猪肌肉组织差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪肉是肉类消费的重要组成部分,是人类获得蛋白质营养物质的主要途径之一,在国人饮食结构中占据绝对的比重;而猪不仅可作为肉产品的重要来源,还可作为模式器官动物。因此,深入探讨猪骨骼肌生长发育的机制不仅对畜牧生产有重要意义,同时也为人类医学研究提供重要补充。本研究通过建立的以双向电泳和质谱为基础的蛋白质组学分析平台,开展猪肌肉组织蛋白质组学相关研究,系统分析了国内外典型品种(梅山猪与大白猪)及梅山猪不同发育时期骨骼肌的蛋白质组学差异,并就部分差异蛋白在基因水平做了进一步的研究,以期为阐明猪肌肉品质形成的分子机制奠定了分子基础。取得的主要研究结果如下:
     1.从不同的样品处理、不同上样量、不同pH IPG胶条的选择、不同二向胶浓度、不同染色方法等方面对猪肌肉组织蛋白双向电泳分离条件进行优化,并就一些常见问题进行了详细分析,从而建立了猪肌肉组织蛋白双向电泳分离技术。结果显示,对于猪肌肉组织样品,采用液氮研磨+超声破碎的策略比单纯液氮研磨更合适,蛋白质溶解性更好,核酸污染少,图谱比较均匀清晰;18cm pH4-7的胶条比pH3-10NL分离效果好;对于银染18cm pH4-7的胶条150μg上样量比较适宜。与前人相比,采用本方法获得图谱的分辨率及重复性都有所提高。
     2.采用基于双向电泳和质谱技术为基础的蛋白质组学方法对纯种大白猪和梅山猪背最长肌进行蛋白质组学分析。共发现25个差异表达蛋白点,梅山猪中高表达的10个,而大白猪中高表达的15个,其中20个蛋白点经MALDI-TOF-MS方法成功鉴定,得到14个不同的蛋白,这些蛋白按功能可以分为4类:代谢相关蛋白,防御与应激相关蛋白,肌纤维结构相关蛋白,其他未归类蛋白。此外,我们采用荧光定量PCR方法对其中7个差异表达蛋白做了mRNA水平上的表达分析,结果表明蛋白质水平和mRNA水平存在较理想的相关性。同时我们还分析了大白猪和梅山猪背最长肌肌球蛋白重链4种亚型(Ⅰ、ⅡA、ⅠB和ⅡX)在mRNA水平上的表达情况,结果显示Ⅰ型纤维在两品种间没显著差异(P>0.05),ⅡA和ⅡX在梅山猪中显著高表达(P<0.05),而ⅡB在大白猪中显著高表达(P<0.05)。
     3.利用18cm pH4-7的胶条,第二向12.5%的SDS-PAGE对梅山猪背最长肌总蛋白进行2-DE分离,共得到36块2-DE胶(4*3*3),采用软件对图像进行分析,经one-way ANOVA分析(P<0.01),共发现不同时期间差异表达蛋白点(>1.5倍)共99个,其中胚胎65天与出生后3天相比,有78个(下调27个,上调51个);出生后3天与60天相比,有70个(下调21个,上调49个);出生后60天与120天相比,有40个(下调22个,上调18个)。经MALDI-TOF/MS质谱成功鉴定90个蛋白点,得到66个不同的蛋白,按功能分为8类:代谢相关蛋白为最大一类,占25%,包括糖酵解代谢相关酶、线粒体氧化代谢相关酶及其他代谢相关酶类,糖酵解代谢相关酶随着肌肉的生长发育呈上调表达趋势,而线粒体氧化代谢相关酶呈相反趋势;第二大类为肌纤维调节相关蛋白,占19%,包括MLC1sa、MLC1sb、MyBP-H、ACTN3、CapZ-β等;细胞骨架蛋白占11%,包括desmin、cofilin-1、FSCN1、gelsolin等7个,这些蛋白随着肌肉的生长发育均呈下调表达趋势;细胞防御相关蛋白占14%,包括HSP27、Hsp60、Hsp90、DJ1、TCP1等;信号转导相关蛋白占6%;抗氧化与解毒相关蛋白8%;运输蛋白6%;其他未归类蛋白占11%。这些蛋白按细胞组成可分为6类,有43%的属于胞浆蛋白,26%的属于细胞骨架蛋白,6%的属于膜蛋白,11%的为线粒体蛋白,核蛋白占9%。用蛋白质组学数据与梅山猪背最长肌不同发育时期转录表达谱数据比较分析大部分基因在转录水平与翻译水平存在较好的一致性,只是在翻译水平由于存在翻译后修饰,蛋白水平的更为复杂。此外,我们通过设计特意引物对梅山猪背最长肌不同发育时期的肌动蛋白重链的四种亚型进行荧光定量分析,发现在胚胎65天ⅡX和ⅡB型纤维已开始表达,但占比例很少,主要为Ⅰ型纤维(81.5%),而就整个发育过程Ⅰ型纤维由胚胎65天的81.5%递减到出生后120天的15.5%,Ⅱb型纤维却由2.8%递增到48.7%,四种肌纤维在猪肌肉发育过程中处于Ⅰ(?)ⅠA(?)ⅡX(?)ⅡB相互转换的动态平衡状态。另外,我们采用Western Blot方法,选取AFP、vimentin、desmin和HSP90等4个蛋白进行验证分析,发现结果与蛋白质组学数据较一致,进一步说明了我们2-DE和质谱结果的可靠性。
     4.选取ATP5B、ATP5A、14-3-3ζ等三个差异表达蛋白对应的基因,作了进一步的分析。组织表达谱显示:ATP5B和ATP5A在睾丸、子宫、脂肪等组织相对高表达,心、睾丸、卵巢、小肠等组织次之,肌肉和肺中的表达相对较低,而在各组织中ATP5B的表达量均比ATP5A高;发现14-3-3ζ基因转录本1在脂肪中表达量最高,心脏、小肠和肌肉次之,肝脏、大脑、睾丸、卵巢中等表达,在肾脏和胃中表达量最低,转录本2相对于转录子1在各组织中表达丰度都很低,从两个转录本在不同类型肌肉表达分布来看,14-3-3ζ基因的肌纤维特异性似乎不明显。不同时期发育表达谱显示:ATP5B和ATP5A在3天和胚胎期高表达,生长后期表达量较低,而梅山中在大多数时期都比大白高;14-3-3ζ基因的两个转录子在胚胎65天特异的高表达,这与差异蛋白质组学分析中的该基因蛋白水平表达是一致的,而不同时期品种间相比,两个转录本在大白中的表达均高于梅山。多态性分析:ATP5B基因第八外显子75处有—A/G突变,利用梅山猪和大白猪杂交组建的F2代资源家系对该位点进行关联分析,发现与肥肉率、瘦肥肉比例、内脂率、肌内脂肪含量、肌内水分含量等肉质性状存在显著相关(P<0.05);14-3-3ζ基因第五外显子77bp处有—T/C突变,该位点只与皮率和瘦肉率两个性状存在显著相关(P<0.05),TC基因型比TT基因型具有更高的瘦肉率更低的皮率,与其他的性状关联不显著。
Skeletal muscle represents the most abundant tissue in the adult mammalian body and plays a central role in motility and the control of whole-body metabolism. So understanding of growth and development of skeletal muscle is one of the most important goals in meat production science and is also related to particular aspects of human medicine. In this study, the platform for porcine skeletal muscle proteomics research was established using two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The skeletal muscle proteome of different pig breeds and different development stages was analyzed. Screening and molecular biological analysis of differentially expressed proteins were carried. The aim is to understand the molecular mechanism of meat quality formation. The results are as follws:
     1. The experimental conditions of two-dimensional gel electrophoresis in porcine skeletal muscle was optimized by different experimental conditions, including different sample processing, different loading quantities, different pH IPG strips, different concentration in gels, different methods for gel staining, et al. The results show that the method of grinding in liquid nitrogen and ultrasonication is more appropriate than the method of grinding in liquid nitrogen for porcine skeletal muscle. The better map of two-dimensional gel electrophoresis can be obtained; low nucleic acid contamination and more protein spots can be separated from the method of grinding in liquid nitrogen and ultrasonication. Compared with previous studies, the 2-DE maps from this work have better resolution and repeatability.
     2. Western and indigenous Chinese pig breeds show obvious differences in muscle growth and meat quality, however, the underlying molecular mechanism remains unclear. In this study, proteome analysis of longissimus dorsi muscle between purebred Meishan and Large White pigs was performed by two-dimensional gel electrophoresis and mass spectrometry. A total of 25 protein spots were differentially expressed in the two breeds. The 14 identified proteins could be divided into 4 groups:energy metabolism, defense and stress, myofibrillar filaments, and other unclassified proteins. Quantitative real-time PCR was used to analyze the partly differentially expressed proteins in mRNA level, which revealed a positive correlation between the content of the proteins and their mRNA levels. We also analyzed the mRNA levels of myosin heavy chain isoforms using quantitative real-time PCR. The results indicated that IIA and IIX fibers were elevated in Meishan pigs, whereas the IIB fiber was more highly expressed in Large White pigs. To the best of our knowledge, this was the first proteomics-based investigation of total skeletal muscle protein in different pig breeds, and these results may provide valuable information for understanding the molecular mechanism responsible for breed specific differences in growth performance and meat quality.
     3. We used 2-DE method in combination with mass spectrometric.2-DE gels were generated in triplicate at four stages from embryo to mature. Using Image Master 2D Platinum software Version 6.0, protein spots were quantified on every gel at stages 65 dpc, 3d,60d and 120d. Only spots present in all three animals per group and under at least 2 of 4 conditions were taken into consideration. Statistical analysis (one-way ANOVA, P<0.01) revealed 78 proteins significantly altered in expression in 65 dpc compared to 3d (51 up-and 27 down-regulated); 70 altered proteins in 3d compared to 60d (49 up- and 21 down-regulated); and 40 alterations in 60d compared to 120d (18 up- and 22 down-regulated). In total,99 protein spots were altered in expression during development, which was consistently found between neighbouring stages points investigated. Therefore, most differential spots characterized 65dpc animals, whereas 60-day and 120-day adults exhibited similar patterns of expression. For subsequent MALDI-TOF-MS analysis, a total of 90 spots were successfully identified, and matched to 66 different proteins. To compare the functions of differential proteins, we collected the functional annotations (biological process and molecular function) of all identified proteins. It is evident that a large portion (25%) of the proteins has roles in metabolism. The second largest group of proteins (19%) was identified as myofibrillar regulatory protein, whereas 11% could not be classified on the basis of available information. Other major categories comprised of proteins involved in celluar defense and stress (14%), cytoskeleton (11%), signal transduction (6%), antioxidant and detoxification (8%) and transport (6%). The 66 differential proteins in control term placenta localized to the cytoplasm (43%), cytoskeleton (26%), membrane (6%), mitochondria (11%), nucleus (9%), and other (5%). Four proteins (desmin, AFP, vimentin and HSP90) were confirmed by immunoblotting. It is highly likely that these proteins are closely related with the 2-DE and MS results. Comparing with the 2-DE experiments, the results obtained with microarrays were significantly more comprehensive. To demonstrate whether protein expression levels changed during skeletal muscle development can be correlated with their mRNA expression levels, we assessed the differential expression at the RNA level of those proteins that were identified as relatively abundant in either stage. The expression patterns of most differential proteins showed a positive correlation with their gene expression at the transcript level during skeletal muscle development.
     4. Three differentially expressed proteins, ATP5B, ATP5A and 14-3-3ζwere further analyzed in mRNA expression levels of spatio-temporal, polymorphism detection and association analysis with meat quality traits.
引文
1. 王镜岩.生物化学下册.高等教育出版社.2002,第三版.
    2. 左波.猪34和7号染色体QTL定位及六个候选基因的分离鉴定.[博士学位论文].武汉:华中农业大学,2004.
    3. 任竹青.大白×梅山猪杂交组合亲子代间脂肪组织差异表达基因的分离和功能初步研究.[博士学位论文].武汉:华中农业大学,2007.
    4. 何大澄,肖雪媛.差异蛋白质组学及其应用.北京师范大学学报(自然科学版).2002,38:559-561.
    5. 夏其昌曾嵘.蛋白质化学与蛋白质组学.科学技术出版社,第一版.2004.
    6. 郭尧君.蛋白质双向电泳技术.科学技术出版社,第二版.2005.
    7. 熊远著,邓昌彦.种猪测定原理与方法.北京:中国农业出版社.1999,57-118.
    8. 许国旺.代谢组学--方法与应用.北京:科学出版社.2008,1-3.
    9. 钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社.2003,8-21.
    10. 陈忠斌.生物芯片技术.化学工业出版社,第一版.2005.
    11. Abbott A. And now for the proteome. Nature.2001,409:747.
    12. Asara J M, Zhang X, Zheng B, Christofk H H, Wu N, Cantley L C. In-Gel Stable-Isotope Labeling (ISIL):a strategy for mass spectrometry-based relative quantification. J Proteome Res.2006,5:155-163.
    13. Ashmore C R, Addis P B, Doerr L. Development of muscle fibers in the fetal pig. J Anim Sci.1973,36:1088-1093.
    14. Bai Q, McGillivray C, da Costa N, Dornan S, Evans G, Stear M J, Chang K C. Development of a porcine skeletal muscle cDNA microarray:analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics.2003,4: 8.
    15. Barrett J, Brophy P M, Hamilton J V. Analysing proteomic data. Int J Parasitol. 2005,35:543-553.
    16. Bassel-Duby R, Olson E N. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem.2006,75:19-37.
    17. Bauchart C, Remond D, Chambon C, Mirand P P, Savary-Auzeloux I, Reynes C, Morzel M. Small peptides (<5 kDa) found in ready-to-eat beef meat. Meat Sci. 2006,74:658-666.
    18. Berthier C, Blaineau S. Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review. Biol Cell.1997,89:413-434.
    19. Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Gellin J, Ollivier L, Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genet Sel Evol.2001,33:289-309.
    20. Bouley J, Chambon C, Picard B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics.2004,4: 1811-1824.
    21. Bouley J, Meunier B, Chambon C, De Smet S, Hocquette J F, Picard B. Proteomic analysis of bovine skeletal muscle hypertrophy. Proteomics.2005,5:490-500.
    22. Boyer P D. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997,66:717-749.
    23. Bryan B A, Li D, Wu X, Liu M. The Rho family of small GTPases:crucial regulators of skeletal myogenesis. Cell Mol Life Sci.2005,62:1547-1555.
    24. Bunney T D, van Walraven H S, de Boer A H.14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A.2001,98: 4249-4254.
    25. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri G M, Carnemolla B, Orecchia P, Zardi L, Righetti P G. Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis.2004,25:1327-1333.
    26. Chakraborty A, Regnier F E. Global internal standard technology for comparative proteomics. J Chromatogr A.2002,949:173-184.
    27. Chaze T, Bouley J, Chambon C, Barboiron C, Picard B. Mapping of alkaline proteins in bovine skeletal muscle. Proteomics.2006,6:2571-2575.
    28. Chaze T, Meunier B, Chambon C, Jurie C, Picard B. In vivo proteome dynamics during early bovine myogenesis. Proteomics.2008,8:4236-4248.
    29. Chaze T, Meunier B, Chambon C, Jurie C, Picard B. Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle. Animal.2009,3: 980-1000.
    30. Chen Q Gharib T G, Huang C-C, Taylor J M G,Misek D E, Kardia S L R, Giordano T J, Iannettoni M D, Orringer M B, Hanash S M, Beer D G. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular and Cellular Proteomics. 2002,1:304-313.
    31. Chevalier F. Highlights on the capacities of Gel-based proteomics. Proteome Sci. 2010,8:1-35
    32. Choi S J, Park S Y, Han T H.14-3-3 tau associates with and activates the MEF2D transcription factor during muscle cell differentiation. Nucleic Acids Res.2001,29: 2836-2842.
    33. Choi Y M, Kim B C. Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livestock Sci.2009,122:105-118.
    34. Chong B E, Hamler R L, Lubman D M, Ethier S P, Rosenspire A J, Miller F R. Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis. Anal Chem.2001,73:1219-1227.
    35. Clark K A, McElhinny A S, Beckerle M C, Gregorio C C. Striated muscle cytoarchitecture:an intricate web of form and function. Annu Rev Cell Dev Biol. 2002,18:637-706.
    36. Costa N, McGillivray C, Chang K C. Postnatal myosin heavy chain isoforms in prenatal porcine skeletal muscles:insights into temporal regulation. Anat Rec A Discov Mol Cell Evol Biol.2003,273:731-740.
    37. Davies A S. Postnatal changes in the histochemical fibre types of procine skeletal muscle. J Anat.1972,113:213-240.
    38. Davoli R, Fontanesi L, Zambonelli P, Bigi D, Gellin J, Yerle M, Milc J, Braglia S, Cenci V, Cagnazzo M, Russo V. Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. Anim Genet.2002,33:3-18.
    39. Desmarais V, Ghosh M, Eddy R, Condeelis J. Cofilin takes the lead. J Cell Sci. 2005,118:19-26.
    40. Di Luccia A, Picariello G, Cacace G, Scaloni A, Faccia M, Liuzzi V, Alviti G, Musso S S. Proteomic analysis of water soluble and myofibrillar protein changes occurring in dry-cured hams. Meat Sci.2005,69:479-491.
    41. Dijkstra M, Vonk R J, Jansen R C. SELDI-TOF mass spectra:a view on sources of variation. J Chromatogr B Analyt Technol Biomed Life Sci.2007,847:12-23.
    42. Doherty M K, McLean L, Hayter J R, Pratt J M, Robertson D H L, El-Shafei A, Gaskell S J, Beynon R J. The proteome of chicken skeletal muscle:Changes in soluble protein expression during growth in a layer strain. Proteomics.2004,4: 2082-2093.
    43. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science.2006, 312:212-217.
    44. Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomic profiling of pathological and aged skeletal muscle fibres by peptide mass fingerprinting. Int J Mol Med.2007,19:547-564.
    45. Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics.2009,9:989-1003.
    46. Duguez S, Bihan M C, Gouttefangeas D, Feasson L, Freyssenet D. Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. Am J Physiol Endocrinol Metab.2003,285: E206-215.
    47. Edwards D B, Ernst C W, Raney N E, Doumit M E, Hoge M D, Bates R O. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population:Ⅱ. Carcass and meat quality traits. J Anim Sci.2008a,86:254-266.
    48. Edwards D B, Ernst C W, Tempelman R J, Rosa G J, Raney N E, Hoge M D, Bates R O. Quantitative trait loci mapping in an F2 Duroc x Pietrain resource population: Ⅰ. Growth traits. J Anim Sci.2008b,86:241-253.
    49. Edwards D B, Tempelman R J, Bates R O. Evaluation of Duroc- vs. Pietrain-sired pigs for growth and composition. J Anim Sci.2006,84:266-275.
    50. Ellmerer M, Schaupp L, Brunner G A, Sendlhofer G, Wutte A, Wach P, Pieber T R. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. Am J Physiol Endocrinol Metab.2000,278:E352-356.
    51. Fields S. Proteomics. Proteomics in genomeland. Science.2001,291:1221-1224.
    52. Fischer D, Matten J, Reimann J, Bonnemann C, Schroder R. Expression, localization and functional divergence of alphaB-crystallin and heat shock protein 27 in core myopathies and neurogenic atrophy. Acta Neuropathol.2002,104: 297-304.
    53. Fountoulakis M, Langen H. Identification of proteins by matrix-assisted laser desorption ionization-mass spectrometry following in-gel digestion in low-salt, nonvolatile buffer and simplified peptide recovery. Anal Biochem.1997,250: 153-156.
    54. Frederickson R M. Zyomyx. Protein chips:protein chemistry comes to the surface. Chem Biol.2002,9:763-765.
    55. Fu H, Subramanian R R, Masters S C.14-3-3 proteins:structure, function, and regulation. Annu Rev Pharmacol Toxicol.2000,40:617-647.
    56. Fung E T, Thulasiraman V, Weinberger S R, Dalmasso E A. Protein biochips for differential profiling. Curr Opin Biotechnol.2001,12:65-69.
    57. Gannon J, Staunton L, O'Connell K, Doran P, Ohlendieck K. Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med.2008,22:33-42.
    58. Garcia-Campana A M, Gamiz-Gracia L, Baeyens W R, Ales Barrero F. Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci.2003,-793:49-74.
    59. Geesink G H, Koohmaraie M. Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. J Anim Sci.1999,77:1490-1501.
    60. Gelfi C, Vigano A, Ripamonti M, Pontoglio A, Begum S, Pellegrino M A, Grassi B, Bottinelli R, Wait R, Cerretelli P. The human muscle proteome in aging. J Proteome Res.2006,5:1344-1353.
    61. Gonnet F, Bouazza B, Millot G A, Ziaei S, Garcia L, Butler-Browne G S, Mouly V, Tortajada J, Danos O, Svinartchouk F. Proteome analysis of differentiating human myoblasts by dialysis-assisted two-dimensional gel electrophoresis (DAGE). Proteomics.2008,8:264-278.
    62. Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics.2004,4:3665-3685.
    63. Gorodkin J, Cirera S, Hedegaard J, Gilchrist M J, Panitz F, Jorgensen C, Scheibye-Knudsen K, Arvin T, Lumholdt S, Sawera M, Green T, Nielsen B J, Havgaard J H, Rosenkilde C, Wang J, Li H, Li R, Liu B, Hu S, Dong W, Li W, Yu J, Staefeldt H H, Wernersson R, Madsen L B, Thomsen B, Hornshoj H, Bujie Z, Wang X, Bolund L, Brunak S, Yang H, Bendixen C, Fredholm M. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags. Genome Biol.2007,8:R45.
    64. Greenberg C C, Connelly P S, Daniels M P, Horowits R. Krpl (Sarcosin) promotes lateral fusion of myofibril assembly intermediates in cultured mouse cardiomyocytes. Exp Cell Res.2008,314:1177-1191.
    65. Guo Y M, Lee G J, Archibald A L, Haley C S. Quantitative trait loci for production traits in pigs:a combined analysis of two Meishan×Large White populations. Anim Genet.2008,39:486-495.
    66. Gygi S P, Corthals G L, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A.2000,97:9390-9395.
    67. Hakimov H A, Walters S, Wright T C, Meidinger R G, Verschoor C P, Gadish M, Chiu D K, Stromvik M V, Forsberg C W, Golovan S P. Application of iTRAQ to catalogue the skeletal muscle proteome in pigs and assessment of effects of gender and diet dephytinization. Proteomics.2009,9:4000-4016.
    68. Hamelin M, Sayd T, Chambon C, Bouix J, Bibe B, Milenkovic D, Leveziel H, Georges M, Clop A, Marinova P, Laville E. Proteomic analysis of ovine muscle hypertrophy. J Anim Sci.2006,84:3266-3276.
    69. Hamelin M, Sayd T, Chambon C, Bouix J, Bibe B, Milenkovic D, Leveziel H, Georges M, Clop A, Marinova P, Laville E. Differential expression of sarcoplasmic proteins in four heterogeneous ovine skeletal muscles. Proteomics.2007,7: 271-280.
    70. Hein S, Kostin S, Heling A, Maeno Y, Schaper J. The role of the cytoskeleton in heart failure. Cardiovasc Res.2000,45:273-278.
    71. Hemmer W, Skarli M, Perriard J C, Wallimann T. Effect of okadaic acid on protein phosphorylation patterns of chicken myogenic cells with special reference to creatine kinase. FEBS Lett.1993,327:35-40.
    72. Hermeking H. The 14-3-3 cancer connection. Nat Rev Cancer.2003,3:931-943.
    73. Hocquette J. F. I O-M, D. Pethick, P. Herpin and X. Fernandez. Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals Livestock Production Sci.1998,56:115-143.
    74. Hojlund K, Bowen B P, Hwang H, Flynn C R, Madireddy L, Thangiah G, Meyer C, Mandarino L J, Yi Z. In vivo Phosphoproteome of Human Skeletal Muscle Revealed by Phosphopeptide Enrichment and HPLC-ESI-MS/MS. J Proteome Res. 2009,
    75. Hollan S, Dey I, Szollar L, Horanyi M, Magocsi M, Harsanyi V, Farkas T. Erythrocyte lipids in triose-phosphate isomerase deficiency. Proc Natl Acad Sci U S A.1995,92:268-271.
    76. Hollung K, Grove H, Faergestad E M, Sidhu M S, Berg P. Comparison of muscle proteome profiles in pure breeds of Norwegian Landrace and Duroc at three different ages. Meat Sci.2009,81:487-492.
    77. Hollung K, Veiseth E, Jia X H, Faergestad E M, Hildrum K I. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Science.2007,77:97-104.
    78. Huff-Lonergan E, Parrish F C, Jr., Robson R M. Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. J Anim Sci.1995,73:1064-1073.
    79. Hwang I H, Park B Y, Kim J H, Cho S H, Lee J M. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci.2005,69:79-91.
    80. Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuwano R, Takahashi Y. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci U S A.1988,85:7084-7088.
    81. Izquierdo J M. Control of the ATP synthase beta subunit expression by RNA-binding proteins TIA-1, TIAR, and HuR. Biochem Biophys Res Commun. 2006,348:703-711.
    82. Jennen D G, Brings A D, Liu G, Jungst H, Tholen E, Jonas E, Tesfaye D, Schellander K, Phatsara C. Genetic aspects concerning drip loss and water-holding capacity of porcine meat. J Anim Breed Genet.2007,124 Suppl 1:2-11.
    83. Jia X, Hildrum K I, Westad F, Kummen E, Aass L, Hollung K. Changes in enzymes associated with energy metabolism during the early post mortem period in longissimus thoracis bovine muscle analyzed by proteomics. J Proteome Res.2006a, 5:1763-1769.
    84. Jia X, Hollung K, Therkildsen M, Hildrum K I, Bendixen E. Proteome analysis of early post-mortem changes in two bovine muscle types:M. longissimus dorsi and M. semitendinosis. Proteomics.2006b,6:936-944.
    85. Jorge I, Navarro R M, Lenz C, Ariza D, Porras C, Jorrin J. The holm oak leaf proteome:analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometry de novo sequencing and sequence similarity searching. Proteomics.2005,5:222-234.
    86. Josell A, von Seth G, Tornberg E. Sensory quality and the incidence of PSE of pork in relation to crossbreed and RN phenotype. Meat Sci.2003,65:651-660.
    87. Junn E, Taniguchi H, Jeong B S, Zhao X, Ichijo H, Mouradian M M. Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc Natl Acad Sci U S A.2005,102:9691-9696.
    88. Kahn P. From genome to proteome:looking at a cell's proteins. Science.1995,270: 369-370.
    89. Karrasch S, Walker J E. Novel features in the structure of bovine ATP synthase. J Mol Biol.1999,290:379-384.
    90. Kim C W, Hong Y H, Yun S-i, Lee S-R, Kim Y H, Kim M-S, Chung K H, Jung W Y, Kw E J. Use of Microsatellite Markers to Detect Quantitative Traiy Loci in Yorkshire Pigs. J Reprod Dev.2006a,52:229-237.
    91. Kim M S, Fielitz J, McAnally J, Shelton J M, Lemon D D, McKinsey T A, Richardson J A, Bassel-Duby R, Olson E N. Protein kinase Dl stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Mol Cell Biol.2008a, 28:3600-3609.
    92. Kim N K, Joh J H, Park H R, Kim O H, Park B Y, Lee C S. Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics.2004,4:3422-3428.
    93. Kim N K, Lim J H, Song M J, Kim O H, Park B Y, Kim M J, Hwang I H, Lee C S. Developmental proteomic profiling of porcine skeletal muscle during postnatal development. Asian-Aust J Anim Sci.2007,20:1612-1617.
    94. Kim N K, Lim J H, Song M J, Kim O H, Park B Y, Kim M J, Hwang I H, Lee C S. Comparisons of longissimus muscle metabolic enzymes and muscle fiber types in Korean and western pig breeds. Meat Sci.2008b,78:455-460.
    95. Kim N K, Lim J H, Song M J, Kim O H, Park B Y, Kim M J, Lee C S. Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds. Mol Cell Proteomics.2006b,5:S93-S93.
    96. Kislinger T, Gramolini A O, Pan Y, Rahman K, MacLennan D H, Emili A. Proteome dynamics during C2C12 myoblast differentiation. Mol Cell Proteomics.2005,4: 887-901.
    97. Koohmaraie M, Geesink G H. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci.2006,74:34-43.
    98. Koohmaraie M, Kent M P, Shackelford S D, Veiseth E, Wheeler T L. Meat tenderness and muscle growth:is there any relationship? Meat Sci.2002,62: 345-352.
    99. Kristensen L, Therkildsen M, Aaslyng M D, Oksbjerg N, Ertbjerg P. Compensatory growth improves meat tenderness in gilts but not in barrows. J Anim Sci.2004,82: 3617-3624.
    100. Kubota H. Function and regulation of cytosolic molecular chaperone CCT. Vitam Horm.2002,65:313-331.
    101. Kudryashov D S, Galkin V E, Orlova A, Phan M, Egelman E H, Reisler E. Cofilin cross-bridges adjacent actin protomers and replaces part of the longitudinal F-actin interface. J Mol Biol.2006,358:785-797.
    102. Kwasiborski A, Sayd T, Chambon C, Sante-Lhoutellier V, Rocha D, Terlouw C. Pig Longissimus lumborum proteome:Part Ⅰ. Effects of genetic background, rearing environment and gender. Meat Sci.2008a,80:968-981.
    103. Kwasiborski A, Sayd T, Chambon C, Sante-Lhoutellier V, Rocha D, Terlouw C. Pig Longissimus lumborum proteome:Part Ⅱ:Relationships between protein content and meat quality. Meat Sci.2008b,80:982-996.
    104. Lametsch R, Bendixen E. Proteome analysis applied to meat science:characterizing postmortem changes in porcine muscle. J Agric Food Chem.2001,49:4531-4537.
    105. Lametsch R, Karlsson A, Rosenvold K, Andersen H J, Roepstorff P, Bendixen E. Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem.2003,51:6992-6997.
    106. Lametsch R, Kristensen L, Larsen M R, Therkildsen M, Oksbjerg N, Ertbjerg P. Changes in the muscle proteome after compensatory growth in pigs. J Anim Sci. 2006,84:918-924.
    107. Lametsch R, Roepstorff P, Bendixen E. Identification of protein degradation during post-mortem storage of pig meat. J Agric Food Chem.2002,50:5508-5512.
    108. Lametsch R, Roepstorff P, Moller H S, Bendixen E. Identification of myofibrillar substrates for mu-calpain. Meat Sci.2004,68:515-521.
    109. Laville E, Sayd T, Sante-Lhoutellier V, Morzel M, Labas R, Franck M, Chambon C, Monin G. Characterisation of PSE zones in semimembranosus pig muscle. Meat Sci. 2005,70:167-172.
    110. Laville E, Sayd T, Terlouw C, Chambon C, Damon M, Larzul C, Leroy P, Glenisson J, Cherel P. Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat. J Agric Food Chem.2007,55: 5834-5841.
    111. Lefaucheur L, Ecolan P, Plantard L, Gueguen N. New insights into muscle fiber types in the pig. Journal of Histochemistry & Cytochemistry.2002,50:719-730.
    112. Lefaucheur L, Ecolan P. Changes in muscle proteome during development in the pig. ARCHIV FUR TIERZUCHT.2007,50:15-16
    113. Lefaucheur L, Milan D, Ecolan P, Le Callennec C. Myosin heavy chain composition of different skeletal muscles in Large White and Meishan pigs. J Anim Sci.2004,82: 1931-1941.
    114. Lefaucheur L, Vigneron, P. Post-natal changes in some histochemical and enzymatic characteristics of three pig muscles. Meat sci.1986,16:199-216.
    115. Lev N, Roncevic D, Ickowicz D, Melamed E, Offen D. Role of DJ-1 in Parkinson's disease. J Mol Neurosci.2006,29:215-225.
    116. Lexell J, Taylor C C, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J Neurol Sci.1988,84:275-294.
    117. Lim D S, Roberts R, Marian A J. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy:insight into the pathogenesis of phenotypes. J Am Coll Cardiol.2001,38:1175-1180.
    118. Lin C S, Hsu C W. Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J Anim Sci.2005,83:2075-2086.
    119. Liu B H. Statistical Genomics:Linkage, Mapping and QTL Analysis. CRC Press LLC. Boca Raton.1998,404-409.
    120. Liu H, Lin D, Yates J R,3rd. Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques.2002,32:898,900,902 passim.
    121. Liu Y, Randall W R, Schneider M F. Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle. J Cell Biol. 2005,168:887-897.
    122. Liu Y, Steinacker J M. Changes in skeletal muscle heat shock proteins:pathological significance. Front Biosci.2001,6:D12-25.
    123. Lombardi A, Silvestri E, Cioffi F, Senese R, Lanni A, Goglia F, de Lange P, Moreno M. Defining the transcriptomic and proteomic profiles of rat ageing skeletal muscle by the use of a cDNA array,2D- and Blue native-PAGE approach. J Proteomics. 2009,72:708-721.
    124. Lu J, McKinsey T A, Nicol R L, Olson E N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A.2000,97:4070-4075.
    125. Lu Z J, Song Q F, Jiang S S, Song Q, Wang W, Zhang G H, Kan B, Chen L J, Yang J L, Luo F, Qian Z Y, Wei Y Q, Gou L T. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen. BMC Cancer.2009,9:16.
    126. MacBeath G. Protein microarrays and proteomics. Nat Genet.2002,32 Suppl: 526-532.
    127. Magnin J, Masselot A, Menzel C, Colinge J. OLAV-PMF:a novel scoring scheme for high-throughput peptide mass fingerprinting. J Proteome Res.2004,3:55-60.
    128. Mann M, Hendrickson R C, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem.2001,70:437-473.
    129. Marouga R, David S, Hawkins E. The development of the DIGE system:2D fluorescence difference gel analysis technology. Anal Bioanal Chem.2005,382: 669-678.
    130. McArdle A, Vasilaki A, Jackson M. Exercise and skeletal muscle ageing:cellular and molecular mechanisms. Ageing Res Rev.2002,1:79-93.
    131. McDaneld T G, Smith T P L, Doumit M E, Miles J R, Coutinho L L, Sonstegard T S, Matukumalli L K, Nonneman D J, Wiedmann R T. MicroRNA transcriptome profiles during swine skeletal muscle development. BMC Genomics.2009,10: Article No.:77.
    132. McGregor E, Kempster L, Wait R, Gosling M, Dunn M J, Powell J T. F-actin capping (CapZ) and other contractile saphenous vein smooth muscle proteins are altered by hemodynamic stress:a proteonomic approach. Mol Cell Proteomics. 2004,3:115-124.
    133. McKinsey T A, Zhang C L, Lu J, Olson E N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature.2000,408:106-111.
    134. Meunier B, Bouley J, Piec I, Bernard C, Picard B, Hocquette J F. Data analysis methods for detection of differential protein expression in two-dimensional gel electrophoresis. Analytical Biochemistry.2005,340:226-230.
    135. Milan D, Bidanel J P, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol.2002,34:705-728.
    136. Milner D J, Mavroidis M, Weisleder N, Capetanaki Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol.2000,150: 1283-1298.
    137. Miura I, Nakajima T, Ohtani H, Kashiwagi A, Nakamura M. Molecular cloning of cDNA for the zeta isoform of the 14-3-3 protein:homologous sequences in the 3'-untranslated region of frog and human zeta isoforms. Zoolog Sci.1997,14: 771-775.
    138. Morzel M, Chambon C, Hamelin M, Sante-Lhoutellier V, Sayd T, Monin G. Proteome changes during pork meat ageing following use of two different pre-slaughter handling procedures. Meat Sci.2004,67:689-696.
    139. Mpamhanga C P, Chen B, McLay I M, Willett P. Knowledge-based interaction fingerprint scoring:a simple method for improving the effectiveness of fast scoring functions. J Chem Inf Model.2006,46:686-698.
    140. Neckelmann N, Warner C K, Chung A, Kudoh J, Minoshima S, Fukuyama R, Maekawa M, Shimizu Y, Shimizu N, Liu J D, et al. The human ATP synthase beta subunit gene:sequence analysis, chromosome assignment, and differential expression. Genomics.1989,5:829-843.
    141. Neufer P D, Benjamin I J. Differential expression of B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J Biol Chem.1996,271:24089-24095.
    142. O'Farrell P H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem.1975,250:4007-4021.
    143. Oron E, Mannervik M, Rencus S, Harari-Steinberg O, Neuman-Silberberg S, Segal D, Chamovitz D A. COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melariogaster. Development.2002,129: 4399-4409.
    144. Paweletz C P, Trock B, Pennanen M, Tsangaris T, Magnant C, Liotta L A, Petricoin E F,3rd. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers. 2001,17:301-307.
    145. Pette D, Staron R S. Mammalian skeletal muscle fiber type transitions. Int Rev Cytol.1997,170:143-223.
    146. Picard B, Lefaucheur L, Berri C, Duclos M J. Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev.2002,42:415-431.
    147. Piec I, Listrat A, Alliot J, Chambon C, Taylor R G, Bechet D. Differential proteome analysis of aging in rat skeletal muscle. Faseb J.2005,19:1143-1145.
    148. Poon T C, Johnson P J. Proteome analysis and its impact on the discovery of serological tumor markers. Cin Chim Acta.2001,313:231-239.
    149. Rabilloud T, Strub J M, Carte N, Luche S, Van Dorsselaer A, Lunardi J, Giege R, Florentz C. Comparative proteomics as a new tool for exploring human mitochondrial tRNA disorders. Biochemistry.2002,41:144-150.
    150. Rappsilber J, Mann M. What does it mean to identify a protein in proteomics? Trends Biochem Sci.2002,27:74-78.
    151. Rehfeldt C, Fiedler I, Dietl G, Ender K. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Sci.2000,66: 177-188.
    152. Rehfeldt C, Kuhn G. Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J Anim Sci.2006, 84Suppl:E113-123.
    153. Salazar-Olivo L A, Castro-Munozledo F, Kuri-Harcuch W. A preadipose 3T3 cell variant highly sensitive to adipogenic factors and to human growth hormone. J Cell Sci.1995,108 (Pt 5):2101-2107.
    154. Sayd T, Morzel M, Chambon C, Franck M, Figwer P, Larzul C, Le Roy P, Monin G, Cherel P, Laville E. Proteome analysis of the sarcoplasmic fraction of pig Semimembranosus muscle:Implications on meat color development. J Agric Food Chem.2006,54:2732-2737.
    155. Schiaffino S, Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol.1994,77:493-501.
    156. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins:gene regulation and functional significance. Physiol Rev.1996,76:371-423.
    157. Shah S B, Su F C, Jordan K, Milner D J, Friden J, Capetanaki Y, Lieber R L. Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. J Exp Biol.2002,205:321-325.
    158. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem.1996,68:850-858.
    159. Soti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. British Journal of Pharmacology.2005,146:769-780.
    160. Strochlic L, Cartaud A, Mejat A, Grailhe R, Schaeffer L, Changeux J P, Cartaud J. 14-3-3 gamma associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. Proc Natl Acad Sci U S A. 2004, 101:18189-18194.
    161. Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye M M, Tsui S K, Yoshida S, Ohno S. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem.2000,275:1095-1104.
    162. Swinbanks D. Government backs proteome proposal. Nature.1995,378:653.
    163. Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol.2007,8:R115.
    164. Taylor G K, Kim Y B, Forbes A J, Meng F, McCarthy R, Kelleher N L. Web and database software for identification of intact proteins using "top down" mass spectrometry. Anal Chem.2003,75:4081-4086.
    165. Teltathum T, Mekchay S. Proteome changes in Thai indigenous chicken muscle during growth period. Int J Biol Sci.2009,5:679-685.
    166. Tian Q, Stepaniants S B, Mao, Weng L, Feetham M C, Doyle M J, Yi E C, Dai H, Thorsson V, Eng J, Goodlett D, Berger J P, Gunter B, Linseley P S, Stoughton R B, Aebersold R, Collins S J, Hanlon W A, Hood L E. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics. 2004,3:960-969.
    167. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics. 2001,1:377-396.
    168. Vater R, Cullen M J, Harris J B. The expression of vimentin in satellite cells of regenerating skeletal muscle in vivo. Histochem J.1994,26:916-928.
    169. Verdin E, Dequiedt F, Kasler H G. Class Ⅱ histone deacetylases:versatile regulators. Trends Genet.2003,19:286-293.
    170. Wall D B, Parus S J, Lubman D M. Three-dimensional protein map according to pI, hydrophobicity and molecular mass. J Chromatogr B Analyt Technol Biomed Life Sci.2002,774:53-58.
    171. Wang A H, Kruhlak M J, Wu J, Bertos N R, Vezmar M, Posner B I, Bazett-Jones D P, Yang X J. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol.2000,20:6904-6912.
    172. Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium. Electrophoresis. 1995,16:1090-1094.
    173. Weiss A, Leinwand L A. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol.1996,12:417-439.
    174. Wernersson R, Schierup M H, Jorgensen F G, Gorodkin J, Panitz F, Staerfeldt H H, Christensen O F, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong G K, Yu J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L. Pigs in sequence space:a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics.2005,6:70.
    175. White B R, Lan Y H, McKeith F K, Novakofski J, Wheeler M B, McLaren D G. Growth and body composition of Meishan and Yorkshire barrows and gilts. J Anim Sci.1995,73:738-749.
    176. Wigmore P M, Stickland N C. Muscle development in large and small pig fetuses. J Anat.1983,137 (Pt 2):235-245.
    177. Wilkins M R, Sanchez J C, Gooley A A, Appel R D, Humphery-Smith Ⅰ, Hochstrasser D F, Williams K L. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev.1996,13:19-50.
    178. Wimmers K N, N. T. Jennen, D. G J. Tesfaye, D. Murani, E. Schellander, K. Ponsuksili, S. Relationship between myosin heavy chain isoform expression and muscling in several diverse pig breeds. Journal of Animal Science.2008,86: 795-803.
    179. Woychik R P, Klebig M L, Justice M J, Magnuson T R, Avner E D. Functional genomics in the post-genome era. Mutat Res.1998,400:3-14.
    180. Xu Y J, Jin M L, Wang L J, Zhang A D, Zuo B, Xu D Q, Ren Z Q, Lei M G, Mo X Y, Li F E, Zheng R, Deng C Y, Xiong Y Z. Differential proteome analysis of porcine skeletal muscles between Meishan and Large White. J Anim Sci.2009,87: 2519-2527.
    181. Yan J X, Wait R, Berkelman T, Harry R A, Westbrook J A, Wheeler C H, Dunn M J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis.2000,21:3666-3672.
    182. Yang C Y, Wang R, Wang S. M-score:a knowledge-based potential scoring function accounting for protein atom mobility. J Med Chem.2006a,49:5903-5911.
    183. Yang X, Lee W H, Sobott F, Papagrigoriou E, Robinson C V, Grossmann J G, Sundstrom M, Doyle D A, Elkins J M. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A.2006b,103: 17237-17242.
    184. Yang X J, Zhao R, Chen J, Xu Q, Wei X, Chen J. The developmental changes of myofibre types in LD muscle of Erhualian and Large White pigs. Chinese Journal of Veterinary Science.2005,25:89-94.
    185. Zhang A, Xie C, Chen H, Jin M. Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2. Proteomics.2008,8:3506-3515.
    186. Zhang C L, McKinsey T A, Olson E N. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A.2001,98: 7354-7359.
    187. Zhao S H, Nettleton D, Liu W, Fitzsimmons C, Ernst C W, Raney N E, Tuggle C K. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J Anim Sci.2003,81:2179-2188.
    188. Zhou X, Richon V M, Rifkind R A, Marks P A. Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A.2000,97:1056-1061.
    189. Zimmer J S, Monroe M E, Qian W J, Smith R D. Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev.2006,25:450-482.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700