    
    [76]陈立,林静,林敏,黄海水.硫酸钡粉末存在下无乳化剂的聚合研究.高分子学报1993,(3):338-341.
    
    [77] Wolf-Dieter Hergeth, Uwe-Jens Steinau, Hans-Joachim Bittrich, Gerald Simon, Klaus Schmutzler. Polymerization in the presence of seeds. Part IV: Emulsion polymers containing inorganic filler particles. Polymer 1989, 30(2): 254-258.
    
    [78]成国祥,马林荣,刘静,沈锋,姚康德.立德粉/聚(甲基丙烯酸甲酯-共-甲基丙烯酸)复合微粒颜料的制备及其分散特性.中国皮革1998,27(5):7-10.
    
    [79]孙长高,孟宪铎,阚成友,孔祥正.乳液聚合法制备碳酸钙/聚苯乙烯复合粒子.胶体??与聚合物1999,10(1):54-59.
    
    [80] Yong Yang, Xiang Zheng Kong, Cheng You Kan, Chang Gao Sun. Encapsulation of calcium carbonate by styrene polymerization. Polymers for Advanced Technologies 1999, 10(1-2): 54-59.
    
    [81] Wolf-Dieter Hergeth, Peter Starre, Klaus Schmutzler, Siegfried Wartewig. Polymerizations in the presence of seeds: 3. Emulsion polymerization of vinyl acetate in the presence of quartz powder. Polymer 1988, 29(7): 1323-1328.
    
    [82]谈定生,严年喜,施亚钧.无机粉体的聚合物胶囊化过程研究.高分子材料科学与工程1999,15(6):101-104.
    
    [83] Masahiro Hasegawa, Kunio Arai, Shozaburo Saito. Effect of surfactant adsorbed onencapsulation of fine inorganic powder with soapless emulsion polymerization. Journal ofPolymer Science Part A: Polymer Chemistry Edition 1987, 25(12): 3231-3239.
    
    [84] Tagawa T, Yamashita S, Furusawa K. Kobunshi Ronbunshun 1983, 40: 273.
    
    [85] Kunio Furusawa, Yoshihiro Kimura, Tom Tagawa. Syntheses of composite polystyrene laticeswith silica particles in the core. Journal of Colloid and Interface Science 1986, 109( 1): 69-76.
    
    [86]龙复,王伟,许涌深,曹同玉.无机溶胶粒子的有机高分子胶囊化研究.高分子材料科学与工程1999,15(6):101-104.
    
    [87]毋伟,陈建峰,卢寿慈.超细粉体表面修饰.化学工业出版社2004年.
    
    [88]郑水林.粉体表面改性.中国建材工业出版社2004年.
    
    [89] L. H. Baekeland, Resinas reforcadas comargila: Bakelite. Sci. Am. 1909, 68 (Suppl.): 322.
    
    [90] C. Goodyear, Dinglers Polytechnisches Journal 1856, 139: 376.
    
    [91] Lee, Jae Youn; Shou, Zhenyu; Balazs, Anna C. Modeling the Self-Assembly ofCopolymer-Nanoparticle Mixtures Confined between Solid Surfaces. Physical Review Letters2003,91(13): 136103/1-136103/4.
    
    [92] Yao Lin, Alexander Bdker, Jinbo He, Kevin Sill, Hongqi Xiang, Clarissa Abetz, Xuefa Li, JinWang, Todd Emrick, Su Long, Qian Wang, Anna Balazs, Thomas P. Russell Self-directedself-assembly of nanoparticle/copolymer mixtures. Nature 2005, 434: 55-59.
    
    [93] Lee, J. Y.; Thompson, R. B.; Jasnow, D.; Balazs, A. C. Effect of Nanoscopic Particles on theMesophase Structure of Diblock Copolymers. Macromolecules 2002, 35(13): 4855-4858.
    
    [94] Hooper, J. B.; Schweizer, K. S. Theory of Phase Separation in Polymer Nanocomposites. Macromolecules 2006, 39(15): 5133-5142.
    
    [95] Michael E. Mackay, Anish Tuteja, Phillip M. Duxbury, Craig J. Hawker, Brooke Van Horn, Zhibin Guan, Guanghui Chen, and R. S. Krishnan. General Strategies for Nanoparticle Dispersion. Science 2006, 311: 1740-1743.
    
    [96] Tyagi, S.; Lee, J. Y.; Buxton, G. A.; Balazs, A. C. Using Nanocomposite Coatings To Heal Surface Defects. Macromolecules 2004, 37(24): 9160-9168.
    
    [97] Lee, Jae Youn; Buxton, Gavin A.; Balazs, Anna C. Using nanoparticles to create self-healing composites. Journal of Chemical Physics 2004, 121(11): 5531-5540.
    
    [98] Gupta, Suresh; Zhang, Qingling; Emrick, Todd; Balazs, Anna C; Russell, Thomas P. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials 2006, 5(3): 229-233.
    
    [99] J Lee, J.-Y.; Zhang, Q.; Emrick, T.; Crosby, A. J. Nanoparticle Alignment and Repulsion during Failure of Glassy Polymer Nanocomposites. Macromolecules 2006, 39(21): 7392-7396.
    
    [100] Liu, J.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J. Employing End-Functional Polythiophene To Control the Morphology of Nanocrystal-Polymer Composites in Hybrid Solar Cells. Journal of the American Chemical Society 2004, 126(21): 6550-6551.
    
    [101] Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H.; Alivisatos, A. P. Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Letters 2006,6(7): 1479-1482.
    
    [102] Gupta, S.; Zhang, Q.; Emrick, T.; Russell, T. P. "Self-Corralling" Nanorods under an Applied Electric Field. Nano Letters 2006, 6(9): 2066-2069.
    
    [103] Y. Hong, Cooper-White J, Mackay M E. A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends. Journal of Rheology 1999,43(3): 781-793.
    
    [104] Barnes, K. A.; Karim, A.; Douglas, J. F.; Nakatani, A. I.; Gruell, H.; Amis, E. J. Suppression of Dewetting in Nanoparticle-Filled Polymer Films. Macromolecules 2000, 33(11): 4177-4185.
    
    [105] Mackay, M. E.; Hong, Y.; Jeong, M.; Hong, S.; Russell, T. P.; Hawker, C. J.; Vestberg, R.; Douglas, J. F. Influence of Dendrimer Additives on the Dewetting of Thin Polystyrene Films. Langmuir 2002, 18(5): 1877-1882.
    
    [106] Bockstaller, Michael R.; Thomas, Edwin L. Proximity effects in self-organized binary particle-block copolymer blends. Physical Review Letters 2004, 93(16): 166106-1-166106-4.
    
    [107] Lopes, W.A.; Jaeger, H.M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414: 735-738.
    
    [108] Lee, Jae Youn; Shou, Zhenyu; Balazs, Anna C. Modeling the Self-Assembly of Copolymer-Nanoparticle Mixtures Confined between Solid Surfaces. Physical Review Letters 2003,91(13): 136103/1-136103/4.
    
    [109] Yao Lin, Alexander Boker, Jinbo He, Kevin Sill, Hongqi Xiang, Clarissa Abetz, Xuefa Li, Jin Wang, Todd Emrick, Su Long, Qian Wang, Anna Balazs, Thomas P. Russell Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005,434: 55-59.
    
    [110] Lee, J. Y.; Thompson, R. B.; Jasnow, D.; Balazs, A. C. Effect of Nanoscopic Particles on the Mesophase Structure of Diblock Copolymers. Macromolecules 2002, 35(13): 4855-4858.
    
    [111] YaSen Sun, U.Ser Jeng, Keng S. Liang, SiaoWei Yeh, KungHwa Wei. Transitions of domain ordering and domain size in a spherical-forming polystyrene-block-poly(ethylene oxide) copolymer and its composites with colloidal cadmium sulfide quantum dots. Polymer 2006, 47(4): 1101-1107.
    
    [112] B. J. Kim, J. J. Chiu, G.-R. Yi, D. J. Pine, E. J. Kramer. Nanoparticle-Induced Phase Transitions in Diblock-Copolymer Films. Advanced Materials 2005, 17(21): 2618-2622.
    
    [113] Yeh, S. W.; Wei, K. H.; Sun, Y. S.; Jeng, U. S.; Liang, K. S. CdS Nanoparticles Induce a Morphological Transformation of Poly(styrene-b-4-vinylpyridine) from Hexagonally Packed Cylinders to a Lamellar Structure. Macromolecules 2005, 38(15): 6559-6565.
    
    [114] Russell B. Thompson, Valeriy V. Ginzburg, Mark W. Matsen, Anna C. Balazs. Predicting the Mesophases of Copolymer-Nanoparticle Composites. Science 2001, 292: 2469-2472.
    
    [115] Kim, J. U.; O'Shaughnessy, B. Nanoinclusions in Dry Polymer Brushes. Macromolecules 2006, 39(1): 413-425.
    
    [116] Lee, Jae Youn; Thompson, Russell B.; Jasnow, David; Balazs, Anna C. Entropically driven formation of hierarchically ordered nanocomposites. Physical Review Letters 2002, 89(15): 155503/1-155503/4.
    
    [117] N. A. Kotov, Ordered layered assemblies of nanoparticles. MRS Bulletin 2001, 26(12): 992-997.
    
    [118] Thompson, Russell B.; Lee, Jae Youn; Jasnow, David; Balazs, Anna C. Binary hard sphere
    
    ??mixtures in block copolymer melts. Physical Review E - Statistical, Nonlinear, and Soft MatterPhysics 2002, 66(3): 031801.
    
    [119] Bockstaller, M. R.; Lapetnikov, Y.; Margel, S.; Thomas, E. L. Size-Selective Organization ofEnthalpic Compatibilized Nanocrystals in Ternary. Journal of the American Chemical Society2003, 125(18): 5276-5277.
    
    [120] Kim, B. J.; Bang, J.; Hawker, C. J.; Kramer, E. J. Effect of Areal Chain Density on theLocation of Polymer-Modified Gold. Macromolecules 2006, 39(12): 4108-4114.
    
    [121] Sides, Scott W.; Kim, Bumjoon J.; Kramer, Edward J.; Fredrickson, Glenn H. Hybridparticle-field simulations of polymer nanocomposites. Physical Review Letters 2006, 96(25):250601.
    
    [122] K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat, M. E. Cates. Colloidal Jammingat Interfaces: A Route to Fluid-Bicontinuous Gels. Science 2005, 309: 2198-2201.
    
    [123] Buxton, G. A.; Lee, J. Y; Balazs, A. C. Computer Simulation of Morphologies and OpticalProperties of Filled Diblock Copolymers. Macromolecules 2003, 36(25): 9631-9637.
    
    [124] Buxton, Gavin A.; Balazs, Anna C. Simulating the morphology and mechanical properties offilled diblock copolymers. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics2003, 67(31): 031802/1-031802/12.
    
    [125] Thompson, R. B.; Rasmussen, K. O.; Lookman, T. Origins of Elastic Properties in OrderedBlock Copolymer/Nanoparticle Composites. Nano Letters 2004, 4(12): 2455-2459.
    
    [126] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell. Nanoparticle Assembly andTransport at Liquid-Liquid Interfaces. Science 2003, 299: 226-229.
    
    [127] Si, M.; Araki, T.; Ade, H.; Kilcoyne, A. L. D.; Fisher, R.; Sokolov, J. C; Rafailovich, M. H.Compatibilizing Bulk Polymer Blends by Using Organoclays. Macromolecules 2006, 39(14):4793-4801.
    
    [128] Tanaka, Hajime; Lovinger, Andrew J.; Davis, Don D. Pattern evolution caused by dynamiccoupling between wetting and phase separation in binary liquid mixture containing glass particles.Physical Review Letters 1994, 72(16): 2581.
    
    [129] Benjamin P. Lee , Jack F. Douglas, Sharon C. Glotzer. Filler-induced composition waves inphase-separating polymer blends. Physical Review E - Statistical Physics, Plasmas, Fluids, andRelated Interdisciplinary Topics 1999, 60: 5812-5822.
    
    [130] Karim, A.; Douglas, J. F.; Nisato, G; Liu, D.-W.; Amis, E. J. Transient Target Patterns inPhase Separating Filled Polymer Blends. Macromolecules 1999, 32(18): 5917-5924.
    
    [131] Balazs, A. C; Ginzburg, V. V.; Qiu, F.; Peng, G; Jasnow, D. Multi-Scale Model for BinaryMixtures Containing Nanoscopic Particles. The Journal of Physical Chemistry B 2000, 104(15):3411-3422.
    
    [132] H.-J. Chung, A. Taubert, R. D. Deshmunkh, R. J. Composto. Mobile nanoparticles and theireffect on phase separation dynamics in thin-film polymer blends. Europhysics Letter 2004, 68:219-225.
    
    [133] Yurekli, K.; Karim, A.; Amis, E. J.; Krishnamoorti, R. Influence of Layered Silicates on thehase-Separated Morphology of PS-PVME Blends. Macromolecules 2003, 36(19): 7256-7267.
    
    [134] Araki, Takeaki; Tanaka, Hajime. Wetting-induced depletion interaction between particles ina phase-separating liquid mixture. Physical Review E - Statistical, Nonlinear, and Soft MatterPhysics 2006, 73(6): 061506.
    
    [135] Ginzburg, V. V. Influence of Nanoparticles on Miscibility of Polymer Blends. A SimpleTheory. Macromolecules 2005, 38(6): 2362-2367.
    
    [136] He, Gang; Ginzburg, Valeriy V.; Balazs, Anna C. Determining the phase behavior ofnanoparticle-filled binary blends. Journal of Polymer Science, Part B: Polymer Physics 2006,44(17): 2389-2403.
    
    [137] Buxton, Gavin A.; Balazs, Anna C. Predicting the mechanical and electrical properties ofnanocomposites formed from polymer blends and nanorods. Molecular Simulation 2004, 30(4):249-257.
    
    [138] Anna C. Balazs; Todd Emrick; Thomas P. Russell. Nanoparticle Polymer Composites:Where Two Small Worlds Meet. Science 2006, 314: 1107-1110.
    
    [1] P.R. Hornsby, C.L. Watson. Mechanism of smoke suppression and fire retardancy in polymerscontaining magnesium hydroxide filler. Plastics and Rubber Processing and Application 1989,11(1): 45-51.
    
    [2] R.J. Ashley, R.N. Rothon. Use of inorganic fillers toreduce the flammability of polymers.Plastics and Rubber Processing and Application 1991, 15(1): 19-21.
    
    [3] H. Dvira, M. Gottlieba, S. Darenb, E. Tartakovsky. Optimization of a flame-retardedpolypropylene composite. Composites Science and Technolog 2003, 63(13): 1865-1876.
    
    [4] M. Sain, S.H. Park, F. Suhara, S. Law. Flame retardant and mechanical properties of naturalfibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability 2004,83(2): 363-367.
    
    [5] P.R. Hornsby, C.L. Watson. Magnesium hydroxide-acombined flamer rerardant and smokesuppressant filler for thermoplastics. Plastics and Rubber Processing and Application 1986, 6:169-175.
    
    [6] C.M. Tai, Robert K.Y. Li. Studies on the impact fracture behaviour of flame retardantpolymeric material. Materials and Design 2001, 22(1): 15-19.
    
    [7] R.N. Rothon, P.R. Hornsby. Flame retardant effects of magnesium hydroxide. PolymerDegradation and Stability 1996, 54(2-3): 383-385.
    
    [8] CM. Tai, Robert K.Y. Li. Mechanical properties of flame retardant filled polypropylenecomposites. Journal of Applied Polymer Science 2001, 80(14): 2718-2728.
    
    [9] Sangcheol Kim. Flame retardant and smoke suppression of magnesium hydroxide filledpolyethylene. Journal of Polymer Science: Part B: Polymer Physics 2003, 41(9): 936-944.
    
    [10] Z.Z. Wang, B.J. Qu, W.C. Fan. Studies on Surface Modifiers in Mg(OH)_2 Flame RetardedPolyethylene. Journal of Functional Polymers 2001, 14 (1): 45-48.
    
    [11] Z.Z. Wang. B.J. Qu. W.C. Fan. P. Huang. Combustion characteristics of halogen-freeflame-retarded polyethylene containing magnesium hydroxide and some synergists. Journal ofApplied Polymer Science 2001, 81 (1): 206-214.
    
    [12] S.P. Luo,J.C. Li, H. Su, L. Yang. Surface Modification of Magnesium Hydroxide and itsApplication in EVA. Journal of Jiangsu Institute of Petrochemical Technology 1998, 10(4): 4-7.
    
    [13] L.B. Li, P.L. Meng, Z.B. Xie, H.X. Qin. Study on PP-R Modified by Super MicronizedMg(OH)_2 Compound Flame Retardant. Engineering plastics and Application 2004, 32(7): 12-14.
    
    [14] H.H. Huang, M, Tian, Z.Q. Chen, et al. Effect of Interface Modification on Structure andProperties of High Filled Mg(OH)_2/EVA Composite. China Plastics Industry 2003, 31(12): 8-13.
    
    [15] S. Ulutan, M. Gilbert. Mechanical properties of HDPE/magnesium hydroxide composites.Journal of Materials Science 2000, 35(9): 2115-2120.
    
    [16] B. Haworth, C.L. Raymond, I. Sutherland. Polyethylene Compounds Containing MineralFillers Modified by Acid Coatings.2: Factors Influencing Mechanical Properties. PolymerEngineering and Science 2001, 41 (8): 1345-1364.
    
    [17] CM. Liauw, R.N. Rothon, G.C. Lees, Z. Iqbal. Flow micro-calorimetry and FTIR studies onthe adsorption of saturated and unsaturated carboxylic acids onto metal hydroxide flame-retardantfillers. Journal of Adhesion Science and Technology 2001, 15(8): 889-912.
    
    [18] M. Gilbert, I. Sutherl, A. Guest. Characterization of coated particulate fillers. Journal ofMaterials Science 2000, 35(2): 391-397.
    
    [19] B. Haworth, C.L. Raymond, I. Sutherl. Polyethylene Compounds Containing Mineral FillersModified by Acid Coatings. 1: Characterization and Processing. Polymer Engineering and Science2001,40(9): 1953-1968.
    
    [20] J. Jancar, J. Kucera. Yield behavior of polypropylene filled with CaCO_3 and Mg(OH)_2. I.'Zero' interfacial adhesion. Polymer Engineering and Science 1990, 30(12): 707-713.
    
    [21] Peng Liu and Jinshan Guo. Organo-modified magnesium hydroxide nano-needle and itspolystyrene nanocomposite. Journal of Nanoparticle Research 2006, 9(4): 669-673.
    
    [22] Z.R. Xia, D.W. Qiao, J. Jin. Studies on modification of talc by wet milling. Non-MetallicMines 1995, (6): 22-25.
    
    [23] S. Mizuta, M. Parish, H.K. Bowen. Dispersion of BaTiO_3 powders (part I). CeramicsInternational 1984, 10(2): 43-48.
    
    [24] P. Dumitru, G.C. Lees, C.M. Liauw, R.N. Rothon. Interphase control inpoly(styrene-block-butadiene-block-styrene) copolymer/magnesium hydroxide composites.Macromolecular symposia 2001, 170(1): 213-220.
    
    [25] Maged A. Osman, Ayman Atallah, Ulrich W. Suter. Influence of excessive filler coating onthe tensile properties of LDPE-calcium carbonate composites. Polymer 2004, 45(4): 1177-1183.
    
    [26] H. C. Park, T. Y. Yang, Y. B. Lee, B. K. Kim, R. Stevens. Suspension characteristics andrheological properties of mullite/zirconia powder in methyl isobutyl ketone. Journal of MaterialsScience 2002, 37(20): 4405-4410.
    [1] Z.Z. Wang, B.J. Qu, W.C. Fan. Studies on Surface Modifiers in Mg(OH)_2 Flame Retarded Polyethylene. Journal of Functional Polymers 2001, 14( 1): 45-48.
    
    [2] J. Jancar, Kucera. Yield behavior of polypropylene filled with CaCO_3 and Mg(OH)_2. I. 'Zero' interfacial adhesion. Polymer Engineering and Science 1990, 30(12): 707-713.
    
    [3] J. Jancar, Kucera. Yield behavior of PP/CaCO_3 and PP/Mg(OH)_2 composites. II. Enhanced interfacial adhesion. Polymer Engineering and Science 1990, 30(12): 714-720.
    
    [4] Hornsby, P. R.; Watson, C. L. Interfacial modification of polypropylene composites filled with magnesium hydroxide. Journal of Materials Science 1995, 30(21): 5347-5355.
    
    [5] Liu, S. H.; Nauman, E. B. On the micromechanics of composites containing spherical inclusions. Journal of Materials Science 1990, 25(4): 2071-2076.
    
    [6] Fekete, E.; Molnar, Sz.; Kim, G.-M.; Michler, G.H.; Pukanszky, B. Aggregation, fracture initiation, and strength of PP/CaCO_3 composites. Journal of Macromolecular Science-Physics 1999, 38(5): 885-899.
    
    [7] Wu, S.H. Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer 1985,26(12): 1855-1863.
    
    [8] Wu, S.H. A generalized criterion for rubber toughening: The critical matrix ligament thickness. Journal of Applied Polymer Science 1988, 35(2): 549-561.
    
    [9] Muratoglu, O. K.; Argon, A. S.; Cohen, R. E. Crystalline morphology of polyamide-6 near planar surfaces. Polymer 1995, 36(11): 2143-2152.
    
    [10] Muratoglu, O. K.; Argon, A. S.; Cohen, R. E.; Weinberg, M. Toughening mechanism of rubber-modified polyamides. Polymer 1995, 36(5): 921-930.
    
    [11] Wilbrink, M. W. L.; Argon, A. S.; Cohen, R. E.; Weinberg, M.P. Toughenability of Nylon-6 with CaCO_3 filler particles: new findings and general principles. Polymer 2001, 42(26): 10155-10180.
    
    [12] Bartczak, A. S. Z.; Argona, R. E.; Cohen, M.; Weinberg, M. Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 1999, 40(9): 2347-2365.
    [13] Fu, Q.; Wang, G..H. Polyethylene toughened by rigid inorganic particles. Polymer
    
    ??Engineering and Science 1992, 32(2): 94-97.
    
    [14] Fu, Q.; Wang, G.H.; Shen, J.S. Polyethylene toughened by CaCO_3 particle: Brittle-ductiletransition of CaCO_3-toughened HDPE. Journal of Applied Polymer Science 1993, 49(4): 673-677.
    
    [15] Fu, Q.; Wang, G.H. Effect of morphology on brittle-ductile transition of HPDE/CaCO_3 blends.Journal of Applied Polymer Science 1993,49(11): 1985-1988.
    
    [16] Fu, Q.; Wang, G. Polyethylene toughened by CaCO_3 particles - percolation model ofbrittle-ductile transition in HDPE/CaCO_3 blends. Polymer International 1993, 30(3): 309-312.
    
    [17] Kwon, S.; Kim, K. J.; Kim, H.; Kundu, P. P.; Kim, T. J.; Lee, Y. K.; Lee, B. H.; Choe, S.Tensile property and interfacial dewetting in the calcite filled HDPE, LDPE, and LLDPEcomposites. Polymer 2002, 43(25): 6901-6909.
    
    [18] Velascol, J. I.; Morhain, C; Arencon, D.; Santana, O. O.; Maspochl, M. L. Low-rate fracturebehaviour of magnesium hydroxide filled polypropylene block copolymer. Polymer Bulletin 1998,41:615-622.
    
    [19] Pukanszky, B. Influence of interface interaction on the ultimate tensile properties of polymercomposites. Composites 1990, 21(3): 255-262.
    
    [20] Pukanszky, B.; Turcsanyi, B.; Tudos, F. In Interfaces in Polymer, Ceramic and Metal MatrixComposites. Ishida, H., Ed. Elsevier: New York. 1988, p 467.
    
    [21] Pukanszky, B.; Belina, K.; Rockenbauer, A.; Maurer, F. H. J. Effect of nucleation, filleranisotropy and orientation on the properties of PP composites. Composites 1994, 25(3): 205-214.
    
    [22] Pukanszky, B.; Fekete, E.; Tudos, F. A hatarfeluleti kolcsonhatas as a mechanikaitulajdonsagok kapcsolata toltoanyaggal modositott poliolefinekben (Relationship between thesurface interaction and the mechanical properties of polyolefms modified with fillers). MuanyagEs Gumi 1989, 26(7): 210-217.
    
    [23] Particulate-Filled Polymer Composites. Lonthon, R. N. Longman, London, UK, 1995.
    
    [24] Nicolais, L.; Narkis, M. Stress-strain behavior of styrene-acrylonitrile/glass bead compositesin the glassy region. Polymer Engineering and Science 1971, 11(3): 194-199.
    
    [25] Jun Yin, Shaohui Wang, Yong Zhang, Yinxi Zhang. Isothermal Crystallization Kinetics of PPin PP/Mg(OH)_2 Composites. Journal of Polymer Science: Part B: Polymer Physics 2005, 43(14):1914-1923.
    
    [1] Henrist C, Mathieu J P, Vogels C, Rulmont A, Cloots R. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, Journal of Crystal Growth 2003, 249(1-2): 321-330.
    
    [2] Ding, Y.; Zhang, G; Wu, H.; Hai, B.; Wang, L.; Qian, Y. Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis. Chemistry of Materials 2001, 13(2): 435-440.
    
    [3]吴会军,向兰,金永成,等.高分散氢氧化镁粉体的制备及其影响因素.无机材料学报2004,19(5):1 181-1185.
    
    [4]李振中,瞿保钧.阻燃型氢氧化镁的制备及其应用.无机盐工业2006,38(11):1 3-14.
    
    [5] Lv J P, Qiu L Z, Qu B J. Controlled growth of three morphological structures of magnesiumhydroxide nanoparticles by wet precipitation method. Journal of Crystal Growth 2004, 267(3-4):676-684.
    
    [6] Wang Z Z, Qu B J, Fan W C, Huang P. Combustion characteristics of halogen-freeflame-retarded polyethylene containing magnesium hydroxide and some synergists. Journal ofApplied Polymer Science 2001, 81(1): 206-214.
    
    [7] Yin J, Zhang Y, Zhang Y X. Deformation mechanism of polypropylene composites filled withmagnesium hydroxide. Journal of Applied Polymer Science 2005, 97(5): 1922-1930.
    
    [8] Haworth B, Raymond C L, Sutherland I. Polyethylene compounds containing mineral fillersmodified by acid coatings. 1: Characterization and processing. Polymer Engineering and Science2000, 40(9): 1953-1968.
    
    [9] Gilbert M, Sutherland I, Guest A. Characterization of coated particulate fillers. Journal ofMaterials Science 2000, 35(2): 391-397.
    
    [10] Schofield W C E, Hurst S J, Lees G C, Liauw CM, Rothon RN. Influence of surfacemodification of magnesium hydroxide on the processing and mechanical properties of compositesof magnesium hydroxide and an ethylene vinyl acetate copolymer. Composite Interfaces 1998,5(6): 515-528.
    
    [11] Zhu S, Zhang Y, Zhang Y X. Deformation and fracture of Mg(OH)_2-filled polyolefincomposites under tensile stress. Journal of Applied Polymer Science 2003, 89(12): 3248-3255.
    
    [12] Liauw, C.M.; Rothon, R.N.; Lees, G.C.; Iqbal, Z. Flow micro-calorimetry and FTIR studies on the adsorption of saturated and unsaturated carboxylic acids onto metal hydroxide flame-retardant fillers. Journal of Adhesion Science and Technology 2001, 15(8): 889-912.
    
    [13] Lv X T, Hari-Bala, Li M G, et al. In situ synthesis of nanolamellas of hydrophobic magnesium hydroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006, 296(1-3): 97-103.
    [1] Z.Z. Wang, B.J. Qu, W.C. Fan, P. Huang. Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. Journal of Appllied Polymer Science 2001, 81 (1): 206-214.
    
    [2] J. Yin, Y. Zhang, Y.X. Zhang. Deformation Mechanism of Polypropylene Composites Filled with Magnesium Hydroxide. Journal of Appllied Polymer Science 2005, 97(5): 1922-1930.
    
    [3] B.Haworth, C.L. Raymond, I. Sutherland. Polyethylene compounds containing mineral fillers modified by acid coatings. 1: Characterization and Processing. Polymer Engineering and Science 2000,40(9): 1953-1968.
    
    [4] W.C.E. Schofield, S.J. Hurst, G.C. Lees, C.M. Liauw, R.N. Rothon. Influence of surface modification of magnesium hydroxide on the processing and mechanical properties of composites of magnesium hydroxide and an ethylene vinyl acetate copolymer. Composite Interfaces 1998, 5 (6): 515-528.
    
    [5] S. Zhu, Y. Zhang, Y.X. Zhang, Deformation and fracture of Mg(OH)2-filled polyolefin composites under tensile stress. Journal of Applied Polymer Science 2003, 89(12): 3248-3255.
    
    [6] J. Yu, Z.X. Guo, Y.F. Gao. Preparation of CaCO_3/Polystyrene Inorganic/Organic Composite Nanoparticles. Macro molecular Rapid Communications 2001, 22(15): 1261-1264.
    
    [7] Y. Rong, H.Z. Chen, H.Y. Li, M. Wang. Encapsulation of titanium dioxide particles by polystyrene via radical polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 253(1-3): 193-197.
    
    [8] R.Y. Hong, J.Z. Qian, J.X. Cao. Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technology 2006, 163(3): 160-168.
    
    [9] G. Li, K.C. Mai, K.C. Feng, Y.P. Huang. Preparation and characterization of nano-CaCO_3 encapsulated by copolymerization of styrene and maleic anhydride. Polymer International 2006, 55(8): 891-897.
    
    [10] Zhao, B; Brittain W. J. Polymer brushes: Surface-immobilized macromolecules. Progress in Polymer Science 2000, 25(5): 677-710.
    
    [11] Minko, S.S.; Luzinov, I.A.; Evchuk, I. Yu.; Voronov, S.A. Synthesis and behaviour of the polymer covering on a solid surface: 1. Attachment of the polymer initiator to the solid surface.
    
    ??Polymer 1996, 37(1): 177-181.
    
    [12] Koutsos, V.; van der Vegte, E. W.; Hadziioannou, G. Direct View of Structural Regimes ofEnd-Grafted Polymer Monolayers: A Scanning Force Microscopy Study. Macromolecules 1999,32(4): 1233-1236.
    
    [13] Ghosh, P.; Lackowski, W. M; Crooks, R. M. Two New Approaches for Patterning PolymerFilms Using Templates Prepared by Microcontact Printing. Macromolecules 2001, 34(5):1230-1236.
    
    [14]周峰,李斌,刘维民,等.活性端基聚苯乙烯表面修饰膜的制备与摩擦学性能.高分子学报 2002,(5):608-612.
    
    [15] P. Liu, J.S. Guo. Organo-modified magnesium hydroxide nano-needle and its polystyrenenanocomposite. Journal of Nanoparticale Research 2007, 9(4): 669-673.
    
    [16] Yoshinobu Tsujii, Muhammad Ejaz, Shinpei Yamamoto, Takeshi Fukuda, Kunji Shigeto, KoMibu, Teruya Shinjo. Fabrication of patterned high-density polymer graft surfaces. II.Amplification of EB-patterned initiator monolayer by surface-initiated atom transfer radicalpolymerization. Polymer 2002,43(13): 3837-3841.
    
    [17] X.W. Fan, C.J. Xia, R. C. Advincula.Grafting of Polymers from Clay Nanoparticles via InSitu Free Radical Surface-Initiated Polymerization: Monocationic versus Bicationic Initiators.Langmuir2003, 19(10): 4381-4389.
    
    [18] P. Liu, Z.X. Su. Preparation of polystyrene grafted silica nanoparticles by two-steps UVinduced reaction. Journal of Photochemistry and Photobiology A: Chemistry 2004, 167(2-3):237-240.
    
    [19] Eizo Marutanil, Shinpei Yamamoto, Tsedev Ninjbadgar, Yoshinobu Tsujii, Takeshi Fukuda,Mikio Takano. Surface-initiated atom transfer radical polymerization of methyl methacrylate onmagnetite nanoparticles. Polymer 2004, 45(7): 2231-2235.
    
    [20] A. El Harrak, G. Carrot, J. Oberdisse, J. Jestin, F. Boue. Atom transfer radical polymerizationfrom silica nanoparticles using the 'grafting from' method and structural study via small-angleneutron scattering. Polymer 2005, 46(7): 1095-1104.
    
    [21] A.M. Granville, S.G. Boyes, B. Akgun, M.D. Faster, W.J. Brittain. Synthesis and??Characterization of Stimuli-Responsive Semifluorinated Polymer Brushes Prepared by Atom Transfer Radical Polymerization. Macromolecules 2004,37(8): 2790-2796.
    
    [22] S. Hayashi, K. Fujiki, N. Tsubokawa. Grafting of hyperbranched polymers onto ultrafine silica: Postgraft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafted onto the surface. Reactive and Functional Polymers 2000,46(2): 193-201.
    
    [23] H.C. Park, T.Y. Yang, Y.B. Lee, B.K. Kim, R. Stevens. Suspension characteristics and rheological properties of mullite/zirconia powder in methyl isobutyl ketone. Journal of Material Science 2002, 37(20): 4405-4410.
    
    [1] Min KD, Kim MY, Choi KY, Lee JH, Lee SG. Effect of Layered Silicates on the Crystallinity and Mechanical Properties of HDPE/MMT Nanocomposite Blown Films. Polymer Bulletin 2006, 57(1): 101-108.
    
    [2] Huang HH, Wilkes GL. Structure-property behavior of new hybrid materials incorporatingoligomeric poly(tetramethylene oxide) with inorganic silicates by a sol-gel process. 3. Effect ofoligomeric molecular weight. Polymer Bulletin 1987, 18(5): 455-462.
    
    [3] Noell JLW, Wilkes GL, Mohanty DK, McGrath JE. Preparation and characterization of newpolyether ketone-tetraethylorthosilicate hybrid glasses by the sol-gel method. Journal of AppliedPolymer Science 1990, 40(7-8): 1177-1194.
    
    [4] Zhu Y, Sun DX. Preparation of silicon dioxide/polyurethane nanocomposites by a sol-gelprocess. Journal of Applied Polymer Science 2004, 92(3): 2013-2016.
    
    [5] LeBaron PC, Wang Z, Pinnavia TJ. Polymer-layered silicate nanocomposites: An overview.Applied Clay Science 1999, 15(1-2): 11-29.
    
    [6] Messersmith PB, Giannelis EP. Synthesis and barrier properties ofpoly(e-caprolactone)-layered silicate nanocomposites. Journal of Polymer Science, Part A:Polymer Chemistry 1995, 33(7): 1047-1057.
    
    [7] Wang MS, Pinnavia TJ. Clay-polymer nanocomposites formed from acidic derivatives ofmontmorillonite and an epoxy resin. Chemistry of the Materials 1994, 6(4): 468-74.
    
    [8] Vaia RA, Jandt KD, Kramer EJ, Giannelis EP. Kinetics of polymer melt intercalation.Macromolecules 1995, 28(24): 8080-8085.
    
    [9] Vaia RA, Ishii H, Giannelis EP. Synthesis and properties of two-dimensional nanostructures bydirect intercalation of polymer melts in layered silicates. Chemistry of the Materials 1993, 5(12):1694-1596.
    
    [10] Vaia RA, Vasudevan J, Krawie W, Scanlan LG, Giannelis EP. New polymer electrolytenanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates. AdvancedMaterials 1995, 7(2): 154-156.
    
    [11] Wu W, He TB, Chen JF, Zhang XQ, Chen YX. Study on in situ preparation of nano calcium carbonate/PMMA composite particles. Material Letters 2006, 60(19) 2410-2415.
    
    [12] Du ZG, Zhang W, Zhang C, Jing ZH, Li HQ. A novel polyethylene/palygorskitenanocomposite prepared via in-situ coordinated polymerization. Polymer Bulletin 2002, 49(2-3):151-158.
    
    [13] O'Haver J H. Harwell JH, Evans LR, et al. Polar copolymersurface-modified precipitatedsilica. Journal ofApplied Polymer Science 1996,59(8): 1427-1435.
    
    [14] Waddell W H, O'Haver JH, Evans LR, et al. Organic polymersurface modified precipitatedsilica. Journal of Applied Polymer Science 1995, 55(12): 1627-1641.
    
    [15] Combes J R, White L D, Tripp C P. Chenical modification of metal oxide surfaces insupercritical CO_2. Langmuir 1999, 15(12): 7870-7875.
    
    [16] Georgi U, Brendler E, Goerz H, Roewer G. Chemical modification of thin silica films via thesol-gel process. Journal of Sol-Gel Science and Technology 1997, 8(1-3): 507-509.
    
    [17]尚修勇,朱子康,印杰,等.偶联剂对PI/SiO_2纳米复合材料形态结构及性能的影响.复合材料学报2000,17(4):15-19.
    
    [18] Hasegawa H, Arai K, Saito S. Uniform encapsulation of fine inorganic powder with soaplessemulsion polymerization. Journal of Polymer Science, Part A: Polymer Chemistry 1987, 25(11):3117-3125.
    
    [18] Hasegawa H, Arai K, Saito S. Effect of surfactant adsorbed on encapsulation of fine inorganicpowder with soapless emulsion polymerization. Journal of Polymer Science, Part A: PolymerChemistry 1987, 25(11): 3231-3239.
    
    [20]Chia-Fen Lee, Hung-Hsin Tsai, Lee-Yih Wang, Chia-Fu Chen, Wen-Yen Chiu. Synthesis andProperties of Silica/Polystyrene/Polyaniline Conductive Composite Particles. Journal of PolymerScience: Part A: Polymer Chemistry 2005, 43(2): 342-354.
    
    [21] Wang ZZ, Qu BJ, Fan WC, Huang P. Combustion characteristics of halogen-freeflame-retarded polyethylene containing magnesium hydroxide and some synergists. Journal ofApplied Polymer Science 2001, 81 (1): 206-214.
    
    [22] Yin J, Zhang Y, Zhang YX. Deformation mechanism of polypropylene composites filled withmagnesium hydroxide. Journal of Applied Polymer Science 2005, 97(5): 1922-1930.
    
    [23] Liu P, Guo JS Liu P, Guo JS. Organo-modified magnesium hydroxide nano-needle and its??polystyrene nanocomposite. Journal of Nanoparticle Research 2007, 9(4): 667-671.
    
    [24] Liu P. Facile preparation of monodispersed core/shell zinc oxide@polystyrene (ZnO@PS)nanoparticles via soapless seeded microemulsion polymerization. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2006, 291(1-3): 155-161.
    
    [25] Y. Sheng, J.Z. Zhao, B. Zhou, X.F. Ding, Y.H. Deng, Z.C. Wang, In situ preparation ofCaCO_3/polystyrene composite nanoparticles, Material Letters 2006, 60(27): 3248-3250.
    
    [26] Zhu AP, Cang H, Yu CH, Shen J. The soapless emulsion polymerization for the encapsulationof aluminosiloxane sol with PMMA. European Polymer Journal 2003, 39(4): 851-854.
    
    [27] Tang EJ, Cheng GX, Ma XL. Preparation of nano-ZnO/PMMA composite particles viagrafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technology 2006,161(3): 209-214.
    
    [1] Rong MZ, Zhang MQ, Zheng YX, Walter R, Friedrich K. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 2001, 42(1): 167-183.
    
    [2] Tsedev N, Shinpei Y, Mikio T. Thermal properties of the y -Fe_2O_3/poly(methyl methacrylate)core/shell nanoparticles. Solid State Sciences 2005, 7(1): 33-36.
    
    [3] Maurizio A, Maria EE, Ezio M. Novel PMMA/CaCO_3 Nanocomposites Abrasion ResistantPrepared by an in Situ Polymerization Process. Nano Letters 2001, 1(4): 213-217.
    
    [4] Liu P, Guo JS. Organo-modified magnesium hydroxide nano-needle and its polystyrenenanocomposite. Journal of Nanoparticle Research 2007, 9(4): 669-673.
    
    [5] Oosterling MLCM, Sein A, Schouten AJ. Anionic grafting of polystyrene andpoly(styrene-block-isoprene) onto microparticulate silica and glass slides. Polymer 1992, 33(20):4394-4400.
    
    [6] Tsubokawa N. Cationic graft polymerization of polymers from carbon fiber initiated byacylium perchlorate groups introduced onto the surface. Carbon 1993, 31(8): 1257-1263.
    
    [7] Liu P, Guo JS. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atomtransfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes. Colloids andSurfaces A: Physicochem. Eng. Aspects 2006, 282-283: 498-503.
    
    [8] Yang MJ, Dan Y. Preparation of nano-ZnO/PMMA composite particles via grafting of thecopolymer onto the surface of zinc oxide nanoparticles. Colloid Polymer Science 2005, 284(3):243-250.
    
    [9] Zhu AP, Cang H, Yu CH. The soapless emulsion polymerization for the encapsulation ofaluminosiloxane sol with PMMA. European Polymer Journal 2005, 39(4): 851-854.
    
    [10] Tartaj P, Morales MP, Verdaguer SV. Advances in magnetic nanoparticles for biotechnologyapplications. Journal of Magnetism and Magnetic Materials 2005, 290-291: 28-34.
    
    [11] Meng JH, Yang GQ, Yan LM. Synthesis and characterization of magnetic nanometer pigment Fe_3O_4. Dyes and Pigments 2005, 66(2): 109-113.
    
    [12] Maity D, Agrawal DC. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic??Materials 2007, 308(1): 46-55.
    
    [13] Martinez Mera I, Espinosa-Pesqueira ME, Perez Hernandez R, Arenas-Alatorre J. Synthesisof magnetite (Fe_3O_4) nanoparticles without surfactants at room temperature. Material Letters 2007,61(23-24): 4447-4451
    
    [14] Guo L, Pei GL, Wang TJ. Polystyrene coating of Fe_3O_4 particles using dispersionpolymerization. Colloids and Surfaces A: Physicocheical. Engineering Aspects 2007, 293(1-3):58-62.
    
    [15] Wang WC, Neoh KG, Kang ET. Surface Functionalization of Fe_3O_4 Magnetic Nanoparticlesvia RAFT-Mediated Graft Polymerization. Macromolecular Rapid Communication 2006, 27(19):1665-1669.
    
    [16] Ying L, Min ZR, Ming QZ, Klaus F. Surface grafting onto SiC nanoparticles with glycidylmethacrylate in emulsion. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42(15):3842-3852.
    
    [17] Hong RY, Qian JZ, Cao JX. Synthesis and characterization of PMMA grafted ZnOnanoparticles. Powder Technology 2006, 163(3): 160-168.
    
    [18] Park HC, Yang TY, Lee YB, Kim BK, Stevens R. Suspension characteristics and Theologicalproperties of mullite/zirconia powder in methyl isobutyl ketone. Journal of Materials Science2002, 37(20): 4405-4410.
    
    [19] Suri K, Annapoorni S, Tandon RP, Mehra NC. Nanocomposite of polypyrrole-iron oxide bysimultaneous gelation and polymerization. Synthetic Metals 2002, 126(2-3): 137-142.
    
    [20] Shchukim DG, Radtchenko IL, Sukhorukov GB. Micron-scale hollow polyelectrolytecapsules with nanosized magnetic Fe_3O_4 inside. Material Letters 2002, 57(11): 1743-1747.
    
    [21] Lin J, Wan M. Composites of polypyrrole with conducting and ferromagnetic behaviors.Journal of Polymer Science Part A: Polymer Chemistry 2000, 38(15) 2734-2739.
    
    [22] Chen A, Wang H, Li X. Influence of concentration of FeCl_3 solution on properties ofpolypyrrole-Fe_3O_4 composites prepared by common ion absorption effect. Synthetic Metals 2004,145(2-3): 153-157.
    
    [23] Kryszewski M, Jeszka JK. Nanostructured conducting polymer compositessuperparamagnetic particles in conducting polymers. Synthetic Metals 1998, 94(1): 99-104.
    
    [24] Gong JM, Lin XQ. Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Micmchemical Journal 2003, 75(1): 51-57.
    
    [25] Bimbi M, Allodi G, Renzi RD. The Verwey transition in Fe_3O_4: A single crystal muon investigation. PhysicaB: Condensed Matter 2006, 374-375(31): 51-54.
    
    [1] Arnim Henglein. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews 1989, 89(8): 1861-1873.
    
    [2] Lewis, L. N. Chemical catalysis by colloids and clusters. Chemical Reviews 1993, 93(8):2693-2730.
    
    [3] H. Gleiter. Materials with ultrafine microstructures: retrospectives and perspectives.Nanostructural Materials 1992, 1 (1): 1-19.
    
    [4] Colvin, V. L.; Schlamp, M.C.; Alivisatos, A. P. Light-emitting diodes made from cadmiumselenide nanocrystals and a semiconducting polymer. Nature 1994, 370: 354-357.
    
    [5] Gates, B. C. Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chemical Reviews1995, 95(3): 511-522.
    
    [6] J.H. Scott; S.A. Majetich. Materials with ultrafine microstructures: retrospectives andperspectives Morphology,structure,and growth of nanoparticles produced in a carbon arc. PhysicsReviews B 1995,52(17): 12564-12571.
    
    [7] Beecroft, L. L.; Ober, C. K. Nanocomposite Materials for Optical Applications. Chemistry ofthe Materials 1997,9(6): 1302-1317.
    
    [8] L. Lu, M.L. Sui, K. Lu, Superplastic Extensibility of Nanocrystalline Copper at RoomTemperature. Science 2000,287: 1463-1466.
    
    [9] V.B. Bregar. Advantages of ferromagnetic nanoparticle composites in microwave absorbers.IEEE Transactions on Magnetics 2004, 40(3): 1679-1684.
    
    [10] Nasibulin, Albert G.; Moisala, Anna; Jiang, Hua; Kauppinen, Esko I. Carbon nanotubesynthesis from alcohols by a novel aerosol method. Journal of Nanoparticle Research 2006,8(3-4): 465-475.
    
    [11] Ku, Bon Ki; Emery, Mark S.; Maynard, Andrew D.; Stolzenburg, Mark R.; McMurry, Peter H. In situ structure characterization of airborne carbon nanofibres by a tandem mobility-mass analysis. Nanotechnology 2006, 17(14): 3613-3621
    
    [12] W. K. Hsu; J. P. Hare; M. Terrones; H. W. Kroto; D. R. M. Walton; P. J. F. Harris. Condensed-phase nanotubes. Nature 1995, 377: 687-687.
    
    [13] Tang, Z. X.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. Preparation of manganese ferrite fine particles from aqueous solution. Journal of Colloid and Interface Science 1991, 146(1):??38-52.
    
    [14] Chenglin Yana, Dongfeng Xuea, Longjiang Zoub, Xiaoxing Yana, Wen Wang. Preparation ofmagnesium hydroxide nanoflowers. Journal of Crystal Growth 2005, 282(3-4): 448-454.
    
    [15] F. Bonet, S. Grugeon, L. Dupont, R. Herrera Urbina, C. Gue ry, J.M. Tarascon. Synthesis andcharacterization of bimetallic Ni-Cu particles. Journal of Solid State Chemistry 2003, 172(1):111-115.
    
    [16] R.J. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji, B. Jeyadevan. Designedsynthesis of cobalt and its alloys by polyol process. Journal of Solid State Chemistry 2007,180(11): 3008-3018.
    
    [17] Pileni, M. P. Reverse micelles as microreactors. Journal of Physical Chemistry 1993, 97(27):6961-6973.
    
    [18] Pillai, V.; Kumar, P.; Hou, M.J.; Ayyub, P.; Shah, D.O. Preparation of nanoparticles of silverhalides, superconductors and magnetic materials using water-in-oil microemulsions asnano-reactors. Advances in Colloid and Interface Science 1995, 55(1): 241-269.
    
    [19] Vishwas V. Hardikar; Egon Matijevicl. Coating of Nanosize Silver Particles with Silica.Journal of Colloid and Interface Science 2000, 221(1): 133-136.
    
    [20] Yoshio Kobayashi, Mitsuru Horie, Mikio Konno, Benito Rodriguez-Gonzalez, Luis M.Liz-Marza. Preparation and Properties of Silica-Coated Cobalt Nanoparticles. Journal of PhysicalChemistry B 2003, 107: 7420-7425.
    
    [21] Wuyou Fu, Haibin Yang, Hari-Bala, Shikai Liu, Minghui Li, Guangtian Zou. Preparation andcharacteristics of core-shell structure cobalt/silica nanoparticles. Materials Chemistry and Physics2006, 100(2-3): 246-250.
    
    [22] Lirong Ren, Lin He, Chinping Chen, Michael Wark, Chunping Li, Ping Che, Lin Guo.Microstructure and magnetic properties of tubular cobalt-silica nanocomposites. Journal ofMagnetism and Magnetic Materials 2007, 312(2): 405-409.
    
    [23] Lianbin Xu, Le Duc Tung, Leonard Spinu, Anvar A. Zakhidov, Ray H. Baughman, John B.Wiley. Synthesis and magnetic behavior of periodic nickel sphere array. Advanced materials 2003,15(18): 1562-1564.
    
    [24] Jianchun Bao, Yongye Liang, Zheng Xu, Ling Si. Facile Synthesis of hollow nickelsubmicrometer sphere. Advanced materials 2003, 15(21): 1832-1835.
    
    [25] K.S. Napolskii, A.A. Eliseev, N.V. Yesin, A.V. Lukashin, Yu. D. Tretyakov, N.A. Grigorieva,S.V. Grigoriev, H. Eckerlebe. Ordered arrays of Ni magnetic nanowires: Synthesis andinvestigation. Physica E 2007, 37: 178-183.
    
    [26] Dong-Hwang Chen, Szu-Han Wu. Synthesis of Nickel Nanoparticles in Water-in-OilMicroemulsions. Chemistry of the Materials 2000, 12(5): 1354-1360.
    
    [27] George N. Glavee; Kenneth J. Klabunde; Christopher M. Sorensen; George C. Hadjipanayis.Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media.Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles. Langmuir 1994,10(12): 4726-4730.
    
    [28] Legrand, J.; Taleb, A.; Gota, S.; Guittet, M. J.; Petit, C. Synthesis and XPS Characterizationof Nickel Boride Nanoparticles. Langmuir 2002, 18(10): 4131-4137.
    
    [29] Roy A.; Srinivas V.; Ram S.; De Toro J.A.; Mizutani U. Structure and magnetic properties ofoxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method. PhysicalReview B 2005, 71: 184443-184453.
    
    [30] J. H. Zhan, X. G Yang, D. W. Wang, S. D. Li, Y. Xie, Y. Xia, Y. Qian. Polymer-ControlledGrowth of CdS Nanowires. Advanced Materials 2000, 12(18): 1348-1351.
    
    [31] Y. Sun, Y. Xia. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft,Self-Seeding, Polyol Process. Advanced Materials 2002, 14(11): 833-837.
    
    [32] Bing Tan, Hans-Joachim Lehmler, Sandhya M. Vyas, Barbara L. Knutso, Stephen E. Rankin.Controlling Nanopore Size and Shape by Fluorosurfactant Templating of Silica. Chemistry of theMaterials 2005, 17(4): 916-925.
    
    [33] Guihua Wang, Andrew Harrison. Preparation of Iron Particles Coated with Silica. Journal ofColloid and Interface Science 1999, 217(1): 203-207.
    
    [34] J.A. Syed, S.A. Sardar, S. Yagi, K. Tanaka. Sulfur edge XANES and XPS spectroscopy ofethanethiol adsorbed on nickel. Surface Science 2004, 566-568: 597-602.
    
    [35] S.A. Sardar, J.A. Syed, S. Yagi , K. Tanaka. Adsorption behavior of dimethylsulfide(CH_3SCH_3) on Ni(110) surface studied by NEXAFS and XPS. Surface Science 2004, 566-568:708-712.
    
    [36] Jun-E Qu, Xingpeng Guo, Zhenyu Chen. Adsorption behavior of dodecylamine on??copper-nickel alloy surface in NaCl solutions studied by electrochemical methods and AFM.Materials Chemistry and Physics 2005,93(2-3): 388-394.
    
    [37] Liu P, Guo JS. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atomtransfer radical polymerization (SI-ATRP) for removal of Hg(Ⅱ) ion and dyes. Colloids andSurfaces A Physicochem. Eng. Aspects 2006, 282-283: 498-503.
    
    [38] X. Zhang, J. Zhang, W. Wang. A Novel Route for the Preparation of Nanocomposite Magnets.Advanced Materials 2000, 12(19): 1441-1444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700