Ti-Al金属间化合物多孔材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前无机多孔材料中,陶瓷材料存在严重脆性和难加工性,金属材料抗腐蚀和抗高温氧化能力不足,同时大多数材料的制备工艺复杂,生产成本高,限制了无机多孔材料的进一步发展和应用。Ti-Al合金具有优异的材料性能,然而,由于材料的难成形性和高温强度不足等难题,导致其致密材料目前仅极小规模应用于汽车行业。本论文率先提出采用Ti/Al元素反应合成工艺,利用Al元素偏扩散在材料中产生孔隙的Kirkendall效应来制备Ti-Al金属间化合物多孔体,是继陶瓷和金属多孔材料之后对无机多孔材料的新的扩展,同时制备方法具有简单可控,成本低廉等特点,对开发其它体系金属间化合物多孔材料以及工业化应用等具有重要意义。本论文通过Ti/Al元素的反应合成工艺,制备了Ti-Al合金多孔体,非对称Ti-Al合金多孔膜和Ti-Al合金多孔纸型膜等三种多孔结构,采用多种现代测试手段对Ti-Al合金多孔材料的孔结构性能,力学性能和抗环境腐蚀性能进行了深入研究。同时,通过建立模型和数学分析等手段,探讨了元素粉末反应合成Ti-Al合金多孔材料的孔隙形成机理。最后,将Ti-Al合金多孔材料成功地应用于具有强腐蚀性和高毒性的粗TiCl_4原料的固液分离过程。本研究的主要内容和获得的结论如下:
     提出了以固相反应及偏扩散为特征的三阶段粉末烧结工艺,并由此制备出具有良好的原坯形状相似性的无宏观缺陷的Ti-Al合金多孔体,得到α_2-Ti_3Al,γ-TiAl,和TiAl_3等三种典型物相的多孔材料,详细论述了制备过程及特点。在此基础上提出了约束烧结工艺,可以使Ti-Al坯体的径向膨胀被严格限制,从而减小多孔体的孔径并提高其过滤精度。进一步将粉末的反应合成工艺扩展至粉末/薄膜以及薄膜/薄膜之间,分别制备出了均质的非对称Ti-Al合金多孔膜和Ti-Al合金多孔纸型膜,提出采用偏扩散机制合成无机多孔膜的新方法。反应合成Ti-Al合金多孔体以大量在生成物颗粒之间或晶界处产生的连通孔隙,以及一小部分在生成物颗粒内部产生的等轴状闭合孔隙为典型特征。
     深入探讨了Ti-Al合金多孔材料的孔结构性能,并广泛建立了制备工艺参数与孔结构性能之间的定量关系方程。Al含量是决定Ti-Al合金多孔材料孔隙度的主要因素之一,在20wt%~60wt%的Al含量范围内,Ti-Al合金多孔材料的孔隙度与Al含量之间遵循严格的直线增加规律,其中Kirkendall孔隙度θ_K与Al含量c_(Al)之间满足定量方程θ_K=K_c·c_(Al)。粉末粒度是决定Ti-Al合金多孔材料最大孔径的主要因素之一,在18μm~125μm的粒度范围内,多孔体最大孔径d_m与粉末粒径d_p之间严格遵循d_m=K_p·d_p的直线变化规律。压制压力对孔结构性能参数的直接影响不显著,其对Ti-Al合金多孔材料孔径的影响,实质上是通过压制过程对压坯粉末颗粒的塑性变形以及对压坯间隙孔的影响来实现的。Ti-Al合金多孔材料的透气度K与开孔隙度θ和最大孔径d_m之间严格满足Hagen-Poiseuille方程。建立了Ti-Al合金多孔材料的透气性能和孔结构性能参数之间统一的普适方程:K=A·d_m~2·θ,A=(2.26±0.05)×10~7m~(-1)Pa~(-1)s~(-1)。
     定量研究了γ-TiAl合金多孔材料与应用相关的力学性能,抗氧化及抗腐蚀性能。TiAl合金多孔材料的抗拉强度σ_b与孔隙度θ之间严格遵循巴尔申方程σ_b=σ_0·(1-θ)~m。TiAl合金多孔材料在600℃空气中的循环氧化动力学方程为Δm~2=1.08×10~(-5)·t,经过140 hours循环氧化后,其氧化增重达到0.042g·m~(-2),为316L不锈钢的10.6%,同时表现出优异的孔结构高温稳定性能。TiAl合金多孔材料在PH=2,温度为90℃的盐酸溶液中的循环腐蚀动力学方程为Δm~2=5.41×10~(-5)·t-2.08×10~(-4),在50hours的循环腐蚀后,其腐蚀失重仅为0.049g·m~(-2),分别是多孔Ti和多孔不锈钢腐蚀失重的14.8%和5.57%。TiAl合金多孔材料在PH=3时的腐蚀动力学方程为Δm~2=2.63×10~(-6)·t-3.72×10~(-6)。
     建立了Ti-Al预反应模型,并推导了Ti-Al体系中抑制Self-propagationHigh-temperature Synthesis(SHS)反应的否定判据,较好的符合实验结果。从SHS反应的热力学条件进行推导,得到了预反应层厚度相关参数与体系点火温度之间满足的SHS否定判据方程。随着预反应层厚度相关参数的增大,点火温度被快速提升,表明三阶段烧结工艺对阻止有碍近净成形的SHS反应发生的高效性。在此基础上,结合物相和显微结构,详细论述了Ti-Al合金多孔材料中Kirkendall孔隙的形成过程及特点。
     建立了Ti-Al粉末扩散偶非对称球体模型,由此探讨了粉末体系中Kirkendall孔隙与基体之间的结构特征。以此模型为结构条件建立了Ti-Al合金中的Kirkendall孔隙与组元扩散速率、球坐标位置和扩散时间之间的动力学方程组。在此基础上,进一步建立了Kirkendall孔隙度,Ti/Al元素的物性参数以及合金成分之间的关系方程,很好的符合实验数据,同时表明Ti-Al合金体系Kirkendall孔隙度的理论值取决于Ti、Al两组元的材料密度以及混合体的成分,同时,体系最终产生的孔隙尺寸强烈依赖于成形坯体中较快扩散组元的单元尺寸。
     将本研究制备的Ti-Al合金多孔材料应用于工业生产中,成功的实现了粗TiCl_4原料的固液分离过程。以Ti-Al合金多孔管为过滤介质,结合过滤-反冲洗技术可以完全实现长期的密封式连续过滤粗TiCl_4原料液过程,大幅度减轻或避免原料的损失和严重的环境污染,同时,Ti-Al合金多孔管具有长期稳定的高通量和高过滤精度,过滤过程中其孔结构性能参数与液体的透过通量之间满足Hagen-Poiseuille方程。建立了Ti-Al合金多孔材料的过滤结构模型,结合鲁思方程和实验数据,建立了Ti-Al合金多孔材料在过滤粗TiCl_4原料液工业应用中的过滤方程,同时得到Ti-Al合金多孔体的介质阻力为R_m=6.12×10~(10)m~(-1)。
Current inorganic porous materials including ceramics and metals show some insurmountable disadvantages such as severe brittleness and unworkability for ceramics and poor corrosion and high temperature oxidation resistivities for metals,and for most inorganic porous material their complex fabrication procedures and high production cost restrict their further developments and applications.Ti-Al alloys have excellent material properties;however,due to the forming difficulty and poor strength at elevated temperature,the current dense Ti-Al alloys can only apply in automobile industry in a limited scale.It is the first time in this paper to systematically present that porous Ti-Al intermetallic compound material can be prepared through the Kirkendall effect using the diffusion rate discrepancy between Ti and Al atoms.The fabricated porous material is a novel substitute for current inorganic porous material.The mentioned fabrication method has the special characteristics of simplicity,controllability,and low cost,which shows greatly propitious to the development of other systems of porous intermetallics and the corresponding industry applications.Three typical porous structures including porous Ti-Al alloy body,asymmetric porous Ti-Al alloy membrane and porous Ti-Al alloy paper membrane were fabricated through the reactive synthesis of Ti/Al elements.The pore structure properties,mechanical properties,and environment corrosion resistivities were further investigated by various advanced testing methods.Meanwhile, the pore formation mechanism was discussed in detail by structural model building and mathematical analysis.Finally,the porous Ti-Al alloy material was successfully applied in the solid-liquid separation of suspended TiCl_4 raw liquid which has strong toxicity and corrosivity in industry production procedure,More details were given as follows.
     Firstly,the three stage sintering process with characteristics of solid reaction and faster diffusion of one component,which was firstly presented and further discussed in the paper,was used to fabricate sound porous Ti-Al alloys kept in good shape condition,which show three typical phases:α_2-Ti_3Al,γ-TiAl and TiAl_3 structures.Bases on the process,the confined sintering procedure was presented to prepare fine-pored and high-accuracy alloys through strictly limiting the radial expansion of compacts.A novel fabrication method based on the reactive synthesis between powders and films, or films and films was presented to prepare homogeneous asymmetric porous Ti-Al alloy membrane or porous paper membrane,respectively.The synthesized porous Ti-Al alloys have the characteristics of the combination of most interconnected pores generated between the resultant particles or along the grain boundaries and minor equiaxial closed pores generated in the resultant particles.
     Next,the pore structure properties of Ti-Al alloy were investigated thoroughly and detailedly,and the relation equations between the fabrication parameters and pore structure properties were established.Al content was found to be one of the main factors for the porosity,and strictly linear increment rule between the porosity and Al content was confirmed in Ti-Al alloy with the Al content ranging from 20wt%to 60wt%.The Kirkendall porosityθ_K and Al content C_(Al)were proved to satisfy the proportion equation ofθ_K=K_c·c_(Al).Powder size was the one of the main factors determining the maximum pore size.The maximum aperture d_m and powder size d_p were investigated to obey the equation d_m=K_p·d_p strictly.Pressing pressure did not affect the pore structures directly;however,the pore structure properties could be changed through the deformation of powders and pores in green compacts in the pressing procedure.The permeability K,the open porosityθand the maximum aperture d_m were verified to meet the Hagen-Poiseuille equation. The universal equation K=A·d_m~2·θwith A=(2.26±0.05)×10~7m~(-1)Pa~(-1)s~(-1)was established to reflect the relation between the permeability and pore structure parameters for porous Ti-Al alloy.
     The mechanical properties and the oxidation and corrosion resistivities were investigated quantitatively in porousγ-TiAl alloy.The tensile strengthσ_b and the porosityθof porous TiAl alloy obey theБалъшинequationσ_b=σ_0·(1-θ)~m strictly.The kinetic equation for the cyclical oxidation of porous Ti-Al alloy at 600℃was determined to beΔm~2=1.08×10~(-5)·t.After total oxidation time of 140 hours,porous TiAl alloy shows high pore structure stability and the gain in weight of Ti-Al alloy is only 0.042g·m~(-2),10.6%of that of 316L stainless steel.The kinetic equation for the cyclical corrosion of porous TiAl alloy at 90℃with PH=2 was determined to beΔm~2=5.41×10~(-5)·t-2.08×10~(-4).After total corrosion time of 50 hours,the lost in weight of TiAl alloy is only 0.049g·m~(-2),which is 14.8%and 5.57%of porous Ti and stainless steel,respectively.The kinetic equation when PH=3 was determined to beΔm~2=2.63×10~(-6)·t-3.72×10~(-6).
     The denial criterion to depress the Self-propagation High-temperature Synthesis(SHS)for Ti-Al alloy was established from the pre-reaction model and the thermodynamics condition of SHS reaction.The criterion equation reflecting the relation between the solid-reaction layer thickness correlation parameter and the ignition temperature was deduced.The ignition temperature would be raised rapidly with increasing the correlation parameter,indicating the high efficiency of the three stage sintering process to avoid the possible SHS reaction which would harm the final compact shape.Based on the model and the phase and microstructure analyses,the formation procedure and characteristics of Kirkendall pores in Ti-Al alloy were investigated in details.
     The asymmetric diffusion couple model for Ti/Al elemental powders was built,and thus the structure characteristic of the powder system was investigated.Based on the model,the kinetic equation system was established to reflect the relationship of Kirkendall porosity,atom diffusion rate,sphere coordinate parameters and diffusion time.As a result,the relation equation reflecting Kirkendall porosity,material properties and alloy composition was built,which shows that the theoretical porosity of Ti-Al alloy depends on the density of Ti/Al components and the alloy composition,and that the final pore size depends strongly on the size of faster diffusion component in compacts.
     Finally,the fabricated porous Ti-Al alloy material was successfully applied to the solid-liquid separation of suspended TiCl_4 raw liquid in industry procedure.The sealed,continuous and long-term filtration procedure was realized using the filtration-backwash technology and porous Ti-Al alloy tubes as filtration elements,which can alleviate dramatically or even avoid raw material loss and severe environment pollution.The alloy tubes exhibited long-term,stable and high flux and accuracy,and the pore structure parameters and the flux were investigated to meet the Hagen-Poiseuille equation.The filtration structure model for porous Ti-Al alloy filters was built. Based on the model,the Rush equation and the experimental data,the filtration equation for porous Ti-Al alloy material in the solid-liquid separation was ultimately built,and the medium resistance R_m for porous Ti-Al alloy was then determined to be 6.12×10~(10)m~(-1).
引文
[1]S.E.Letant,B.R.Hart,A.W.Van Buuren,et al.Functionalized silicon membranes for selective bio-organism capture.Nature Materials,2003,2(6):391-395
    [2]A.Yamaguchi,F.Uejo,T.Yoda,et al.Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane.Nature Materials,2004,3(5):337-341
    [3]N.Hernandez,A.J.Sanchez-Herencia and R.Moreno.Forming of nickel compacts by a colloidal filtration route.Acta Materialia,2005,53(4):919-925
    [4]B.Van der Bruggen and C.Vandecasteele.Distillation vs.membrane filtration:Overview of process evolutions in seawater desalination.Desalination,2002,143(3):207-218
    [5]L.E.Aririatu and N.C.Ewelike.A low-cost filtration system for the treatment of wastewaters.Environment Protection Engineering,2003,29(2):17-22
    [6]N.J.Manjooran and G.R.Pickrell.Biologically self-assembled porous polymers.Journal of Materials Processing Technology,2005,168(2):225-229
    [7]T.A.Sergeyeva,S.A.Piletsky,E.V.Piletska,et al.In situ formation of porous molecularly imprinted polymer membranes.Macromolecules,2003,36(19):7352-7357
    [8]S.Tsuneda,K.Saito,S.Furusaki,et al.Water/acetone permeability of porous hollow-fiber membrane containing diethylamino groups on the grafted polymer branches.Journal of Membrane Science,1992,71(1-2):1-12
    [9]W.Jin,S.Li,P.Huang,et al.Fabrication of La_(0.2)Sr_(0.8)Co_(0.8)Fe_(0.2)O_(3-delta)mesoporous membranes on porous supports from polymeric precursors.Journal of Membrane Science,2000,170(1):9-17
    [10]T.Ota,M.Imaeda,H.Takase,et al.Porous titania ceramic prepared by mimicking silicified wood.Journal of the American Ceramic Society,2000,83(6):1521-1523
    [11]E.S.Gevorkyan.Porous ceramic filters of silicon carbide.Sverkhtverdye Materialy,2004,(5):54-57
    [12]A.Krajewski,A.Ravaglioli,E.Roncari,et al.Porous ceramic bodies for drug delivery.Journal of Materials Science:Materials in Medicine,2000,11(12):763-771
    [13]E.A.Vasil'eva,L.V.Morozova,V.V.Panar'ina,et al.Porous ceramic diaphragms for filters.Ogneupory i Tekhnicheskaya Keramika,2004,(4):26-30
    [14]W.R.Rigby and M.A.Roberts.Porous sintered metal and ceramic filters for the production of man-made polymer fibers.Chemical Fibers International,2001,51(1):57-58
    [15]A.V.Lyushinskii,N.M.Khokhlacheva and V.N.Pademo.Production of thin porous nickel strip and kinetics of its sintering.Soviet Powder Metallurgy and Metal Ceramics,1991,30(4):279-282
    [16]S.Mo,P.Hu,J.Cao,et al.Effective thermal conductivity of moist porous sintered nickel material.International Journal of Thermophysics,2006,27(1):304-313
    [17]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程,1997,26(01):1-6
    [18]D.Hu,X.Wu and M.H.Loretto.Advances in optimisation of mechanical properties in cast TiA1 alloys.Intermetallics,2005,13(9):914-919
    [19]Y.-W.Kim.Advances in the fundamental understanding for designing engineering gamma TiAl alloys.Journal of the Chinese Institute of Engineers,Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an,1999,22(1):13-25
    [20]Z.Zhong,D.Zou and S.Li.Advance in Ti3Al and TiAl intermetallic materials.Acta Metallurgica Sinica,Series A:Physical Metallurgy & Materials Science,1995,8(4-6):531-541
    [21]R.G.Reddy,X.Wen and M.Divakar.Isothermal oxidation of TiAl alloy.Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(9):2357-2361
    [22]K.B.Povarova,A.V.Antonova and I.O.Bannykh.High-temperature oxidation of TiAl based alloys.Metally,2003,(5):61-72
    [23]L.Teng,D.Nakatomi and S.Seetharaman.Oxidation behavior of TiAl-SNb turbine blade alloy.Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,2007,38(3):477-484
    [24]K.-H.Bohm,V.Ventzke,M.Kocak,et al.Parameter study into the friction welding of the intermetallic TiAl and the alloy Ti6Al4V.Schweissen und Schneiden/Welding and Cutting,2003,55(2):90-96
    [25]T.Miyashita and H.Hino.Friction welding characteristics of TiAl intermetallic compound.Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,1994,58(2):215-220
    [26]G.Chen,J.He,B.Zhang,et al.Investigations of microstructures and properties in electron beam welded joints of TiA1 to TC4.China Welding,2007,16(3):10-13
    [27]H.Kamide and H.Kashima.Hot corrosion behaviour of TiAl with salt in artificial sea-water.Zairyo to Kankyo/Corrosion Engineering,1997,46(2):83-89
    [28]Z.Tang,F.Wang and W.Wu.Hot-corrosion behavior of TiAl-base intermetallics in molten salts.Oxidation of Metals,1999,51(3):235-250
    [29]W.J.Wang,J.P.Lin,Y.L.Wang,et al.Isothermal corrosion TiAl-Nb alloy in liquid zinc.Materials Science and Engineering A,2007,452-453(15):194-201
    [30]G.X,Wang and M.Dahms.TiAl-based alloys prepared by elemental powder metallurgy.Powder Metallurgy International,1992,24(4):219-225
    [31]C.E.Wen,K.Yasue and Y.Yamada.Fabrication of TiAl by blended elemental powder semisolid forming.Journal of Materials Science,2001,36(7):1741-1745
    [32]Y.Wu,S.K.Hwang and J.W.Morris Jr.Development and elemental powder metallurgy of a Y-containing two-phase TiAl alloy.Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34 A(10):2077-2087
    [33]J.B.Yang and W.S.Hwang.Preparation of TiAl-based intermetallics from elemental powders through a two-step pressureless sintering process.Journal of Materials Engineering and Performance,1998,7(3):385-392
    [34]Y.Saito.T.Takei,S.Hayashi,et al.Effects of amorphous and crystalline SiO_2additives on gamma Al_2O_3 to alpha Al_2O_3 phase transitions.Journal of the American Ceramic Society,1998,81(8):2197-2200
    [35]H.T.Wang,X.Q.Liu and G.Y.Meng.Porous alpha-Al_2O_3 ceramics prepared by gelcasting.Materials Research Bulletin,1997,32(12):1705-1712
    [36]H.-t.Wang,X.-q.Liu,F.-1.Chen,et al.Kinetics and mechanism of a sintering process for macroporous alumina ceramics by extrusion.Journal of the American Ceramic Society,1998,81(3):781-784
    [37]S.Aoki,S.Yamaguchi,A.Nakahira,et al.Preparation of porous calcium phosphates using a ceramic foaming technique combined with a hydrothermal treatment and the cell response with incorporation of osteoblast-like cells.Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan,2004,112(1304):193-199
    [38]Y.-W.Kim,K.-H.Lee,S.-H.Lee,et al.Fabrication of porous silicon oxycarbide ceramics by foaming polymer liquid and compression molding.Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan,2003,111(1299):863-864
    [39]X.Mao,S.Wang and S.Shimai.Porous ceramics with tri-modal pores prepared by foaming and starch consolidation.Ceramics International,2008,34(1):107-112
    [40]J.H.Yoon,J.H.Park,E.K.Park,et al.Osteogenic repair by bovine bone ash derived porous HA ceramic formed by foaming method.Key Engineering Materials,2007,342-343(07):633-636
    [41]E.Minor-Perez,R.Mendoza-Serna,J.Mendez-Vivar,et al.Preparation and characterization of multicomponent porous materials prepared by the sol-gel process.Journal of Porous Materials,2006,13(1):13-19
    [42]M.Nagai,T.Kushida and T.Nishino.Fabrication and evaluation of porous beta/beta double prime-Al_2O_3 ceramics prepared by the sol-gel process.Solid State Ionics,1989,35(3-4):213-216
    [43]J.-M.Qian,J.-P.Wang,G.-J.Qiao,et al.Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing.Journal of the European Ceramic Society,2004,24(10-11):3251-3259
    [44]A.C.Pierre.Porous sol-gel ceramics.Ceramics International,1997,23(3):229-238
    [45]Y.Lv,M.Li,H.Yang,et al.Porous hydroxyapatite bioceramics prepared by polymeric sponge impregnation process.Key Engineering Materials,2007,336-338(04):1612-1614
    [46]X.Zhu,D.Jiang and S.Tan.Preparation of silicon carbide reticulated porous ceramics.Materials Science and Engineering A,2002,323(1-2):232-238
    [47]C.R.Rambo,E.De Sousa,A.P.N.De Oliveira,et al.Processing of cellular glass ceramics.Journal of the American Ceramic Society,2006,89(11):3373-3378
    [48]G.J.Davies and S.Zhen.METALLIC FOAMS:THEIR PRODUCTION,PROPERTIES AND APPLICATIONS.Journal of Materials Science,1983,18(7):1899-1911
    [49]刘培生,黄林国.多孔金属材料制备方法.功能材料,2002,33(01):5-8
    [50]M.S.A.Heikkinen and N.H.Harley.Experimental investigation of sintered porous metal filters.Journal of Aerosol Science,2000,31(6):721-738
    [51]V.V.Panichkina,V.V.Skorokhod and N.P.Pavlenko.POROUS STRUCTURE OF SINTERED TUNGSTEN.Soviet Powder Metallurgy and Metal Ceramics,1977,16(12):950-951
    [52]T.Takahashi.Preparation of metallic porous materials by oxide-reduction liquid phase sintering of Fe-SnO2 mixture.Materials Transactions,2006,47(9):2143-2147
    [53]A.G.Kostornov,Y.N.Podrezov,Y.G.Bezymyannyi,et al.Sintered metals and alloys stainless-steel porous-layered and framework fiber-powder composites.Powder Metallurgy and Metal Ceramics,2006,45(1-2):35-39
    [54] M. Imamura, A. Yanagisawa, H. Noguchi, et al. Production of porous sintered metal by slurry casting (2'nd report: Giving one dimensional surface porosity by combining electrostatic fiber planting). Journal of the Japan Society of Powder and Powder Metallurgy, 1988, 35(7): 629-632
    
    [55] H. J. Luo, G.C. Yao, X. M. Zhang, et al. Study on method of increasing viscosity in fabricating aluminium foam. JOM, 2004, 56(11): 129
    
    [56] V. S. Konotopov, V. F. Antipenko and S. I. Kulagina. Porous molds for investment casting. Liteinoe Proizvodstvo, 1998, (9): 21
    
    [57] L. Ma and Z. Song. Cellular structure control of aluminium foams during foaming process of aluminium melt. Scripta Materialia, 1998, 39(11): 1523-1528
    
    [58] G.J. C. Carpenter, Z. S. Wronski and M. W. Phaneuf. TEM study of nanopores and the embrittlement of CVD nickel foam. Materials Science and Technology, 2004, 20(11): 1421-1426
    
    [59]K.-H. Li, J.-S. Luo, Y. Liu, et al. Electroless plating in synthesizing nickel foams. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2007,19(7): 1158-1162
    
    [60] V. Poserin, S. Marcuson, J. Shu, et al. CVD technique for Inco nickel foam production. Advanced Engineering Materials, 2004, 6(6): 454-459
    
    [61]P. J. Kelly, J. O'Brien and R. D. Arnell. The production of porous and chemically reactive coatings by magnetron sputtering. Vacuum, 2004, 74(1): 1-10
    
    [62] J. O'Brien and R. D. Arnell. Production and characterisation of chemically reactive porous coatings of zirconium via unbalanced magnetron sputtering. Surface & Coatings Technology, 1996, 86-87(1-3 pt 1): 200-206
    
    [63]O. B. Olurin, D. S. Wilkinson, G.C. Weatherly, et al. Strength and ductility of as-plated and sintered CVD nickel foams. Composites Science and Technology, 2003, 63(16): 2317-2329
    
    [64]A. Biswas. Porous NiTi by thermal explosion mode of SHS: Processing, mechanism and generation of single phase microstructure. Acta Materialia, 2005, 53(5): 1415-1425
    
    [65] Y. W. Gu, H. Li, B. Y. Tay, et al. In vitro bioactivity and osteoblast response of porous NiTi synthesized by SHS using nanocrystalline Ni-Ti reaction agent. Journal of Biomedical Materials Research - Part A, 2006, 78(2): 316-323
    
    [66] H. C. Jiang and L. J. Rong. Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method. Surface and Coatings Technology, 2006, 201(3-4): 1017-1021
    [67]B.Y.Li,L.J.Rong,Y.Y.Li,et al.Electric resistance phenomena in porous Ni-Ti shape-memory alloys produced by SHS.Scripta Materialia,2001,44(5):823-827
    [68]M.Barrabes,P.Sevilla,J.A.Planell,et al.Mechanical properties of nickel-titanium foams for reconstructive orthopaedics.Materials Science and Engineering:C,2007,In Press:Corrected Proof
    [69]黄培云主编.粉末冶金原理.北京:冶金出版社,1981:373-400
    [70]S.K.Bhatia and J.L.Smith.Comparative study of bubble point method and mercury intrusion porosimetry techniques for characterizing the pore-size distribution of geotextiles.Geotextiles and Geomembranes,1994,13(10):679-702
    [71]O.Z.Cebeci,T.Demirel and R.A.Lohnes.EVALUATION OF HYSTERESIS IN MERCURY INTRUSION POROSIMETRY BY SECOND-INTRUSION METHOD.Transportation Research Record,1978,(675):15-20
    [72]M.I.Dimitrijewits de Albani and C.P.Arciprete.Study of pore size distribution and mean pore size on unsupported gamma-alumina membranes prepared by modifications introduced in the alkoxide hydrolysis step.Journal of Membrane Science,1992,69(1-2):21-28
    [73]F.W.Altena,D.Bargeman,C.A.Smolders,et al.SOME COMMENTS ON THE APPLICABILITY OF GAS PERMEATION METHODS TO CHARACTERIZE POROUS MEMBRANES BASED ON IMPROVED EXPERIMENTAL ACCURACY AND DATA HANDLING Journal of Membrane Science,1983,12(3):313-322
    [74]K.J.Kim,A.G.Fane,R.Ben Aim,et al.A comparative study of techniques used for porous membrane characterization:pore characterization.Journal of Membrane Science,1994,87(1-2):35-46
    [75]G.Reichelt.Bubble point measurements on large areas of microporous membranes.Journal of Membrane Science,1991,60(2-3):253-259
    [76]I.Jeon and T.Asahina.The effect of structural defects on the compressive behavior of closed-cell Al foam.Acta Materialia,2005,53(12):3415-3423
    [77]P.J.Flory.Gels and gelling processes.Disc Faraday Soc.,1974,57(01):7-18
    [78]Y.Liu,L.Zhang,X.Yao,et al.Development of porous silica thick films by a new base-catalyzed sol-gel route.Materials Letters,2001,49(2):102-107
    [79]S.Langlois and F.Coeuret.Flow-through and flow-by porous electrodes of nickel foam:Part Ⅰ.Material characterization.Journal of Applied Electrochemistry,1989,19(1):43-50
    [80]S.Langlois and F.Coeuret.Flow-through and flow-by porous electrodes of nickel foam:Part Ⅲ.Diffusion-convective mass transfer between the electrolyte and the foam.Journal of Applied Electrochemistry,1989,19(1):51-60
    [81]H.D.Kunze,J.Baumeister,J.Banhart,et al.P/M technology for the production of metal foams Powder Metallurgy International,1993,25(4):182-185
    [82]L.P.Didenko,V.I.Savchenko,V.S.Arutyunov,et al.Effect of methanol,ethanol,and formaldehyde addition on the steam conversion of methane in the presence of nickel catalysts of various porous structure.Petroleum Chemistry,2006,46(3):149-158
    [83]K.S.Hwang,H.Y.Zhu and G.Q.Lu.New nickel catalysts supported on highly porous alumina intercalated laponite for methane reforming with CO2.Catalysis Today,2001,68(1-3):183-190
    [84]M.D.Navalikhina,G.S.Golovina and Y.I.Petrov.INFLUENCE OF THE POROUS STRUCTURE ON THE ACTIVITY OF NICKEL-TUNGSTEN CATALYSTS FOR DESTRUCTIVE HYDROGENATION.Solid Fuel Chemistry,1984,18(6):86-92
    [85]E.P.Briggs,A.R.Walpole,P.R.Wilshaw,et al.Formation of highly adherent nano-porous alumina on Ti-based substrates:A novel bone implant coating.Journal of Materials Science:Materials in Medicine,2004,15(9):1021-1029
    [86]H.Q.Nguyen,D.A.Deporter,R.M.Pilliar,et al.The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants.Biomaterials,2004,25(5):865-876
    [87]林栋梁.高温有序金属间化合物研究的新进展.上海交通大学学报,1998,32(02):95-108
    [88]T.Noda.Application of cast gamma TiAl for automobiles.Intermetallics,1998,6(7-8):709-713
    [89]T.Cheng and M.McLean.Characterization of TiAl intermetallic rods produced from elemental powders by hot extrusion reaction synthesis(HERS).Journal of Materials Science,1997,32(23):6255-6261
    [90]傅恒志,郭景杰,苏彦庆,等.TiAl金属间化合物的定向凝固和晶向控制.中国有色金属学报,2003,13(04):797-810
    [91]C.McCallough,J.J.Valencia,C.G.Levi,R.Mehrabian.Phase equilibria and solidification in Ti-Al alloys.Acta Metallurgica,1989,37(5):1321-1336
    [92]黄伯云著.钛铝金属间化合物.长沙:中南工业大学出版社,1998:3-15
    [93]张永刚,韩雅芳,陈国良,等著.金属间化合物结构材料.北京:国防工业出版社, 2001:1005-1015
    [94]L.M.Hsiung,T.G.Nieh,Microstructures and properties of powder metallurgy TiAl alloys.Materials Science and Engineering,2004,364(1-2):1-10
    [95]G.Wang and M.Dahms.Synthesizing gamma-TiAl alloys by reactive powder processing.JOM,1993,45(5):52-56
    [96]李小强,李元元.大塑性变形-反应烧结TiAl合金的高温压缩屈服强度.稀有金属材料与工程,2004,33(03):289-292
    [97]L.Yong,H.Baiyun,H.Yuehui,et al.Microstructures of TiAl based alloys prepared by hot pressing elemental powders.Transactions of Nonferrous Metals Society of China,1998,8(3):397-402
    [98]李小强,胡连喜,王尔德.机械球磨与反应烧结制备TiAl基合金.粉末冶金技术,2001,19(03):131-135
    [99]C.L.Yeh and S.H.Su.In situ formation of TiAl-TiB_2 composite by SHS.Journal of Alloys and Compounds,2006,407(1-2):150-156
    [100]李志强,韩杰才,赫晓东,等.燃烧合成TiAl金属间化合物的反应机制.稀有金属材料与工程,2002,31(01):4-7
    [101]T.Aizawa,S.Kamenosono,J.Kihara,et al.Shock reactive synthesis of TiAl.Intermetallics,1995,3(5):369-379
    [102]刘咏,黄伯云,贺跃辉,等.元素粉末冶金方法制备TiAl基合金.粉末冶金材料科学与工程,1999,4(03):189-194
    [103]殷声,赖和怡.自蔓延高温合成技术和材料.北京:冶金工业出版社,1995:27-56
    [104]H.Huang,P.Virtanen,T.Tiainen,et al.Synthesis of gamma-TiAl based alloy by mechanical alloying and reactive hot isostatic pressing.Journal of Materials Engineering and Performance,1998,7(6):784-788
    [105]A.Kakitsuji,H.Miyamoto,H.Mabuchi,et al.Synthesis of TiAl-(TiB_2+Ti_2AlN)composites by HIP reactive sintering.Materials Transactions,JIM,1999,40(9):942-945
    [106]J.C.Rawers and W.Wrzesinski.Heat treatment of reaction-sintered hot-pressed TiAl.Scripta Metallurgica et Materialia,1990,24(10):1985-1990
    [107]Kazuhisa Shibue.Production of TiAl(γ)/Ti3Al(α2)alloys.Material Japan,1996,35(6):616-6122
    [108]G.X.Wang,M.Dahms,G.Leitner,et al.Titanium aluminides from cold-extruded elemental powders with Al-contents of 25-75 at%Al.Journal of Materials Science,1994, 29(7): 1847-1853
    
    [109] T. Tetsui. Application of TiAl in a turbocharger for passenger vehicles. Advanced Engineering Materials, 2001, 3(5): 307-310
    
    [110] L. Hoglund and J. Agren. Analysis of the Kirkendall effect, marker migration and pore formation. Acta Materialia, 2001,49(8): 1311-1317
    
    [111] H. Strandlund and H. Larsson. Prediction of Kirkendall shift and porosity in binary and ternary diffusion couples. Acta Materialia, 2004, 52(15): 4695-4703
    
    [112] F. Aldinger. CONTROLLED POROSITY BY AN EXTREME KIRKENDALL EFFECT. Acta Metallurgica, 1974,22(7): 923-928
    
    [113] J. D. Klein, G. Warshaw, N. Dudziak, et al. ON THE SUPPRESSION OF KIRKENDALL POROSITY IN MULTIFILAMENTARY SUPERCONDUCTING COMPOSITES. IEEE Transactions on Magnetics, 1980, MAG-17(1): 380-382
    
    [114] D. Srinivasan and P. R. Subramanian. Kirkendall porosity during thermal treatment of Mo-Cu nanomultilayers. Materials Science and Engineering A, 2007,459(1-2): 145-150
    
    [115] Y.-K. Son and J. E. Morral. Effect of composition on marker movement and kirkendall porosity in ternary alloys. Metallurgical Transactions A, 1989, 20A(11): 2299-2303
    
    [116] Y. He, Y. Jiang, N. Xu, et al. Fabrication of Ti-Al micro/nanometer-sized porous alloys through the kirkendall effect. Advanced Materials, 2007,19(16): 2102-2106
    
    [117] M. Sujata, S. Bhargava and S. Sangal. On the formation of TiAl_3 during reaction between solid Ti and liquid Al. Journal of Materials Science Letters, 1997, 16(14): 1175-1178
    
    [118] M. Sujata, S. Bhargava, S. Suwas, et al. On kinetics of TiAl_3 formation during reaction synthesis from solid Ti and liquid Al. Journal of Materials Science Letters, 2001, 20(24): 2207-2209
    
    [119] S. H. Yang, W. Y. Kim and M. S. Kim. Fabrication of unidirectional porous TiAl-Mn intermetallic compounds by reactive sintering using extruded powder mixtures. Intermetallics, 2003,11(8): 849-855
    
    [120] L. Chu and M. A. Anderson. Microporous silica membranes deposited on porous supports by filtration. Journal of Membrane Science, 1996,110(2): 141
    
    [121] J. J. Porter and R. S. Porter. Filtration studies of selected anionic dyes using asymmetric titanium dioxide membranes on porous stainless-steel tubes. Journal of Membrane Science,1995,101(1-2):67
    [122]G.A.Davies and X.Jia.Simulation of the structure and filtration performance of granular porous membranes.Journal of Membrane Science,1995,106(1-2):67
    [123]H.Inoue,M.Kagoshima,M.Yamasaki,et al.Radioactive iodine waste treatment using electrodialysis with an anion exchange paper membrane.Applied Radiation and Isotopes,2004,61(6):1189-1193
    [124]J.Rosier,O.Nath,S.Jager,et al.Fabrication of nanoporous Ni-based superalloy membranes.Acta Materialia,2005,53(5):1397-1406
    [125]S.-W.Song,H.Fujita and M.Yoshimura.Fabrication of patterned LiCoO_2 films deposited on the membrane surface of a paper-like substrate.Advanced Materials,2002,14(4):268-271
    [126]T.K.Lee,J.H.Kim and S.K.Hwang.Direct consolidation of gamma-TiAl-Mn-Mo from elemental powder mixtures and control of porosity through a basic study of powder reactions.Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1997,28A(12):2723-2729
    [127]J.B.Yang,K.W.Teoh and W.S.Hwang.Solid-state hot pressing of elemental aluminum and titanium powders to form TiAl(gamma & alpha2)intermetallic microstructure.Journal of Materials Engineering and Performance,1996,5(5):583-588
    [128]T.K.Lee,E.I.Mosunov and S.K.Hwang.Consolidation of a gamma TiAl-Mn-Mo alloy by elemental powder metallurgy.Materials Science & Engineering A:Structural Materials:Properties,Microstructure and Processing,1997,239-240:540-545
    [129]S.Biswas and S.H.Winoto.Prediction of pressure drop in non-woven filter media using a Hagen-Poiseuille model.Tribology Transactions,2000,43(2):251-256
    [130]L.Victoria,C.Molina,A.Arenas,et al.Use of pressure transducers in laboratory experiments.Ⅱ.Experimental verification of the Hagen-Poiseuille law.Application to viscosity measurement.Electrical analogy.American Journal of Physics,1996,64(3):322
    [131]G.Xu and F.Wang.Prediction of the permeability of woven fabrics.Journal of Industrial Textiles,2005,34(4):243-254
    [132]K.N.Tu and U.Gosele.Hollow nanostructures based on the Kirkendall effect:Design and stability considerations.Applied Physics Letters,2005,86(9):093111
    [133]Y.Yin,R.M.Rioux,C.K.Erdonmez,et al.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect.Science,2004,304(5671):711-714
    [134]H.J.Fan,M.Knez,R.Scholz,et al.Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect:The basic concept.Nano Letters,2007,7(4):993-997
    [135]R.Voigt and V.Ruth.Extended phenomenological theory of the Kirkendall effect in binary systems.Scripta Metallurgica et Materialia,1994,31(7):847-851
    [136]P.Liu.Tensile strength of porous metals with high porosity.Journal of Advanced Materials,2000,32(2):9-16
    [137]M.M.Aleksyuk.Method of strength prediction for porous ceramics.Problemy Prochnosti,2001,(2):130-136
    [138]J.H.She and T.Ohji.Porous mullite ceramics with high strength.Journal of Materials Science Letters,2002,21(23):1833-1834
    [139]朱日彰,杨德钧,沈卓身,等编.金属腐蚀学.北京:冶金工业出版社,1989:6-47
    [140]V.Gauthier,F.Dettenwanger,M.Schutze,et al.Oxidation-resistant aluminide coatings on gamma-TiAl.Oxidation of Metals,2003,59(3-4):233-255
    [141]B.Zhao,J.Wu,J.Sun,et al.Oxidation kinetics of the nitrided TiAl-based alloys.Materials Letters,2002,56(4):533-538
    [142]C.L.Fu and M.H.Yoo.Elastic constants,fault energies,and dislocation reactions in TiAl:a first-principles total-energy investigation.Philosophical Magazine Letters,1990,62(3):159-165
    [143]S.Znam,D.Nguyen-Manh,D.G.Pettifor,et al.Atomistic modeling of TiAl I.Bond-order potentials with environmental dependence.Philosophical Magazine,2003,83(4):415-438
    [144]D.Nguyen-Manh,M.J.Cawkwell,R.Groger,et al.Dislocations in materials with mixed covalent and metallic bonding.Materials Science and Engineering A,2005,400-401(1-2 SUPPL):68-71
    [145]C.L.Fu and M.H.Yoo.Electronic structure and mechanical behavior of transition-metal aluminides:a first-principles total-energy investigation.Materials Chemistry and Physics,1992,32(1):25-36
    [146]A.G Merzhanov.The chemistry of self-propagating high-temperature synthesis.Journal of Materials Chemistry,2004,14(12):1779-1786
    [147]A.G.Merzhanov.SHS technology.Advanced Materials,1992,4(4):294-295
    [148]A.G.Merzhanov.History and recent developments in SHS.Ceramics International,1995,21(5):371
    [149]A.G.Merzhanov,V.L.Dragun,B.M.Khusid,et al.Investigation of the kinetics of self-propagating synthesis by the methods of computational IR thermography.Journal of Engineering Physics,1990,58(6):732-735
    [150]F.J.J.van Loo and G.D.Rieck.DIFFUSION IN THE TITANIUM-ALUMINIUM SYSTEM EM DASH 1,2.Acta Metallurgica,1973,21(1):61-84
    [151]A.Paul,A.A.Kodentsov and F.J.J.van Loo.Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples.Zeitschrift fur Metallkunde,2004,95(10):913-920
    [152]M.J.H.Van Dal,A.A.Kodentsov and F.J.J.Van Loo.Formation of Co-Si intermetallics in bulk diffusion couples.Part Ⅱ.Manifestations of the Kirkendall effect accompanying reactive diffusion.Intermetallics,2001,9(6):451-456
    [153]K.Wu,J.E.Morral and Y.Wang.Movement of Kirkendall markers,second phase particles and the Type 0 boundary in two-phase diffusion couple simulations.Acta Materialia,2004,52(7):1917-1925
    [154]R.A.Masumura,B.B.Rath and C.S.Pande.Analysis of Cu-Ni diffusion in a spherical geometry for excess vacancy production.Acta Materialia,2002,50(18):4535-4544
    [155]F.Seitz.On the porosity observed in the Kirkendall effect.Acta Metallurgica,1953,1(3):355-369
    [156]J.A.Brinkmanf.Mechanism of pore formation associated with the Kirkendall effect.Acta Metallurgica,1955,3(2):140-145
    [157]P.K.Roy,A.Bhatt and C.Rajagopal.Quantitative risk assessment for accidental release of titanium tetrachloride in a titanium sponge production plant.Journal of Hazardous Materials,2003,102(2-3):167-186
    [158]王学松编著.膜分离技术及其应用.北京:科学出版社,1994:49-59
    [159]V.A.Lavrenko,V.A.Shvets,S.A.Firstov,et al.Corrosion of intermetallics of Ti-Al system.Ⅱ.Electrolytic oxidation of gamma-TiAl,TiAl_3,and alpha2-Ti_3Al intermetallics in marine water.Poroshkovaya Metallurgiya,2003,(5-6):83-90
    [160]K.Zhang,Z.Li,M.A.Hodgson,et al.Molten salt vapour corrosion of Ti_3Al and TiAl based intermetallics.High Temperature Materials and Processes,2002,21(3):167-175
    [161]丁启圣,王维一编著.新型实用过滤技术.北京:冶金工业出版社,2000:18-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700