HSP22基因在造血系统恶性肿瘤中的表达及作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1980年Craig和McCarthy首次在黑腹果蝇基因组中分离了HSP22基因,2000年Smith等人从HELA细胞和黑色素瘤细胞基因文库中发现了人HSP22基因。它由196个氨基酸组成,分子量为22 kD,具有小分子热休克蛋白(sHSP)家族保守的中央“晶体蛋白结构域(a-crystallin) "。HSP22的mRNA在肌肉、胎盘、心脏和脑组织中高度表达,目前研究显示HSP22具有分子伴侣,自身激酶等生物活性,参与调节细胞的增殖、凋亡,其异常表达或突变与心肌肥大、阿尔茨海默症及远侧遗传性运动神经病等疾病密切相关。随着研究的不断深入,HSP22与肿瘤的关系越来越受到人们的关注,近几年来发现HSP22高表达于雌激素受体阳性的乳腺癌细胞并能被17β-雌二醇(17β-Estradiol, E2)诱导上调进而促进乳腺癌的发展;然而HSP22在有些肿瘤组织或细胞系中低表达,例如黑色素瘤、前列腺癌及肉瘤,而且通过去甲基化试剂5-aza-2'-deoxycytidine(地西他滨,Aza-C,达珂TM)处理,或转导HSP22能诱导人黑色素瘤细胞系SK-MEL-2和人前列腺癌细胞系PC-3凋亡。可见HSP22在肿瘤中的作用是多样的。
     为了研究HSP22在血液系统肿瘤中的表达和功能,我们首先采用RT-PCR方法检测HSP22在造血系统恶性肿瘤细胞系中的表达情况。在被检测的代表不同来源的13个造血系统恶性肿瘤细胞系、20例不同类型的白血病患者骨髓单个核细胞及10例健康志愿者骨髓单个核细胞中均未发现HSP22的表达。由于热休克蛋白家族是应激蛋白,当细胞受到高温、物理或化学刺激的时候其表达会显著上升。于是我们进一步用热休克、E2、阿糖胞苷(cytarabine, Ara-c)、柔红霉素(Daunorubicin, DRN)及Aza-C等处理白血病细胞系及白血病患者骨髓单个核细胞,发现只有地西他滨能诱导HSP22表达,且呈剂量依赖。于是我们推测在HSP22基因的启动子区存在甲基化。为了证实此推测,我们用甲基化特异的PCR方法检测了5个白血病细胞系及5例健康供者和15例不同类型的白血病患者骨髓单个核细胞中HSP22基因的启动子区甲基化状态,发现检测的所有样本呈现完全甲基化状态,而且,地西他滨处理过的白血病细胞系甲基化状态被部分逆转,呈现部分去甲基化状态。
     地西他滨是一种去甲基化药物,具有强烈的诱导细胞分化能力,目前临床用于治疗骨髓增生异常综合征(MDS)、慢性粒细胞白血病(CML)和急性髓细胞白血病(AML),并且旨在将其应用于更多肿瘤治疗中的临床实验正在不断开展。甲磺酸伊马替尼(伊马替尼,imatinib mesylate, gleevec)是BCR/ABL+白血病最有效的治疗药物,近年来有文献证明地西他滨与伊马替尼对BCR/ABL+的细胞具有协同的抗白血病功能,增强白血病细胞对伊马替尼的敏感性。我们的研究结果提示,接受地西他滨治疗会使患者白血病细胞表达HSP22,而且多数热休克蛋白家族成员都与药物的敏感性相关,那么HSP22的表达会对白血病细胞产生什么作用,是否参与介导了地西他滨增强白血病细胞对伊马替尼的敏感性呢?为了进一步探究HSP22对白血病细胞的影响,我们构建了HSP22慢病毒表达载体,感染K562和Namalwa细胞,荧光显微镜及流式细胞仪观察并测试瞬时感染效率,RT-PCR和Western Blot方法鉴定HSP22的表达。并通过生长曲线、细胞周期、集落形成实验来评价肿瘤细胞增殖、生长特性、集落形成能力,AnnexinV/7-AAD方法检测肿瘤细胞凋亡情况。结果发现,与转导空载体的对照细胞相比,HSP22能抑制K562细胞体内增殖和Namalwa细胞体外增殖,并抑制二者集落形成,但对于二者的细胞周期和凋亡没有明显影响。为了进一步探究HSP22是否可使白血病细胞对伊马替尼的的敏感性增强,是否参与介导了地西他滨与伊马替尼的协同作用,我们用伊马替尼处理转导HSP22和空载体的K562 (BCR/ABL+)细胞,并用AnnexinV/7-AAD方法检测细胞凋亡情况,发现HSP22能增强伊马替尼诱导的K562细胞凋亡,此现象具有剂量和时间依赖性。为了进一步明确HSP22增加肿瘤细胞对伊马替尼敏感性的机制,我们采用real-time PCR方法检测了转导HSP22和空载体的K562细胞mdr1和BCR/ABL基因的表达,结果显示转导HSP22使K562细胞中这两种基因的表达水平显著降低,提示HSP22增加肿瘤细胞对伊马替尼敏感性的作用可能是通过降低P-糖蛋白(P-glycoprotein, P-gp)转运体的功能从而减少伊马替尼的泵出以及减少BCR/ABL融合蛋白的表达从而降低其酪氨酸激酶的活性来实现的。由于地西他滨能够诱导多种基因表达,为了进一步确定HSP22是否在介导地西他滨与伊马替尼的协同抗白血病功能中起到特异的作用,我们在地西他滨诱导野生型K562细胞表达HSP22的基础上使用HSP22基因特异的siRNA干扰其表达,再使用伊马替尼处理,发现干扰HSP22的表达能降低伊马替尼诱导的K562细胞凋亡。提示HSP22可能在介导地西他滨与伊马替尼的协同作用中发挥特异的作用。
     综上所述,我们的工作首次证明,在血液系统中,启动子区甲基化是HSP22不表达的原因,去甲基化试剂地西他滨能够诱导HSP22的表达。异位表达HSP22能抑制白血病细胞的增殖和集落形成,并能增强BCR/ABL+的K562细胞系对伊马替尼的敏感性。而且此功能可能是通过降低P-糖蛋白(P-glycoprotein)转运体的功能和减少BCR/ABL融合蛋白的表达来实现的。RNA干扰实验显示降低HSP22的表达能减少伊马替尼诱导的K562细胞凋亡,提示HSP22可能在介导地西他滨与伊马替尼的协同作用中发挥特异的作用。
Hsp22 gene was isolated by Craig and McCarthy from the Drosophila melanogaster genome in 1980. Then Smith et al. detected the HSP22 gene from the HeLa and melanoma cDNA libraries in 2000. Hsp22 (also known as HSPB8, H11, and E2IG1) was categorized as a member of the superfamily of sHSPs based on the presence of the conserved a-crystallin domain in this protein. It is composed of 196 amino acids with a calculated molecular mass of 21.6 kDa. Analysis of abundance of hHsp22 mRNA shows the highest expression of human Hsp22 was found in skeletal and smooth muscles, placenta, heart, and brain. Recent studies have demonstrated HSP22 displays chaperone activity and autokinase activity and was involved in regulation of cell proliferation, apoptosis. Abnormal expression of HSP22 correlates with development of cardiac hypertrophy, Alzheimer's disease and different neuromuscular diseases. Hsp22 is also involved in tumors and its expression is cell-type-specific and can be altered in human tumors. Recently, it was found that overload of HSP22 triggers melanoma cell apoptosis but contribute to breast carcinogenesis and progression. The mRNA and protein levels of Hsp22 were reduced in various tumor tissues and cell lines (i.e., prostate cancer, sarcoma) relative to their normal counterparts and the percentage of apoptotic cells increased with time after Hsp22 induction.In these cells, expression was restored by the demethylating agent 5-aza-2-deoxycytidine (decitabine, Aza-C, DacogenTM) suggesting that Hsp22 expression was inhibited by aberrant DNA methylation.
     To find its role in leukemia, we examined the expression of HSP22 by RT-PCR both in 13 human hematopoietic malignant cell lines and bone marrow samples of 20 patients and 10 healthy volunteers, however no expression was found. Then we tried cytarabine (Ara-c), Daunorubicin (DRN),17B-estradiol (E2) and decitabine to induce HSP22 expression, the results showed only 5-aza-2'-deoxycytidine worked and it was does-dependent. Then we tested the genomic DNA in 5 human hematopoietic malignant cell lines and bone marrow samples of 15 patients and 5 healthy volunteers and found DNA methylation in the promoter region of HSP22 gene, using the MSP method. Lentivector expression system-mediated delivery of HSP22 into K562 and Namalwa cells can inhibit proliferation of Namalwa in vitro and K562 in vivo. HSP22 transduction can also inhibit colony forming of K562 and Namalwa cells. However there was no significant difference in cell cycle and apoptosis.
     Aza-C is an effective antileukemic agent because of its reactivation of several types of tumor (growth) suppressor genes and tumor-associated antigen genes. The selective BCR-ABL tyrosine kinase inhibitor (TKI) imatinib mesylate is now frontline therapy for chronic myeloid leukemia (CML). Recently published data indicate that Decitabine and imatinib mesylate have a synergistic antitumor activity, and decitabine may be a potential candidate to overcome imatinib resistance in patients with CML. In this study, our results suggest decitabine treated leukemic cells may express HSP22. To detect the fuction of HSP22 in leukemia and to find if HSP22 is involved in the synergistic antitumor activity of decitabine and imatinib mesylate, we treated the transducted K562 (BCR/ABL+) cells with imatinib mesylate and found that HSP22 can enhance imatinib mesylate-induced apoptosis. To figure out the mechanism of enhanced apoptosis of K562 cells by HSP22, we detected the expression of mdrl and BCR/ABL gene by real-time PCR. Our results show that HSP22 can significantly reduce the expression level of mdrl and BCR/ABL gene, suggesting that HSP22 may enhance imatinib mesylate-induced apoptosis through down-regulation P-glycoprotein and Bcr/Abl levels.
     To investigate the involvement of HSP22 in the synergistic antitumor activity of decitabine and imatinib mesylate, wild type K562 cells were treated with decitabine to induce HSP22 expression, then cells were transfected with HSP22-specific siRNA and Non targeting siRNA, respectively. Compared to Non targeting siRNA, Anti-HSP22 siRNA treatment reduce imatinib induced apoptosis of K562 cells. These findings further support the hypothesis that HSP22 could be involved in mediating the synergistic antitumor activity of decitabine and imatinib mesylate.
     In conclusion, our work firstly demonstrated that the promoter methlation is the reason for HSP22 silence in hematopoietic system. The effective demethlating agent decitabine can induce HSP22 expression. Ectopic HSP22 expression inhibits the proliferation and colony forming of leukemic cells. HSP22 can enhance imatinib mesylate induced apoptosis through down-regulation P-glycoprotein and Bcr/Abl levels in K562 cells. HSP22 knockdown can reduce imatinib induced apoptosis of K562 cells, suggesting that HSP22 could be involved in mediating the synergistic antitumor activity of decitabine and imatinib mesylate.
引文
1. Lindquist, S. and E.A. Craig, The heat-shock proteins. Annu Rev Genet,1988.22: p.631-77.
    2. Craig, E.A., The heat shock response. CRC Crit Rev Biochem,1985.18(3):p. 239-80.
    3. Craig, E.A., B.D. Gambill, and R.J. Nelson, Heat shock proteins:molecular chaperones of protein biogenesis. Microbiol Rev,1993.57(2):p.402-14.
    4. Kappe, G, et al., The human genome encodes 10 alpha-crystallin-related small heat shock proteins:HspB1-10. Cell Stress Chaperones,2003.8(1):p.53-61.
    5. Laskowska, E., [Small heat shock proteins--role in apoptosis, cancerogenesis and diseases associated with protein aggregation]. Postepy Biochem,2007.53(1):p. 19-26.
    6. Arrigo, A.P., The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol,2007. 594:p.14-26.
    7. Arrigo, A.P., et al., Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett,2007.581(19):p.3665-74.
    8. Craig, E.A. and B.J. McCarthy, Four Drosophila heat shock genes at 67B: characterization of recombinant plasmids. Nucleic Acids Res,1980.8(19):p. 4441-57.
    9. Smith, C.C., et al., A novel human gene similar to the protein kinase (PK) coding domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) codes for a serine-threonine PK and is expressed in melanoma cells. J Biol Chem,2000.275(33):p.25690-9.
    10. Sun, X., et al., Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem,2004.279(4):p.2394-402.
    11. Fontaine, J.M., et al., Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3. Biochem Biophys Res Commun,2005.337(3):p. 1006-11.
    12. Sun, X., M.J. Welsh, and R. Benndorf, Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins--a two-hybrid study. Cell Stress Chaperones,2006.11(1):p.61-70.
    13. Kim, M.V., et al., Some properties of human small heat shock protein Hsp22 (H11 or HspB8). Biochem Biophys Res Commun,2004.315(4):p.796-801.
    14. Benndorf, R., et al., HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). J Biol Chem,2001.276(29):p.26753-61.
    15. Aurelian, L., et al., A novel gene expressed in human keratinocytes with long-term in vitro growth potential is required for cell growth. J Invest Dermatol, 2001.116(2):p.286-95.
    16. Wilhelmus, M.M., et al., Small heat shock protein HspB8:its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol,2006.111(2):p. 139-49.
    17. Hu, Z., et al., Structure, function, property, and role in neurologic diseases and other diseases of the sHsp22. J Neurosci Res,2007.85(10):p.2071-9.
    18. Trent, S., et al., Heat shock protein B8, a cyclin-dependent kinase-independent cyclin D1 target gene, contributes to its effects on radiation sensitivity. Cancer Res,2007.67(22):p.10774-81.
    19. Yang, C., et al., Identification of cyclin D1-and estrogen-regulated genes contributing to breast carcinogenesis and progression. Cancer Res,2006.66(24): p.11649-58.
    20. Li, B., et al., Overload of the heat-shock protein H11/HspB8 triggers melanoma cell apoptosis through activation of transforming growth factor-beta-activated kinase 1. Oncogene,2007.26(24):p.3521-31.
    21. Gober, M.D., et al., Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem, 2003.278(39):p.37600-9.
    22. Leglise, M.C., et al., Molecular diagnosis and follow up in myeloproliferative syndromes and acute leukemias:correlation between expression of fusion transcripts and disease progression in chronic myeloid leukemia. Leuk Lymphoma,1996.21(3-4):p.187-99.
    23. Okuda, K., et al., ARG tyrosine kinase activity is inhibited by STI571. Blood, 2001.97(8):p.2440-8.
    24. Shah, N.P., et al., Overriding imatinib resistance with a novel ABL kinase inhibitor. Science,2004.305(5682):p.399-401.
    25. Gambacorti-Passerini, C.B., et al., Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol,2003. 4(2):p.75-85.
    26. O'Dwyer, M.E. and B.J. Druker, Chronic myelogenous leukaemia--new therapeutic principles. J Intern Med,2001.250(1):p.3-9.
    27. La Rosee, P., et al., In vitro efficacy of combined treatment depends on the underlying mechanism of resistance in imatinib-resistant Bcr-Abl-positive cell lines. Blood,2004.103(1):p.208-15.
    28. Oki, Y., et al., Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer,2007.109(5):p.899-906.
    29. Issa, J.P., et al., Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol,2005.23(17): p.3948-56.
    30. Charpentier, A.H., et al., Effects of estrogen on global gene expression: identification of novel targets of estrogen action. Cancer Res,2000.60(21):p. 5977-83.
    31. Ciocca, D.R. and S.K. Calderwood, Heat shock proteins in cancer:diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones,2005. 10(2):p.86-103.
    32. Calderwood, S.K., et al., Heat shock proteins in cancer:chaperones of tumorigenesis. Trends Biochem Sci,2006.31(3):p.164-72.
    33. Calderwood, S.K. and D.R. Ciocca, Heat shock proteins:stress proteins with Janus-like properties in cancer. Int J Hyperthermia,2008.24(1):p.31-9.
    34. Reikvam, H., E. Ersvaer, and O. Bruserud, Heat shock protein 90-a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets,2009.9(6):p.761-76.
    35. Bolhassani, A. and S. Rafati, Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines,2008.7(8):p.1185-99.
    36. Pockley, A.G, Heat shock proteins as regulators of the immune response. Lancet, 2003.362(9382):p.469-76.
    37. Momparler, R.L., Pharmacology of 5-Aza-2'-deoxycytidine (decitabine). Semin Hematol,2005.42(3 Suppl 2):p. S9-16.
    38. Montiel-Duarte, C., et al., Resistance to Imatinib Mesylate-induced apoptosis in acute lymphoblastic leukemia is associated with PTEN down-regulation due to promoter hypermethylation. Leuk Res,2008.32(5):p.709-16.
    39. San Jose-Eneriz, E., et al., Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia. Eur J Cancer,2009.45(10):p.1877-89.
    40. Shemetov, A.A., A.S. Seit-Nebi, and N.B. Gusev, Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1):a critical review. J Neurosci Res,2008.86(2):p.264-9.
    41. Daskalakis, M., N. Blagitko-Dorfs, and B. Hackanson, Decitabine. Recent Results Cancer Res.184:p.131-57.
    42. Guo, Z.S., et al., De novo induction of a cancer/testis antigen by 5-aza-2'-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res,2006.66(2):p.1105-13.
    43. Smyth, M.J., et al., The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc Natl Acad Sci USA,1998.95(12):p.7024-9.
    44. Johnstone, R.W., E. Cretney, and M.J. Smyth, P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood, 1999.93(3):p.1075-85.
    45. Pallis, M. and N. Russell, P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood,2000.95(9): p.2897-904.
    46. Thomas, X., et al., Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk Res,2005.29(9):p. 1049-58.
    47. Hedhli, N., et al., Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22. Cardiovasc Res,2008.77(3):p.497-505.
    1. Morimoto, R. I. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators Genes Dev 1998,12:3788-3796
    2. Caspers GJ, Leunissen JA, de Jong ww The expanding small Heat-shock protein family, and structure predictions of the conserved "alpha-crystallin domain". J Mol Evol.1995 Mar; 40(3):234-248.
    3. Craig, E.A., The heat shock response. CRC Crit Rev Biochem,1985.18(3):p.. 239-80.
    4. Craig, E.A., B.D. Gambill, and R.J. Nelson, Heat shock proteins:molecular chaperones of protein biogenesis. Microbiol Rev,1993.57(2):p.402-14.
    5. Kappe, G, et al., The human genome encodes 10 alpha-crystallin-related small heat shock proteins:HspB1-10. Cell Stress Chaperones,2003.8(1):p.53-61.
    6. FranckE, MadsenO, vanRheedeT, et a2. Evolutionary diversity of vertebrate small heat shock proteins. J Mol Evol,2004,59(6):792-805.
    7. Robl. M. van Monfort, Eman Basha, Kenneth L. Friedrich, Christine Slingsby and Elizabeth Vierling, Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struet Biol.2001,8(12):1025-1030.
    8. Thusnelda Stromer, Monika Ehrnsperger. Analysis of the Interaction of Small Heat Shock Proteins with Unfolding Proteins J. Biol. Chem.2003,278, Issue 20,18 015-18 021.
    9. Biswas A, Das KP. Role of ATP on the Interaction of a-crystallin with Its Substratesand Its Implications for the Molecular Chaperone Function. J Biol Chem.2004,8,279(41):42 648-42 657.
    10. A Novel Human Gene Similar to the Protein Kinase (PK) Coding Domain of the Large Subunit of Herpes Simplex Virus Type 2 Ribonucleotide Reductase (ICP10) Codes for a Serine-Threonine PK and Is Expressed in Melanoma Cells; Cynthia Cheryl Smith, Yan Xing Yu, Michael Kulka(?), and Laure Aurelian; THE JOURNAL OF BIOLOGICAL CHEMISTRYVol.275, No.33, Issue of August 18, pp.25690-25699,2000
    11. Effects of Estrogen on Global Gene Expression:Identification of Novel Targets of Estrogen Action; April H. Charpentier, Andrzej K. Bednarek, Rachael L. Daniel, Kathleen A. Hawkins, Kendra J. Laflin, Sara Gaddis,Michael C. MacLeod, and C. Marcelo Aldaz; CANCER RESEARCH 60,5977-5983, November 1,2000
    12. HSP22, a New Member of the Small Heat Shock Protein Superfamily,Interacts with Mimic of Phosphorylated HSP27 (3DHSP27); Rainer Benndorf, Xiankui Sun, Robert R. Gilmont, Kelli J. Biederman, Mark P. Molloy,Craig W. Goodmurphy, Hong Cheng, Philip C. Andrews, and Michael J. Welsh; THE JOURNAL OF BIOLOGICAL CHEMISTRY, Vol.276, No.29, Issue of July 20, pp. 26753-26761,2001
    13. The human genome encodes 10 a-crystallin-related small heat shock proteins: HSPB1-10; Guido Kappe', Erik Franck, Pauline Verschuure, Wilbert C. Boelens,1Jack A. M. Leunissen, and Wilfried W. de Jong; Cell Stress & Chaperones (2003) 8 (1),53-61
    14. Mammalian HSP22 is a heat-inducible small heat-shock protein with chaperone-like activity; Tirumala Kumar CHOWDARY, Bakthisaran RAMAN, Tangirala RAMAKRISHNA and Chintalagiri Mohan RAO; Biochem. J. (2004) 381,379-387
    15. A Novel Gene Expressed in Human Keratinocytes with Long-Term In Vitro Growth Potential is Required for Cell Growth; Laure Aurelian, Cynthia C. Smith, Richard Winchurch, Michael Kulka, Takahiro Gyotoku, Lucia Zaccaro, Francis J. Chrest, and Joseph W. Burnett; J Invest Dermatol 116:286-295,2001
    16. Small heat shock protein HSPB8:its distribution in Alzheimer's disease brains and its inhibition of amyloid-b protein aggregation and cerebrovascular amyloid-b toxicity; Micha M. M. Wilhelmus Wilbert C. Boelens Irene Otte-Ho" ller Bram Kamps Benno Kusters Marion L. C. Maat-Schieman Robert M. W. de Waal Marcel M. Verbeek; Acta Neuropathol (2006) 111:139-149
    17. Interaction of mammalian HSP22 with lipid membranes; Tirumala Kumar CHOWDARY, Bakthisaran RAMAN, Tangirala RAMAKRISHNAand Ch. CHOWDARY, Bakthisaran RAMAN, Tangirala RAMAKRISHNAand Ch. Mohan RAO; Biochem. J. (2007) 401,437-445
    18. Interaction of Human HSP22 (HSPB8) with Other Small Heat Shock Proteins; Xiankui Sun, Jean-Marc Fontaine, Joshua S. Rest, Eric A. Shelden, Michael J. Welsh, and Rainer Benndorf; THE JOURNAL OF BIOLOGICAL CHEMISTRY, Vol.279, No.4, Issue of January 23, pp.2394-2402,2004
    19. Interactions of HSP22 (HSPB8) with HSP20, aB-crystallin, and HSPB3 Jean-Marc Fontaine, Xiankui Sun, Rainer Benndorf, Michael J. Welsh Biochemical and Biophysical Research Communications 337 (2005) 1006-1011
    20. Conformational changes resulting from pseudophosphorylation of mammalian small heat shock proteins-a two-hybrid study; Xiankui Sun, Michael J. Welsh, and Rainer Benndorf; Cell Stress & Chaperones (2006) 11 (1),61-70
    21. Some properties of human small heat shock protein HSP22 (H11 or HSPB8) Maria V. Kim,Alim S. Seit-Nebi, Steven B. Marston, and Nikolai B. Gusev Biochemical and Biophysical Research Communications 315 (2004) 796-801
    22. Correspondence regarding M.V. Kim et al. "Some properties of human small heat shock protein Hsp22 (H11 or HspB8)"; M.D. Gober, C. Depre, L. Aurelian; Biochemical and Biophysical Research Communications 321 (2004) 267-268
    23. Interruption of CryAB-Amyloid Oligomer Formation by HSP22; Atsushi Sanbe, Junji Yamauchi, Yuki Miyamoto, Yoko Fujiwara, Mayu Murabe, and Akito Tanoue; THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL.282, NO.1, pp.555-563, January 5,2007
    24. HSPB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells; Serena Carra, Mitchel Sivilotti, Aura T. Cha'vez Zobel, Herman Lambert, and Jacques Landry; Human Molecular Genetics,2005, Vol.14, No.12 1659-1669
    25. HSPB8 CHAPERONE ACTIVITY TOWARDS POLY-Q CONTAINING PROTEINS DEPENDS ON ITS ASSOCIATION WITH BAG3, A STIMULATOR OF MACROAUTOPHAGY; Serena Carra, Samuel J. cancerologie And Departement de medecine, Universite Laval,Quebec, Canada; J. Biol. Chem., Vol.283, Issue 3,1437-1444, January 18,2008
    26. HSPB8 and Bag3:A new chaperone complex targeting misfolded proteins to macroautophagy; Serena Carra, Samuel J. Seguin and Jacques Landry Autophagy 4:2,237-239; 16 February 2008
    27. HSPB8 PARTICIPATES IN PROTEIN QUALITY CONTROL BY A NON CHAPERONELIKE MECHANISM THAT REQUIRES eIF2α PHOSPHORYLATION; Serena Carra1, Jeanette F. Brunsting1, Herman Lambert, Jacques Landry and Harm H.Kampinga1; J. Biol. Chem., Vol.284, Issue 9, 5523-5532, February 27,2009
    28. H11 Kinase Is a Novel Mediator of Myocardial Hypertrophy In Vivo; Christophe Depre, Makoto Hase, Vinciane Gaussin, Anna Zajac, Li Wang, Luc Hittinger, Bijan Ghaleh,Xianzhong Yu, Raymond K. Kudej, Thomas Wagner, Junichi Sadoshima, Stephen F. Vatner; CircRes.2002;91:1007-1014.
    29. Increased expression of H11 kinase stimulates glycogen synthesis in the heart; Li Wang, Anna Zajac, Nadia Hedhli and Christophe Depre; Molecular and Cellular Biochemistry 265:71-78,2004.
    30. Regulation of Sam68 Activity by Small Heat Shock Protein 22; Kameswara R.Badri, Suhasini Modem, Herve C. Gerard, Insia Khan, Mihir Bagchi,Alan P. Hudson, and Thipparthi R. Reddy; J.Cell. Biochem.99:1353-1362,2006
    31. Calderwood, S.K. and D.R. Ciocca, Heat shock proteins:stress proteins with Janus-like properties in cancer. Int J Hyperthermia,2008.24(1):p.31-9.
    32. Calderwood, S.K., et al., Heat shock proteins in cancer:chaperones of tumorigenesis. Trends Biochem Sci,2006.31(3):p.164-72.
    33. Ciocca, D.R. and S.K. Calderwood, Heat shock proteins in cancer:diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005.10(2):p.86-103.
    34. Lindqulst S, Crai NE. The heat shock proteins. Annu Rev Genet.1988 22:631-677.
    35. Bolhassani, A. and S. Rafati, Heat-shock proteins as powerful weapons in
    35. Bolhassani, A. and S. Rafati, Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines,2008.7(8):p.1185-99.
    36. Pockley, A.G, Heat shock proteins as regulators of the immune response. Lancet,2003.362(9382):p.469-76.
    37. Heat Shock Protein B8, a Cyclin-Dependent Kinase-Independent Cyclin D1 Target Gene, Contributes to Its Effects on Radiation Sensitivity; Sally Trent,1 Chuanwei Yang, Cuiqi Li, Mary Lynch, and Emmett V. Schmidt Cancer Res 2007;67(22):10774-81
    38. Overload of the heat-shock protein H11/HSPB 8triggers melanoma cell apoptosis through activation of transforming growth factor-b-activated kinase 1; B Lil,CC Smith, JM Laing, MD Gober, L Liu2and L Aurelian Oncogene(2007)26,3521-3531
    39. Forced Expression of the H11 Heat Shock Protein Can Be Regulated by DNA Methylation and Trigger Apoptosis in Human Cells; Michael D. Gober, Cynthia C. Smith, Kaori Ueda, Jeffrey A. Toretsky, and Laure Aurelian; THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol.278, No.39, Issue of September 26, pp. 37600-37609,2003
    40. Identification of Cyclin D1-and Estrogen-Regulated Genes Contributing to Breast Carcinogenesis and Progression; Chuanwei Yang, Sally Trent, Viviana Ionescu-Tiba, Lan Lan, Toshi Shioda,Dennis Sgroi, and Emmett V. Schmidt; Cancer Res 2006; 66(24):11649-58
    41. Induction of HSP22 (HSPB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells; Xiankui Sun, Jean-Marc Fontaine, Ingrid Bartl, Babak Behnam, Michael J. Welsh, and Rainer Benndorf; Cell Stress & Chaperones (2007) 12 (4),307-319
    42. Identification of Small Heat Shock Protein B8 (HSP22) as a Novel TLR4 and Potential Involvement in the Pathogenesis of Rheumatoid Arthritis; Mieke F. Roelofs, Wilbert C. Boelens,Leo A. B. Joosten, Shahla Abdollahi-Roodsaz,Jeroen Geurts, Liza U. Wunderink,B. Willem Schreurs, Wim B. van den Berg, Timothy R. D. J. Radstake; The Journal of Immunology,2006,176:7021-7027 hereditary cerebral hemorrhage with amyloidosis (Dutch type) induce interleukin-6 secretion; Micha M.M. Wilhelmus a,b, Wilbert C. Boelens c, Matthijs Kox b, Marion L.C. Maat-Schieman d, Rob Veerhuis e,f,g, Robert M.W. de Waal b, Marcel M. Verbeek; Neurobiology of Aging 30 (2009) 229-240
    44. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy; Joy Irobi, Katrien Van Impe, Pavel Seeman, Albena Jordanova, Ines Dierick, Nathalie Verpoorten, Andrej Michalik, Els De Vriendt, An Jacobs, Veerle Van Gerwen, Krist'l Vennekens, Radim Mazanec,Ivailo Tournev, David Hilton-Jones, Kevin Talbot, Ivo Kremensky, Ludo Van Den Bosch, Wim Robberecht,Joel Vandekerckhove, Christine Van Broeckhoven, Jan Gettemans, Peter De Jonghe & Vincent Timmerman; NATURE GENETICS VOLUME 36| NUMBER 6| JUNE 2004:597-601
    45. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies:a genotype phenotype correlation study; Ines Dierick, Jonathan Baets,Joy Irobi, An Jacobs, Els De Vriendt, Tine Deconinck,Luciano Merlini,Peter Van den Bergh, Vedrana Milic Rasic,Wim Robberecht, Dirk Fischer,Raul Juntas Morales, Zoran Mitrovic,Pavel Seeman,Radim Mazanec, Andrzej Kochanski, Albena Jordanova, Michaela Auer-Grumbach,A. T. J. M. Helderman-van den Enden,John H. J.Wokke, Eva Nelis, Peter De Jonghe, and Vincent Timmerman; Brain (2008),131,1217-1227
    46. Small heat-shock protein 22 mutated in autosomal dominant Charcot-Marie-Tooth disease type 2L; Bei-sha Tang, Guo-hua Zhao, Wei Luo, Kun XiaFang Cai, Qian Pan, Ru-xu Zhang, Fu-feng Zhang, Xiao-min Liu,Biao Chen, Cheng Zhang, Lu Shen, Hong Jiang, Zhi-gao Long, He-ping Dai; Hum Genet (2005) 116:222-224
    47. Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome; Barbara Rohkamm, Mary M. Reilly, Hanns Lochmuller, Beate Schlotter-Weigel,Nina Barisic, Ludger Schols, Garth Nicholson, Davide Pareyson, Matilde Laura,Andreas R. Janecke, Schols, Garth Nicholson, Davide Pareyson, Matilde Laura,Andreas R. Janecke, Gabriel Miltenberger-Miltenyi, Elisabeth John,Carina Fischer, Franz Grill, William Wakeling, Mary Davis,Thomas R. Pieber, Michaela Auer-Grumbach; Journal of the Neurological Sciences 263 (2007) 100-106
    48. Program of Cell Survival Underlying Human and Experimental Hibernating Myocardium; Christophe Depre, Song-Jung Kim, Anna S. John, Yanhong Huang, Ornella E. Rimoldi,John R. Pepper, Gilles D. Dreyfus, Vinciane Gaussin, Dudley J. Pennell, Dorothy E. Vatner,Paolo G. Camici, Stephen F. Vatner; Circ Res. 2004;95:433-440
    49. Induction of stress response proteins and experimental renal ischemia/reperfusion; K.J. KELLY, NANCY R. BAIRD, and ADAM L. GREENE; Kidney International, Vol.59 (2001), pp.1798-1802
    50. Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/HSP22; Nadia Hedhli, Li Wang, Qian Wang, Eman Rashed, Yimin Tian, Xiangzhen Sui,Kiran Madura, and Christophe Depre; Cardiovascular Research (2008)77,497-505
    1. de Goer de Herve, M.G., et al., Differential effect of agonistic anti-CD40 on human mature and immature dendritic cells:the Janus face of anti-CD40. Blood,2005.106(8):p. 2806-14.
    2. Law, C.L., et al., Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res,2005.65(18):p.8331-8.
    3. Taylor, S.T., J.A. Hickman, and C. Dive, Survival signals within the tumour microenvironment suppress drug-induced apoptosis:lessons learned from B lymphomas. Endocr Relat Cancer,1999.6(1):p.21-3.
    4. Rothstein, T.L., Inducible resistance to Fas-mediated apoptosis in B cells. Cell Res, 2000.10(4):p.245-66.
    5. Benson, R.J., B.S. Hostager, and G.A. Bishop, Rapid CD40-mediated rescue from CD95-induced apoptosis requires TNFR-associated factor-6 and PI3K. Eur J Immunol, 2006.36(9):p.2535-43.
    6. Baxendale, A.J., et al., Constitutive activation of the CD40 pathway promotes cell transformation and neoplastic growth. Oncogene,2005.24(53):p.7913-23.
    7. Georgopoulos, N.T., et al., A novel mechanism of CD40-induced apoptosis of carcinoma cells involving TRAF3 and JNK/AP-1 activation. Cell Death Differ,2006. 13(10):p.1789-801.
    8. Tong, A.W., et al., Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin Cancer Res,2001.7(3):p.691-703.
    9. Buhtoiarov, I.N., et al., CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol,2005.174(10):p.6013-22.
    10. Salomoni, P., I. Guernah, and P.P. Pandolfi, The PML-nuclear body associated protein Daxx regulates the cellular response to CD40. Cell Death Differ,2006.13(4):p. 672-5.
    11. Hollmann, C.A., et al., Constitutive activation of extracellular signal-regulated kinase predisposes diffuse large B-cell lymphoma cell lines to CD40-mediated cell death. Cancer Res,2006.66(7):p.3550-7.
    12. Qi, C.J., et al., Cross-linking of CD40 using anti-CD40 antibody,5C11, has different effects on XG2 multiple myeloma cells. Immunol Lett,2004.93(2-3):p.151-8.
    13. Honeychurch, J., M.J. Glennie, and T.M. Illidge, Cyclophosphamide inhibition of anti-CD40 monoclonal antibody-based therapy of B cell lymphoma is dependent on CD11b+cells. Cancer Res,2005.65(16):p.7493-501.
    14. Fujita, N., et al., CD40 ligand promotes priming of fully potent antitumor CD4(+) T cells in draining lymph nodes in the presence of apoptotic tumor cells. J Immunol,2001. 167(10):p.5678-88.
    15. Funakoshi, S., et al., Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood,1994.83(10):p.2787-94.
    16. Szocinski, J.L., et al., Activation-induced cell death of aggressive histology lymphomas by CD40 stimulation:induction of bax. Blood,2002.100(1):p.217-23.
    17. Vonderheide, R.H., et al., Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol,2007. 25(7):p.876-83.
    18. Li, Q., et al., Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. J Immunol, 2005.175(3):p.1424-32.
    19. Turner, J.G., et al., Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol,2001.166(1):p.89-94.
    20. Tai, Y.T., et al., Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res,2005.65(13):p.5898-906.
    21. Basseres, D.S. and A.S. Baldwin, Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene,2006.25(51):p. 6817-30.
    22. Loskog, A. and T.H. Totterman, CD40L-a multipotent molecule for tumor therapy. Endocr Metab Immune Disord Drug Targets,2007.7(1):p.23-8.
    23. van Kooten, C. and J. Banchereau, CD40-CD40 ligand. J Leukoc Biol,2000.67(1): p.2-17.
    24. Kawabe, T., et al., The immune responses in CD40-deficient mice:impaired immunoglobulin class switching and germinal center formation. Immunity,1994.1(3):p. 167-78.
    25. Lum, H.D., et al., In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J Leukoc Biol,2006.79(6):p.1181-92.
    26. Bereta, M., et al., Immune properties of recombinant vaccinia virus encoding CD154 (CD40L) are determined by expression of virally encoded CD40L and the presence of CD40L protein in viral particles. Cancer Gene Ther,2004.11(12):p.808-18.
    27. Belousova, N., et al., Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol,2003.77(21):p.11367-77.
    28. Mathis, J.M., M.A. Stoff-Khalili, and D.T. Curiel, Oncolytic adenoviruses-selective retargeting to tumor cells. Oncogene,2005.24(52):p.7775-91.
    29. Kimura, T., et al., Antitumor immunity against bladder cancer induced by ex vivo expression of CD40 ligand gene using retro virus vector. Cancer Gene Ther,2003.10(11): p.833-9.
    30. Loskog, A., et al., Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor Microenvironment. J Immunol,2004.172(11):p.7200-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700