A549细胞和Hep-2细胞表面糖链类型鉴定及其与H5N1型禽流感病毒结合的特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:高致病性禽流感病毒H5N1可以感染人类并引起致命的呼吸道疾病。一旦禽流感病毒获得在人际传播的能力将很可能导致人类流感大流行。一般认为禽流感病毒对人类上呼吸道细胞亲和力低,可能是限制H5N1病毒人与人之间传播的因素。然而,禽流感H5N1病毒对人类呼吸道的亲嗜性和致病机理迄今仍不清楚。因此,研究H5N1病毒对人呼吸道上皮细胞的侵袭作用,对理解禽流感病毒的传播和致病具有重要的意义。
     目的:建立Hep-2细胞和A549细胞模型,研究H5N1型禽流感病毒对人呼吸道的亲嗜性和黏附作用。
     方法:用凝集素染色技术和流式细胞术检测A549细胞和Hep-2细胞表面流感病毒唾液酸受体SAa2,3Gal和SAa2,6Gal的表达。用FITC标记的H5N1病毒和间接免疫荧光法,检测H5N1病毒进入细胞情况。用western blotting法分析病毒进入A549细胞和Hep-2细胞的效率。用MTT法检测H5N1病毒处理后细胞的存活状况。结果:A549细胞和Hep-2细胞表面有大量SAa2,3Gal链,但SAa2,6Gal链含量却很少。Hep-2细胞表面SAa2,3Gal受体的表达水平高于A549细胞。H5N1病毒能够进入A549细胞和Hep-2细胞,而且H5N1病毒对A549细胞的亲嗜性更强。与A549细胞相比,Hep-2细胞对H5N1流感病毒诱导的细胞死亡更敏感。H5N1诱导的细胞死亡是非Caspases依赖性的,并且与PI3K活化无关。
Background The H5N1 virus often leads to acute respiratory disease and death. The pandemic potential of H5N1 virus depends largely on its efficiency of human-to-human transmission. This inefficiency has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. However, the tropism and pathogenicity of avian influenza A (H5N1) in huamn respiratory tract are poorly understood. Therefore, analysis of the interaction between influenza virus and human respiratory epithelial cells will be critically important to better understand the virus transmission and pathogenicity in humans.
     Objective To determine H5N1 virus attachment to the human respiratory tract, and to study the tropism of influenza virus, Hep-2 cells and A549 cells derived from human upper and lower respiratory tract were included.
     Methods Expression of SAa2,3Gal and SAa2,6Gal in A549 cells and Hep-2 cells was examined by using lectin fluorescence and flow cytometry. Binding experiments with FITC-labeled H5N1 virus and indirect immunofluorescence assay were perfomed to study the virus entry into A549 and Hep-2 cells. The entry efficiency was determined by Western blot analysis. Cell viability after H5N1 treatment was measured by MTT assay.
     Results SAa2,3Gal was prevalent in A549 cells and Hep-2 cells, while SAa2,6 Gal was little found. SAa2,3Gal expression was more regularly observed in Hep-2 cells, rather than A549 cells. The H5N1 virus tested could enter A549 cells and Hep-2 cells. However, viral entry efficiency differed between the two cell lines tested. A549 cells were found to be more susceptible to avian influenza than Hep-2 cells. H5N1-induced cell death was inefficient in A549 cells than Hep-2 cells. Furthermore, the cell death elicited by H5N1 virus was independent of Caspases or PI3K activition.
     Conclusion The expression of SAa2,3Gal on the cells tested corresponded with the attachment of the H5N1 virus. However, sialic acid only may not sufficient for entry into cells.
引文
[1]Connor RJ, Kawaoka Y, Webster RG, et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates [J]. Virology,1994,205(1):17-23.
    [2]Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium:the role of the host cell in selection of hemagglutinin receptor specificity [J]. Virus Res,1993,29(2):155-165.
    [3]Ito T, Couceiro JN, Kelm S. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential [J]. J Virol,1998,72(9):7367-7373.
    [4]Rogers GN, D'Souza BL. Receptor binding properties of human and animal H1 influenza virus isolates[J]. Virology,1989,173(1):317-322.
    [5]Matrosovich M, Tuzikov A, Bovin N, et al. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals [J]. J Virol,2000,74(18):8502-8512.
    [6]Veljko Veljkovic, Nevena Veljkovic, Claude P Muller, et al. Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: possible consequences for therapy and infection control [J]. BMC Struct Bio,2009, 9:21.
    [7]Stevens J, Blixt O,Tumpey TM, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus [J]. Science,2006,312(5722):404-410.
    [8]Shinya K, Ebina M, Yamada S, et al. Avian flu:influenza virus receptors in the human airway [J]. Nature,2006,440(7083):435-436.
    [9]van Riel D, Munster VJ, de Wit E, et al. H5N1 virus attachment to lower respiratory tract [J]. Science,2006,312(5772):399.
    [10]Nicholls JM, Chan MC, Chan WY, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract [J]. Nat Med,2007,13(2):147-149.
    [11]Wiley DC, Skehel JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus [J]. Annu Rev Biochem,1987,56:365-394.
    [12]Weis W, Brown JH, Cusack S, et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid [J]. Nature,1988,333(6172):426-431.
    [13]Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry:the influenza hemagglutinin [J]. Annu Rev Biochem,2000,69:531-569.
    [14]Gu J, Xie Z, Gao Z, et al. H5N1 infection of the respiratory tract and beyond:a molecular pathology study [J]. Lancet,2007,370(9593):1137-1145.
    [15]Stevens J, Blixt O, Tumpey TM, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus[J]. Science,2006,312(5772):404-410.
    [16]Yao L, Korteweg C, Hsueh W, et al. Avian influenza receptor expression in H5N1-infected and noninfected human tissues[J]. FASEB J,2008,22(3):733-740.
    [17]Cerna A, Janega P, Martanovic P, et al. Changes in sialic acid expression in the lung during intrauterine development of the human fetus [J]. Acta Histochem,2002, 104(4):339-342.
    [18]Rimmelzwaan GF, Nieuwkoop NJ, de Mutsert G, et al. Attachment of infectious influenza A viruses of various subtypes to live mammalian and avian cells as measured by flow cytometry [J]. Virus Res,2007,129(2):175-181.
    [19]Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses [J]. Nat Med,2002,8(9):950-954.
    [20]Korteweg C, Gu J. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans [J]. Am J Pathol,2008,172(5):1155-1170.
    [21]Guo Y, Rumschlag-Booms E, Wang J, et al. Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza [J]. Virol J,2009,6:39.
    [22]Matrosovich MN, Matrosovich TY, Gray T, et al. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium [J]. J Virol,2004, 78(22):12665-12667.
    [23]Stray SJ, Cummings RD, Air GM. Influenza virus infection of desialylated cells [J]. Glycobiology,2000,10(7):649-658.
    [24]Chu VC, Whittaker GR. Influenza virus entry and infection require host cell N-linked glycoprotein [J]. Proc Natl Acad Sci U S A,2004,101(52):18153-18158.
    [25]Upham JP, Pickett D, Irimura T, et al. Macrophage receptors for influenza A virus: role of the macrophage galactose-type lectin and mannose receptor in viral entry [J]. J Virol.2010,84(8):3730-3737.
    [26]Mongkol Uiprasertkul, Rungrueng Kitphati, Pilaipan Puthavathana, et al. Apoptosis and Pathogenesis of Avian Influenza A (H5N1) Virus in Humans [J]. Emerg Infect Dis.2007,13(5):708-712.
    [27]Zhirnov OP, Klenk HD. Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling [J]. Apoptosis,2007,12(8):1419-1432.
    [28]Wang H, Jiang C. Influenza A Virus H5N1 Entry Into Host Cells is through Clathrin-dependent Endocytosis [J]. Sci China C Life Sci,2009,52(5):464-469.
    [29]Mok CK, Lee DC, Cheung CY, et al. Differential onset of apoptosis in influenza A virus H5N1-and H1N 1-infected human blood Macrophages [J]. J Gen Virol,2007, 88(Pt4):1275-1280.
    [30]Li IW, Chan KH, To KW, Wong SS, et al. Differential susceptibility of different cell lines to swine-origin influenza A H1N1, seasonal human influenza A H1N1, and avian influenza A H5N1 viruses[J]. J Clin Virol,2009,46(4):325-330.
    [31]Fesq H, Bacher M, Nain M, et al. Programmed cell death (apoptosis) in human monocytes infected by influenza A virus [J]. Immunobiology,1994, 190(1-2):175-182.
    [32]Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, et al. Apoptosis:a mechanism of cell killing by influenza A and B viruses [J]. J Virol,1994,68(6):3667-3673.
    [33]Takizawa T, Matsukawa S, Higuchi Y, et al. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells [J]. J Gen Virol,1993, 74(Ptll):2347-2355.
    [34]Lowy RJ. Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms [J]. Int Rev Immunol,2003,22(5-6):425-449.
    [35]Nichols JE, Niles JA, Roberts NJ Jr. Human lymphocyte apoptosis after exposure to influenza A virus [J]. J Viro,2001,75(13):5921-5929.
    [36]Christina Ehrhardt, Thorsten Wolff, Stephan Pleschka, et al. Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses [J]. J Virol,2007,81(7),3058-3067.
    [37]Shin YK, Liu Q, Tikoo SK, et al. Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase(PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K [J]. J Gen Virol,2007,88(1),13-18.
    [38]Price GE, Smith H, Sweet C. Differential induction of cytotoxicity and apoptosis by influenza virus strains of differing virulence [J]. J Gen Virol,1997,78 (Pt 11):2821-2829.
    [39]Jackson D, Killip MJ, Galloway CS, et al. Loss of function of the influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase (PI3K) [J]. Virology,2010,396(1):94-105.
    [40]Yang W, Qu S, Liu Q, et al. Avian influenza virus A/chicken/Hubei/489/2004 (H5N1) induces caspase-dependent apoptosis in a cell-specific manner [J]. Mol Cell Biochem,2009,332(1-2):233-241.
    [41]Zhou Z, Jiang X, Liu D, et al. Autophagy is involved in influenza A virus replication [J]. Autophagy,2009,5(3):321-328.
    [42]Law AH, Lee DC, Yuen KY, et al. Cellular response to influenza virus infection:a potential role for autophagy in CXCL10 and interferon-alpha induction [J]. Cell Mol Immunol,2010, Epub.
    [1]Yuen KY, Chan PK, Peiris M, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet,1998, 351:467-471.
    [2]Peiris JSM, Yu WC, Leung CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet,2004,363:617-619.
    [3]de Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med,2006, 12:1203-1207.
    [4]Hien TT, Liem NT, Dung NT, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med,2004,350:1179-1188.
    [5]Kandun IN, Wibisono H, Sedyaningsih ER, et al. Three Indonesian clusters of H5N1 virus infection in 2005. N Engl J Med,2006,355:2186-2194.
    [6]Oner AF, Bay A, Arslan S, et al. Avian influenza A (H5N1) infection in eastern Turkey in 2006. N Engl J Med,2006,355:2179-2185.
    [7]Beigel JH, Farrar J, Han AM, et al.Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5:avian influenza A (H5N1) infection in humans. N Engl J Med,2005,353:1374-1385.
    [8]Gu J, Xie Z, Gao Z, et al. H5N1 infection of the respiratory tract and beyond:a molecular pathology study. Lancet,2007,370:1137-1145.
    [9]Nicholls JM, Chan MC, Chan WY, et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med,2007,13:147-149.
    [10]Zitzow LA, Rowe T, Morken T, et al. Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J Virol,2002,76:4420-4429.
    [11]Gao P, Watanabe S, Ito T, et al. Biological heterogeneity, including systemic replication in mice, of H5N1 influenza A virus isolates from humans in Hong Kong. J Virol,1999,73:3184-3189.
    [12]Rimmelzwaan GF, Kuiken T, van Amerongen G, et al. Pathogenesis of influenza A (H5N1) virus infection in a primate model. J Virol,2001,75:6687-6691.
    [13]Xu T, Qiao J, Zhao L, et al. Acute respiratory distress syndrome induced by avian influenza A (H5N1) virus in mice. Am J Respir Crit Care Med,2006,174:1011-1017.
    [14]Tumpey TM, Lu X, Morken T, et al. Depletion of lymphocytes and diminished cytokine production in mice infected with a highly virulent influenza A (H5N1) virus isolated from humans. J Virol,2000,74:6105-6116.
    [15]Rimmelzwaan GF, van Riel D, Baars M, et al. Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. Am J Pathol,2006,168:176-183.
    [16]Govorkova EA, Rehg JE, Krauss S, et al. Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol,2005,79:2191-2198.
    [17]Nishimura H, Itamura S, Iwasaki T, et al. Characterization of human influenza A (H5N1) virus infection in mice:neuro-, pneumo- and adipotropic infection. J Gen Virol, 2000,81:2503-2510.
    [18]Maines TR, Lu XH, Erb SM, et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol,2005, 79:11788-11800.
    [19]Yen HL, Lipatov AS, Ilyushina NA, et al. Inefficient transmission of H5N1 influenza viruses in a ferret contact model. J Virol,2007,81:6890-6898.
    [20]Ungchusak K, Auewarakul P, Dowell SF, et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med,2005,352:333-340.
    [21]To KF, Chan PKS, Chan KF, et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol,2001,63:242-246.
    [22]Uiprasertkul MP, Kitphati R, Puthavathana P, et al. Apoptosis and pathogenesis of avian influenza A (H5N1) virus in humans. Emerg Infect Dis,2007,13:708-712.
    [23]Chan PK. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis,2002,34:S58-S64.
    [24]Ku AS, Chan LT. The first case of H5N1 avian influenza infection in a human with complications of adult respiratory distress syndrome and Reye's syndrome. J Paediatr Child Health,1999,35:207-209.
    [25]Chen H, Li Y, Li Z, et al. Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol,2006, 80:5976-5983.
    [26]Wang G, Zhan D, Li L, et al. H5N1 avian influenza re-emergence of Lake Qinghai: Phylogenetic and antigenic analyses of the newly isolated viruses a nd roles of migratory birds in virus circulation. J Gen Virol,2008,89:697-702.
    [27]Liu J, Xiao H, Lei F, et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science,2005,309:1206.
    [28]De Jong MD, Simmons CP, Thanh TT, et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med,2006, 12:1203-1207.
    [29]Uiprasertkul MP, Puthavathana K, Sangsiriwut P, et al. Influenza A H5N1 replication sites in humans. Emerg Infect Dis,2005,11:1036-1041.
    [30]Zhou J, Law HKW, Cheung CY, et al. Differential expression of chemokines and their receptors in adult and neonatal macrophages infected with human or avian influenza viruses. J Infect Dis,2006,194:61-70.
    [31]Cheung CY, Poon LL, Lau AS, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses:a mechanism for the unusual severity of human disease? Lancet,2002,360:1831-1837.
    [32]Guan Y, Poon LL, Cheung CY, et al. H5N1 influenza:a protean pandemic threat. Proc Natl Acad Sci USA,2004,101:8156-8161.
    [33]Conenello GM, Zamarin D, Perrone LA, et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog,2007,3:1414-1421.
    [34]Lipatov AS, Andreansky S, Webby RJ, et al. Pathogenesis of Hong Kong H5N1 influenza virus NS gene reassortants in mice:the role of cytokines and B-and T-cell responses. J Gen Virol,2005,86:1121-1130.
    [35]Szretter KJ, Gangappa S, Lu X, et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol,2007,81:2736-2744.
    [36]Nicholls JM, Poon LL, Lee KC, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet,2003,361:1773-1778.
    [37]He L, Ding Y, Zhang Q, et al. Expression of elevated levels of proinflammatory cytokines in SARS-CoV-infected ACE2(+) cells in SARS patients:relation to the acute lung injury and pathogenesis of SARS. J Pathol,2006,210:288-297.
    [38]Kobasa D, Jones SM, Shinya K, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature,2007,445:319-323.
    [39]Kash JC, Tumpey TM, Proll SC, et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature,2006,443:578-581.
    [40]Zhou J, Law HK, Cheung CY, et al. Functional tumor necrosis factor-related apoptosis-inducing ligand production by avian influenza virus-infected macrophages. J Infect Dis,2006,193:945-953.
    [41]Mok CK, Lee DC, Cheung CY, et al. Differential onset of apoptosis in influenza A virus H5N1- and H1N1-infected human blood macrophages. J Gen Virol,2007, 88:1275-1280.
    [42]Hsieh SM, Chang SC. Insufficient perforin expression in CD8+ T cells in response to hemagglutinin from avian influenza (H5N1) virus. J Immunol,2006,176:4530-4533.
    [43]Stockman L, Bellamy R, Garner P. SARS:systematic review of treatment effects. PLoS Med,2006,3:e343.
    [44]Hussell T, Pennycook A, Openshaw PJ. Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur J Immunol,2001, 31:2566-2573.
    [45]Horimoto T, Kawaoka Y. Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev,2001,14:129-149.
    [46]Webster RG, Bean WJ, Gorman OT, et al. Evolution and ecology of influenza A viruses. Microbiol Rev,1992,56:152-179.
    [47]Fouchier RA, Munster V, Wallensten A, et al. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol,2005, 79:2814-2822.
    [48]Chen W, Calvo PA, Malide D, et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med,2001,7:1306-1312.
    [49]Steinhauer DA, Skehel JJ. Genetics of influenza viruses. Annu Rev Genet,2002, 36:305-332.
    [50]Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry:the influenza hemagglutinin. Annu Rev Biochem,2000,69:531-569.
    [51]Horimoto T, Kawaoka Y. Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J Virol,1994, 68:3120-3128.
    [52]Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology,1999,258:1-20.
    [53]Hatta M, Gao P, Halfmann P, et al. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science,2001,293:1840-1842.
    [54]World Health Organization Global Influenza Program Surveillance Network: Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis,2005, 11:1515-1521.
    [55]Amonsin A, Chutinimitkul S, Pariyothorn N, et al. Genetic characterization of influenza A viruses (H5N1) isolated from 3rd wave of Thailand AI outbreaks. Virus Res, 2006,122:194-199.
    [56]Smith GJ, Naipospos TS, Nguyen TD, et al. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology,2006, 350:258-268.
    [57]Puthavathana P, Auewarakul P, Charoenying PC, et al. Molecular characterization of the complete genome of human influenza H5N1 virus isolates from Thailand. J Gen Virol, 2005,86:423-433.
    [58]Shinya K, Hatta M, Yamada S, et al. Characterization of a human H5N1 influenza A virus isolated in 2003. J Virol,2005,79:9926-9932.
    [59]Bender C, Hall H, Huang J, et al. Characterization of the surface proteins of influenza A (H5N1) viruses isolated from humans in 1997-1998. Virology,1999, 254:115-123.
    [60]Katz JM, Lu X, Frace AM, et al. Pathogenesis of and immunity to avian influenza A H5 viruses. Biomed Pharmacother,2000,54:178-187.
    [61]Tumpey TM, Basler CF, Aguilar PV, et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science,2005,310:77-80.
    [62]Matrosovich M, Zhou N, Kawaoka Y, et al. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol,1999,73:1146-1155.
    [63]Liu J, Xiao H, Lei F, et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science,2005,309:1206.
    [64]Mitnaul LJ, Matrosovich MN, Castrucci MR, et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol, 2000,74:6015-6020.
    [65]Smith GJ, Fan XH, Wang J, et al. Emergence and predominance of an H5N1 influenza variant in China. Proc Natl Acad Sci USA,2006,103:16936-16941.
    [66]De Jong MD, Tran TT, Truong HK, et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med,2005,353:2667-2672.
    [67]Le QM, Kiso M, Someya K, et al. Avian flu:isolation of drug-resistant H5N1 virus. Nature,2005,437:1108.
    [68]Salomon R, Franks J, Govorkova EA, et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J Exp Med,2006,203:689-697.
    [69]Gabriel G, Dauber B, Wolff T, et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA,2005, 102:18590-18595.
    [70]Li KS, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature,2004,430:209-213.
    [71]Hatta M, Hatta Y, Kim JH, et al. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog,2007,3:1374-1379.
    [72]Taubenberger JK, Reid AH, Lourens RM, et al. Characterization of the 1918 influenza virus polymerase genes. Nature,2005,437:889-893.
    [73]Garcia-Sastre A, Egorov A, Matassov D, et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology,1998,252:324-330.
    [74]Seo SH, Hoffmann E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med,2002,8:950-954.
    [75]Krug RM. Clues to the virulence of H5N1 viruses in humans. Science,2006, 311:1562-1563.
    [76]Baum LG, Paulson JC. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl,1990, 40:S35-S38.
    [77]Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium, the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res,1993,29:155-165.
    [78]Van Riel D, Munster VJ, de Wit E, et al. H5N1 virus attachment to lower respiratory tract. Science,2006,312:399.
    [79]Yao L, Korteweg C, Hsueh W, et al. Avian influenza receptor expression in H5N1-infected and non-infected human tissues. FASEB J,2008,22:733-740.
    [80]Matrosovich MN, Matrosovich TY, Gray T, et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA,2004,101:4620-4624.
    [81]Thompson CI, Barclay WS, Zambon MC, et al. Infection of human airway epithelium by human and avian strains of influenza a virus. J Virol,2006,80:8060-8068.
    [82]Ibricevic A, Pekosz A, Walter MJ, et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol,2006,80:7469-7480.
    [83]Zhang L, Bukreyev A, Thompson CI, et al. Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol,2005, 79:1113-1124.
    [84]Matrosovich M, Matrosovich T, Uhlendorff J, et al. Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology,2007,361:384-390.
    [85]Eash S, Tavares R, Stopa EG, et al.Differential distribution of the JC virus receptor-type sialic acid in normal human tissues. Am J Pathol,2004,164:419-428.
    [86]Ulloa F, Real FX. Differential distribution of sialic acid in alpha2,3 and alpha2,6 linkages in the apical membrane of cultured epithelial cells and tissues. J Histochem Cytochem,2001,49:501-510.
    [87]Roth J.Cellular sialoglycoconjugates:a histochemical perspective. Histochem J, 1993,25:687-710.
    [88]Sata T, Roth J, Zuber C, et al. Expression of alpha 2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa. A lectin-gold cytochemical study with Sambucus nigra and Maackia amurensis lectins. Am J Pathol,1991,139:1435-1448.
    [89]Gu J, Xie Z, Gao Z, et al. H5N1 infection of the respiratory tract and beyond. Lancet, 2007,370:1137-1145.
    [90]Hatta M, Gao P, Halfmann P, et al. characterization of the influenza A virus gene pool in avain specise in sourhern China:was H6N1 a derivarive ot a precursor of H5N1? J Virol,2000,74:6309-15.
    [91]Gao Y, Zhang Y, Shinya K, et al. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog,2009,5:e 1000709.
    [92]Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutation responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature,2006, 444:378-382.
    [93]Maines TR, Chen LM, Matsuoka Y, et al. Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci USA, 2006,103:12121-12126.
    [94]Li C, Hatta M, Nidom CA, Muramoto Y,et al. Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci U S A.2010,107:4687-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700