白鲜皮抗内毒素的物质基础及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景
     脓毒症(sepsis)是感染引起的全身性炎症反应综合征(systemic inflammatory response syndrome,SIRS),是严重烧伤、创伤、感染、休克和大手术等后常见的并发症,进一步发展可导致脓毒性休克、多器官系统功能障碍综合征(MODS)等,目前已成为临床危重患者的主要死亡原因之一。大量研究表明,革兰阴性(Gram-negative,G-)菌的内毒素(lipopolysaccharide,LPS)是介导脓毒症的主要启动子,LPS经通过活性中心类脂A(lipid A)与相应受体TLR4(Toll like 4,TLR4)结合,诱导炎症反应细胞合成与释放多种炎症介质(如TNF-α、IL-1和IL-6等),介导脓毒症的发生。尽管对脓毒症的病理生理及防治策略已进行较为深入的研究,但迄今为止临床上尚无特殊有效的治疗措施。由于LPS的胞内信号转导极为复杂,LPS诱发的细胞活化及细胞因子级联效应一旦启动将不易控制。因此,阻断LPS的活性中心lipid A与其受体的结合是防治脓毒症的关键。
     中医中药是我国巨大的资源宝库,中医药在治疗脓毒症方面具有悠久历史。研究表明,多种中药具有抗菌、抗LPS作用,国内外研究也表明,来自天然的先导化合物中很有希望得到治疗疑难病症的新药,从天然化合物筛选得到的有效单体的命中率比合成化合物高。因此,如果能够从中药分离制备到与LPS作用的有效物质/单体,对开辟新的拮抗LPS措施具有重要意义。但由于中草药的化学组成多而复杂,其抗LPS作用的物质基础一直未得以阐明,其原因主要与中药单体研究中抗LPS靶点不明确及对活性组分无法及时跟踪检测有关。
     因此,本研究采用生物传感器技术,将LPS的生物活性中心lipid A包被于生物传感器疏水样品池,使lipid A结构上发挥重要生物学作用的亲水端外露,以此作为中药抗LPS活性组分筛选、跟踪和检测的靶点,从60种中药中选择出与lipid A亲和力较高的中药白鲜皮作为研究对象,结合传统的中药分离技术及高效液相色谱(high performance liquid chromatogram,HPLC)等方法,从白鲜皮水煎液中获得抗LPS的活性物质进行体外内抗LPS的活性研究。
     二、目的
     从中药白鲜皮中分离提取具有拮抗LPS活性的物质并研究其作用机制。
     三、材料与方法
     1.应用lipid A为靶点的生物传感器技术平台,观察60种中药水煎液与lipid A的结合反应;以白鲜皮水煎液为研究对象,通过大孔吸附树脂、正丁醇萃取、聚酰胺柱层析和HPLC,分离提取其中与lipid A的高亲和力结合的组分或产物;动态浊度法鲎试验检测HPLC分离产物DPR1~4对LPS的中和活性;通过质谱、红外光谱和核磁共振谱对其中的活性物质DPR-2进行结构分析。
     2.应用生物传感器技术平台,观察DPR-2与lipid A的结合作用并计算二者的平衡解离常数(Kd)值;动态浊度法鲎试验测定DPR-2对LPS的中和能力;激光扫描共聚焦显微镜(LSM)观察不同浓度DPR-2(0、8、16、32、64μg/ml)下异硫氰酸荧光素标记LPS(FITC-LPS,100 ng/ml)与小鼠单核/巨噬细胞RAW264.7细胞结合的荧光强度;免疫细胞化学法观察DPR-2干预后LPS(100 ng/ml)诱导的RAW264.7细胞TLR4的表达;采用实时荧光定量反转录聚合酶链反应(real-time RT-PCR)和ELISA法检测DPR-2干预后LPS(100 ng/ml)刺激的RAW264.7细胞TLR4、TNF-α和IL-6 mRNA的表达及细胞因子TNF-α和IL-6的分泌;MTT法检测DPR-2对RAW264.7细胞活力的影响。
     3.采用尾静脉注射LPS制备小鼠脓毒症和内毒素血症(endotoxemia,ETM)模型;观察DPR-2对致死剂量LPS攻击小鼠的保护作用;观察DPR-2对ETM小鼠的治疗作用:伤后2、6、12、24、48和72 h采集血和肝、肺组织标本,动态浊度法鲎试验检测血浆LPS水平;ELISA法检测血浆TNF-α、IL-6水平;Real-time RT-PCR检测肝、肺组织的TNF-α和IL-6 mRNA表达;常规HE染色观察肝、肺的病理学变化。
     四、结果
     1.大黄、青果、赤芍、白鲜皮等4种中药水煎液与lipid A具有较高的特异性结合能力(RU>300 arc seconds)。从白鲜皮中提取活性物质DPR-2,结构分析可能是一种分子量为709的四糖化合物。
     2. DPR-2与lipid A具有较高的亲和力,其Kd值为8.63×10-6M,DPR-2体外对LPS具有中和作用。DPR-2可抑制FITC-LPS与小鼠单核/巨噬细胞RAW264.7细胞膜受体结合,并对LPS诱导的RAW264.7细胞TLR4、TNF-α及IL-6在蛋白及基因表达水平均具有抑制作用并呈剂量效应关系。DPR-2在体外实验浓度对细胞活力无影响。
     3. DPR-2对脓毒症模型小鼠具有显著的保护作用,可降低ETM小鼠的血浆LPS、TNF-α及IL-6水平,减弱肝、肺组织的TNF-α及IL-6 mRNA表达,并减轻ETM小鼠重要器官肝、肺的病理学损伤。
     五、结论
     本论文采用生物传感器技术,以LPS的生物活性中心lipid A作为筛选、跟踪中药活性组分或物质的靶点,结合传统的中药分离技术及HPLC等方法,从筛选出的中药白鲜皮中分离获得高亲和力结合lipid A的活性物质DPR-2(分子量为709的四糖化合物),研究表明DPR-2对LPS攻击小鼠具有保护作用,其机制可能与DPR-2的拮抗LPS活性有关,而DPR-2与lipid A的高亲和力结合活性可能是其体内外拮抗LPS活性的重要基础。
Introduction Sepsis is a complex clinical syndrome that results from a harmful host response to infection, which may result in septic shock, multiple organ failure (MOF) and ultimately death. A recent epidemiological study from North America found that the incidence was approximately 3.0 cases per 1,000 population, which translated into an annual burden of approximately 750,000 cases. The overall mortality is approximately 30%, rising to 40% in the elderly and is 50% or greater in patients with the most severe syndrome, septic shock. The most common cause of sepsis is an exposure to the structural component of the Gram-negative bacterial outer membrane, lipopolysaccharide (LPS, known also as endotoxin).
     LPS is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). Pro-inflammatory cytokines such as TNF-α, IL-1 and IL-6 are induced by LPS, which may damage cells and lead to organ injuries. Despite improved care, the hospital mortality rate from severe sepsis and septic shock has not improved significantly over recent decades. Thus, it is important to investigate new anti-LPS drugs to identify a relevant anti-sepsis drug.
     The use of traditional Chinese medicines has a long history in sepsis therapy. A lot of herbs have been shown to possess potent anti-LPS and anti-inflammatory properties. However, herbs possess a large number of complex constituents and it is extremely difficult to identify which is the anti-LPS component. In the present study, we undertook to confirm the presence of anti-LPS component(s) in a panel of 60 traditional Chinese herbs, using affinity biosensor technology. The herb, densefruit pittany root-bark, was selected from this panel, and components were then isolated that possessed the highest lipid A-binding ability. Finally, the active compound isolated from densefruit pittany root-bark was examined for its anti-LPS activity both in vitro and in vivo.
     Objective To obtain the active compound from traditional Chinese herbs that can antagonize LPS and investigate its associated mechanism.
     Methods 1. Lipid A was immobilized on the optical biosensor's hydrophobic cuvette and employed to monitor the interactions of the components from Chinese herbs with lipid A. Sixty aqueous extractions of traditional Chinese medicine were determined the exact capacity for binding to lipid A using the affinity biosensor technology. The aqueous extraction from densefruit pittany root-bark, which possessed higher binding activity to lipid A, were selected for further study. Briefly, the fraction obtained was subjected to macroporous adsorptive resins, n-butanol solvent extraction, polyamide laminar analysis, and the fraction with the highest binding activity to lipid A was further purified by high performance liquid chromatography (HPLC). Then the neutralization of HPLC-purified products DPR1~4 for LPS (0.1 ng/ml) was detected by kinetic turbidimetric limulus test. 2. The Kd value for the lipid A of active compound, DPR-2, was measured by biosensor, and the activity of DPR-2 (0.5, 1, 2 and 4μg/ml) neutralizing LPS (0.1 ng/ml) was detected by kinetic turbidimetric limulus test. Then the binding of FITC-conjugated LPS (100 ng/ml) to murine RAW264.7 cells was analyzed by laser scanning confocal microscopy (LSM) and the influence of DPR-2 (8, 16, 32 and 64μg/ml) on TLR4 expression in RAW264.7 cells simulated with LPS (100ng/ml) was detected by immunocytochemical staining. Meanwhile, the expressions of TLR4, TNF-αand IL-6 mRNA and the release of cytokines were detected with real-time RT-PCR and ELISA, respectively. 3. In vivo, different dosage of LPS (2.5, 5, 10, 15 and 20mg/kg body wt) was injected into BALB/c mice by tail vein to prepare the murine model of sepsis and endotoxemia murine model, and the effects of DPR-2 were observed. Then, in an endotoxemia murine model (12mg/kg body wt), blood samples were collected at different time (2, 6, 12, 24, 48 and 72 h) after inception of the experiment and assayed using the appropriate ELISA kits, and the TNF-αand IL-6 mRNA expressions in liver and lung were analysed by real-time RT-PCR. Meanwhile, pathological changes of hepatic tissue and lung tissue were observed.
     Results 1. Among the 60 Chinese herbs examined, four herbs were found to possess higher lipid A-binding activities (RU>300 arc seconds). Four chemical components DPR1~4 with different affinity for lipid A from densefruit pittany root-bark were obtained by above methods. The active compound DPR-2 was purified and confirmed as a compound with tetrasaccharide. 2. DPR-2 bound with high-affinity to lipid A with Kd value of 8.63μM and neutralized LPS in a dose-dependent manner. Furthermore, DPR-2 inhibited the binding of FITC-LPS to RAW264.7 cells in a dose-dependent manner and TLR4 expression of RAW264.7 cells induced by LPS. Moreover, DPR-2 could inhibit markedly the expressions of TNF-αand IL-6 mRNA and the release of cytokines in LPS-stimulated murine RAW264.7 cells. 3. DPR-2 was found to protect BALB/c mice from lethal challenge by LPS and decreased the plasma LPS level in endotoxemic mice. In the endotoxemia murine model, DPR-2 could potently suppress LPS-induced expression of TNF-αand IL-6 mRNA in hepatic tissue and lung tissue and significantly attenuate the release of cytokines in plasma. In addition, it could alleviate the pathological changes in liver and lung.
     Conclusion The active compound, DPR-2, was obtained from aqueous extraction of densefruit pittany root-bark using biosensor technology. DPR-2 was found to neutralize LPS and possess anti-LPS capacity in vitro and in vivo. This might be associated with its hight-affinity for lipid A.
引文
1. Anonymous. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit-Care-Med, 1992, 20(6): 864-874.
    2. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit-Care-Med, 2003, 31(4): 1250-1256.
    3. 姚咏明, 盛志勇, 林洪远, 柴家科. 2001 年国际脓毒症定义会议关于脓毒症诊断的新标准. 中国危重病急救医学, 2006, 18(11): 645-646
    4. Zahorec R, Firment J, Strakova J, Mikula J, Malik P, Novak I, Zeman J, Chlebo P. Epidemiology of severe sepsis in intensive care units in the Slovak Republic. Infection, 2005, 33(3): 122-128.
    5. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N-Engl-J-Med, 2003, 348(16): 1546-1554.
    6. Bilevicius E, Dragosavac D, Dragosavac S, Araujo S, Falcao AL, Terzi RG.. Multiple organ failure in septic patients. Braz-J-Infect-Dis, 2001, 5(3): 103-110.
    7. Wheeler AP, Bernard GR.Treating patients with severe sepsis. N-Engl-J-Med, 1999, 340(3): 207-214.
    8. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit-Care-Med, 2001, 29(7): 1303-1310.
    9. Vincent JL, Sun Q, Dubois MJ. Clinical trials of immunomodulatory therapies in severe sepsis and septic shock. Clin-Infect-Dis, 2002, 34(8): 1084-1093.
    10. Philpott DJ, Girardin SE. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol-Immunol, 2004, 41(11): 1099-1108.
    11. Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J-Endotoxin-Res, 2001, 7(3): 167-202.
    12. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab-Invest, 2006, 86(1): 9-22.
    13. Diks SH, Richel DJ, Peppelenbosch MP. LPS signal transduction: the picture is becoming more complex. Curr-Top-Med-Chem, 2004, 4(11): 1115-1126.
    14. Lin WJ, Yeh WC. Implication of Toll-like receptor and tumor necrosis factor alpha signaling in septic shock. Shock, 2005, 24(3): 206-209.
    15. Victor MV, Milagros R, Monica DF. Immune cells: free radicals and antioxidants in sepsis. International Immunopharmacology, 2004, 4(3): 327-347.
    16. 方建国, 施春阳, 汤杰王, 文清, 刘云海. 大青叶抗内毒素活性部位筛选. 中草药, 2004, 35(1): 60-62.
    17. 刘志峰, 李桂生, 傅风华, 刘珂. 8 种中药注射剂体外抗内毒素作用的观察. 中草药, 2002, 33(1): 58-59.
    18. 邓文龙, 徐嘉红, 王文烈, 刘家玉, 陈东辉, 吴懋方. 热毒平的抗内毒素作用研究. 中药药理与临床, 1995, (2): 161-163.
    19. 王华东, 杨静, 陆大祥, 戚仁斌, 王彦平, 付咏梅, 黄启福, 李楚杰. 四毒清对脂多糖攻击小鼠多器官功能障碍和生存率的影响. 中国病理生理杂志, 2004, 20(2): 219-223
    20. Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, Guo W, Ming H, Donglen J, Lizhao W. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. International Immunopharmacology, 2005, 5(6): 1007-1017.
    21. 李月彩, 李成福, 李同宪. 中医外感热病学对感染性全身炎症反应综合征的认识. 中国中西医结合急救杂志, 2002, 9(2): 63-64
    22. 刘晓波, 马布仁. 应用产色基质偶氮法筛选抗内毒素中草药. 实用中西医结合杂志, 1995, 8(8): 583-584
    23. 高淑娟, 戴锡珍, 要华民. 几种清热解毒中药抗内毒素作用的比较实验. 天津中医, 1992, 9(3): 42
    24. 刘 云 海 . 板 兰 根 抗 内 毒 素 作 用 研 究 . 中 国 药 科 大 学 学 报 , 1995, 26(5): 297-297
    25. 刘庆增, 王金兰. 中药抗内毒素生物活性机理的研究. 中草药, 1996, 27(2): 121-123
    26. 张霞, 吴迪, 王家泰, 付强, 崔乃杰. 穿心莲破坏内毒素作用的体外实验研究. 中国中西医结合急救杂志, 2001, 2 P:122-124
    27. Lopes J, Inniss WE. Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide. J-Bacteriol, 1969, 100(2): 1128-1129.
    28. Wang J, Zhou H, Zheng J, Cheng J, Liu W, Ding G, Wang L, Luo P, Lu Y, Cao H, Yu S, Li B, Zhang L. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing proinflammatory cytokine release. Antimicrob-Agents-Chemother, 2006, 50(7): 2420-2427
    29. 许锋, 陆伯刚, 姚智, 鲁焕章, 吴咸中. 丹参及丹参素对内毒素刺激下肝巨噬细胞分泌细胞因子影响的动态观察. 中国危重病急救医学, 1996, 8(5): 262-265
    30. 王华东, 李飞, 陆大祥, 王彦平, 戚仁斌, 付咏梅, 黄启福, 李楚杰. 四毒清降低内毒素血症小鼠死亡率的剂量效应关系与机制研究. 北京中医药大学学报, 2005, 28(4): 45-48
    31. Lowe PA, Clark TJ, Davies RJ, Edwards PR, Kinning T, Yeung D. New approaches for the analysis of molecular recognition using Iasys evanescent wave biosensor. J-Mol-Recognit, 1998, 11(1-6): 194-199.
    32. Frecer V, Ho B, Ding JL. Molecular dynamics study on lipid A from Escherichia coli: insights into its mechanism of biological action. Biochim-Biophys-Acta, 2000, 1466(1-2): 87-104
    33. Ried C, Wahl C, Miethke T, Wellnhofer G, Landgraf C, Schneider-Mergener J, Hoess A. High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor. J Biol Chem, 1996, 271: 28120-28127.
    34. 吕根法, 肖光夏, 卫国, 郭毅斌, 郑江. 五没食子酰葡萄糖拮抗内毒素/脂多糖作用的体外研究. 中华烧伤杂志, 2005, 21(8): 282-284
    35. 韦宏, 彭维, 毛杨梅, 刘布鸣, 李顺林. 青果的化学成分研究.中国中药杂志, 1999, 24(7): 421-423
    36. 翁小刚. HPLC 法同时测定大黄剂中的主要成分. 国外医学.中医中药分册, 2003, 25(1): 48
    37. 杜程芳, 杨欣欣, 屠鹏飞. 白鲜皮的化学成分研究. 中国中药杂志, 2005, 30(21): 1663-1666
    38. 王嵩. 中草药抗细菌感染的研究. 北京中医杂志, 2002, 21(4): 249-251
    39. 江霞. 复方白鲜皮洗剂抗菌实验. 中国药师, 2005, 8(4): 345-346
    40. 王跃生, 王洋. 大孔吸附树脂研究进展. 中国中药杂志, 2006, 31(12): 961-965
    41. LIU Yang, YANG Jun-shan. Determination of Liquiritigenin, Liquiritin,Isoliquiritigenin and Isoliquiritin in Extract of Traditional Chinese Medicine Sijunzi Decoction by High-Performance Liquid Chromatography. Journal of Chinese Pharmaceutical Sciences, 2005, 14(4): 227-230.
    42. Fujiwara H, Iwasaki K, Furukawa K, Seki T, He M, Maruyama M, Tomita N, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Ohizumi Y, Arai H. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer's beta-amyloid proteins. J-Neurosci-Res, 2006, 84(2): 427-433.
    43. Brus C, Santi P, Colombo P, Kissel T. Distribution and quantification of polyethylenimine oligodeoxynucleotide complexes in human skin after iontophoretic delivery using confocal scanning laser microscopy. J-Control-Release, 2002, 84 (3): 171-181.
    44. Feng P, Meissler JJ Jr, Adler MW, Eisenstein TK. Morphine withdrawal sensitizes mice to lipopolysaccharide: elevated TNF-alpha and nitric oxide with decreased IL-12. J-Neuroimmunol, 2005, 164(1-2): 57-65.
    45. Yamamoto S, Tin-Tin-Win-Shwe, Ahmed S, Kobayashi T, Fujimaki H. Effect of ultrafine carbon black particles on lipoteichoic acid-induced early pulmonary inflammation in BALB/c mice. Toxicol-Appl-Pharmacol, 2006, 213(3): 256-266.
    46. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Immunol Methods, 1983, 65(1-2): 55-63.
    47. Heumann D, RogerT. Initial responses to endotoxins and Gram-negative bacteria. Clin-Chim-Acta, 2002, 323(1-2): 59-72.
    48. 肖光夏. 防治烧伤感染还需要新理念新措施. 中华烧伤杂志, 2005, 21(2): 83-84
    49. 肖光夏. 对烧伤感染的认识过程. 中华烧伤杂志, 2006, 22(2): 158-160
    50. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit-Care-Med, 2004, 32(3): 858-873.
    51. Vianna RC, Gomes RN, Bozza FA, Amancio RT, Bozza PT, David CM, Castro-Faria-Neto HC. Antibiotic treatment in a murine model of sepsis: impact on cytokines and endotoxin release. Shock, 2004, 21(2): 115-120.
    52. Stephens R, Hamilton-Davies C. Update on antiendotoxin therapies. Hosp Med, 2000, 61(4): 254-258.
    53. Jiang Z, Hong Z, Guo W, Xiaoyun G; Gengfa L, Yongning L, Guangxia X. A synthetic peptide derived from bactericidal/permeability-increasing protein neutralizes endotoxin in vitro and in vivo. Int-Immunopharmacol, 2004, 4(4): 527-537
    54. Mathison JC, Tobias PS, Wolfson E, Ulevitch RJ. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J-Immunol, 1992, 149(1): 200-206.
    55. Romics L Jr, Coffey JC, Wang JH, Redmond HP, Szabo G. A Toll-like receptorok jelentosege a sebeszeti szepszis pathomechanizmusaban. [Significance of Toll-like receptors in the pathophysiology of surgical sepsis]. Magy-Seb, 2004, 57(4): 229-235.
    56. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J-Immunol, 2002, 169(1): 10-14.
    57. Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W, Zahringer U, Hartung T, Gobel UB, Schumann RR. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J-Biol-Chem, 2001, 276(25): 22041-22047.
    58. Asai Y, Ohyama Y, Gen K, Ogawa T. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2. Infect-Immun, 2001, 69(12): 7387-7395.
    59. Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW, Carroll JD, Espevik T, Ingalls RR, Radolf JD, Golenbock DT. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J-Biol-Chem, 1999, 274(47): 33419-33425.
    60. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science, 1999, 285(5428): 732-736
    61. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857): 732-738.
    62. Palsson-McDermott EM, O'Neill LA. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology, 2004, 113(2): 153-162.
    63. Gangloff M, Weber AN, Gay NJ. Conserved mechanisms of signal transduction by Toll and Toll-like receptors. J-Endotoxin-Res, 2005, 11(5): 294-298.
    64. Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J-Immunol, 2000, 164(2): 558-561.
    65. Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein
    70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J-Biol-Chem, 2003, 278(1): 174-179.
    66. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat-Immunol, 2003, 4(12): 1247-1253.
    67. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int-Immunol, 2001, 13(7): 933-940.
    68. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis-e-Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004, 303(5663): 1529-1531
    69. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004, 303(5663): 1526-1529.
    70. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813): 740-745
    71. Harandi AM, Holmgren J. CpG DNA as a potent inducer of mucosal immunity: implications for immunoprophylaxis and immunotherapy of mucosal infections. Curr-Opin-Investig-Drugs, 2004, 5(2): 141-145.
    72. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat-Immunol, 2001, 2(8): 675-680
    73. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science, 2005, 308(5728): 1626-1629
    74. Lauw FN, Caffrey DR, Golenbock DT. Of mice and man: TLR11 (finally) finds profilin. Trends-Immunol, 2005, 26(10): 509-511.
    75. Ozinsky A, Smith KD, Hume D, Underhill DM. Co-operative induction of pro-inflammatory signaling by Toll-like receptors. J-Endotoxin-Res, 2000, 6(5): 393-396
    76. Massari P, Visintin A, Gunawardana J, Halmen KA, King CA, Golenbock DT, Wetzler LM. Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J-Immunol, 2006, 176(4): 2373-2380.
    77. Morr M, Takeuchi O, Akira S, Simon MM, Muhlradt PF. Differential recognition of structural details of bacterial lipopeptides by toll-like receptors. Eur-J-Immunol, 2002, 32(12): 3337-3347
    78. Sandor F, Latz E, Re F, Mandell L, Repik G, Golenbock DT, Espevik T, Kurt-Jones EA, Finberg RW. Importance of extra- and intracellular domains of TLR1 and TLR2 in NFkappa B signaling. J-Cell-Biol, 2003, 162(6): 1099-1110.
    79. Lakhani SA, Bogue CW. Toll-like receptor signaling in sepsis. Curr-Opin-Pediatr, 2003, 15(3): 278-282
    80. Munford RS. Detoxifying endotoxin: time, place and person. J-Endotoxin-Res, 2005, 11(2): 69-84.
    81. Miyake K. Endotoxin recognition molecules MD-2 and toll-like receptor 4 as potential targets for therapeutic intervention of endotoxin shock. Curr-Drug-Targets-Inflamm-Allergy, 2004, 3(3): 291-297.
    82. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)- deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J-Immunol, 1999, 162(7): 3749-3752
    83. Gallagher J, Fisher C, Sherman B, Munger M, Meyers B, Ellison T, Fischkoff S, Barchuk WT, Teoh L, Velagapudi R. A multicenter, open-label, prospective, randomized, dose-ranging pharmacokinetic study of the anti-TNF-alpha antibody afelimomab in patients with sepsis syndrome. Intensive-Care-Med, 2001, 27(7): 1169-1178
    84. Gawad KA, Schneider C, Brinken B, Huflander A, Diederichs B, Mack D, Gutensohn K, Izbicki JR. Anti-TNF antibody treatment has no positive effect on survival in amodel of pneumococcal sepsis in pigs. J-Invest-Surg, 2001, 14(5): 291-297.
    85. Yagmur Y, Ozturk H, Unaldi M, Gedik E. Relation between severity of injury and the early activation of interleukins in multiple-injured patients. Eur-Surg-Res, 2005, 37(6): 360-364.
    86. 张群, 雷林生, 朱正光, 余传林, 吴曙光. 灵芝多糖拮抗前列腺素 E2 对小鼠脾细胞IFN-γ和 TNF-α mRNA 表达的抑制作用. 南方医科大学学报, 2006, 26(6): 780-783
    87. 惠斌, 耿美玉, 李静. 硫酸多糖聚甘古酯抑制 HIV-1 反式转录调节蛋白诱导的THP-1 细胞炎症细胞因子释放及机制探讨. 药学学报, 2006, 41(4): 338-341
    88. 路景涛, 杨雁, 陈敏珠. 黄芪多糖对细菌脂多糖诱导大鼠腹腔巨噬细胞释放 TNFα、NO 及 IL-1 的影响. 安徽医科大学学报, 2004, 39(2): 39-141
    89. Netea MG, van-Deuren M, Kullberg BJ, Cavaillon JM, Van-der-Meer JW. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends-Immunol. 2002, 23(3): 135-139.
    90. Trent MS, Stead CM, Tran AX, Hankins JV. Diversity of endotoxin and its impact on pathogenesis. J-Endotoxin-Res, 2006, 12(4): 205-223.
    91. Danner RL, Natanson C, Elin RJ, Hosseini JM, Banks S, MacVittie TJ, Parrillo JE. Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest, 1990, 98(6): 1480-1487.
    92. Connelly L, Madhani M, Hobbs AJ. Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo. J-Biol-Chem, 2005, 280(11): 10040-10046.
    93. Opal SM, Scannon PJ, Vincent JL, White M, Carroll SF, Palardy JE, Parejo NA, Pribble JP, Lemke JH. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J-Infect-Dis, 1999, 180(5): 1584-1589.
    94. Hadjiminas DJ, McMasters KM, Peyton JC, Cheadle WG. Tissue tumor necrosis factor mRNA expression following cecal ligation and puncture or intraperitoneal injection of endotoxin. J-Surg-Res, 1994, 56(6): 549-555.
    95. Fujie K, Shinguh Y, Inamura N, Yasumitsu R, Okamoto M, Okuhara M. Release of neutrophil elastase and its role in tissue injury in acute inflammation: effect of theelastase inhibitor, FR134043. Eur-J-Pharmacol, 1999, 374(1): 117-125.
    96. Abraham E. Neutrophils and acute lung injury. Crit-Care-Med, 2003, 31(4 Suppl): S195-199.
    97. Jansson AH, Eriksson C, Wang X. Lung inflammatory responses and hyperinflation induced by an intratracheal exposure to lipopolysaccharide in rats. Lung, 2004, 182(3): 163-171.
    98. Murakami K, Okajima K, Uchiba M, Okabe H, Takatsuki K. Gabexate mesilate, a synthetic protease inhibitor, attenuates endotoxin-induced pulmonary vascular injury by inhibiting tumor necrosis factor production by monocytes. Crit-Care-Med, 1996, 24(6): 1047-1053
    99. Patel RT, Deen KI, Youngs D, Warwick J, Keighley MR. Interleukin 6 is a prognostic indicator of outcome in severe intra-abdominal sepsis. Br-J-Surg, 1994, 81(9): 1306-1308.
    100. Singleton KD, Beckey VE, Wischmeyer PE. GLUTAMINE PREVENTS ACTIVATION OF NF-kappaB AND STRESS KINASE PATHWAYS, ATTENUATES INFLAMMATORY CYTOKINE RELEASE, AND PREVENTS ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) FOLLOWING SEPSIS. Shock, 2005, 24(6): 583-589.
    101. Elsbach P, Weiss J. Role of the bactericidal/permeability-increasing protein in host defence. Curr-Opin-Immunol, 1998, 10(1): 45-49.
    102. de-Haas CJ, Haas PJ, van-Kessel KP, van-Strijp JA. Affinities of different proteins and peptides for lipopolysaccharide as determined by biosensor technology. Biochem-Biophys-Res-Commun, 1998, 252(2): 492-496
    103. Fang WH, Yao YM, Shi ZG, Yu Y, Wu Y, Lu LR, Sheng ZY. Effect of recombinant bactericidal/permeability-increasing protein on endotoxin translocation and lipopolysaccharide-binding protein/CD14 expression in rats after thermal injury. Crit-Care-Med, 2001, 29(7): 1452-1459.
    1. Zahorec R, Firment J, Strakova J, Mikula J, Malik P, Novak I, Zeman J, Chlebo P. Epidemiology of severe sepsis in intensive care units in the Slovak Republic. Infection, 2005, 33(3): 122-128.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N-Engl-J-Med, 2003, 348(16): 1546-1554.
    3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit-Care-Med, 2001, 29(7): 1303-1310.
    4. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit-Care-Med, 2003, 31(4): 1250-1256.
    5. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J-Immunol, 2002, 169(1): 10-14.
    6. Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W, Zahringer U, Hartung T, Gobel UB, Schumann RR. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J-Biol-Chem, 2001, 276(25): 22041-22047.
    7. Asai Y, Ohyama Y, Gen K, Ogawa T. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2. Infect-Immun, 2001, 69(12): 7387-7395.
    8. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 2001, 413(6857): 732-738.
    9. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J-Immunol, 1999, 162(7): 3749-3752.
    10. Netea MG, van-Deuren M, Kullberg BJ, Cavaillon JM, Van-der-Meer JW. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors?Trends-Immunol, 2002, 23(3): 135-139.
    11. Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J-Immunol, 2000, 164(2): 558-561.
    12. Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein
    70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J-Biol-Chem, 2003, 278(1): 174-179.
    13. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat-Immunol, 2003, 4(12): 1247-1253.
    14. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int-Immunol, 2001, 13(7): 933-940.
    15. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis-e-Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004, 303(5663): 1529-1531
    16. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813): 740-745
    17. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science, 2005, 308(5728): 1626-1629
    18. Lauw FN, Caffrey DR, Golenbock DT. Of mice and man: TLR11 (finally) finds profilin. Trends-Immunol, 2005, 26(10): 509-511.
    19. Massari P, Visintin A, Gunawardana J, Halmen KA, King CA, Golenbock DT, Wetzler LM. Meningococcal porin PorB binds to TLR2 and requires TLR1 for signaling. J-Immunol, 2006, 176(4): 2373-2380.
    20. Opal SM, Scannon PJ, Vincent JL, White M, Carroll SF, Palardy JE, Parejo NA, Pribble JP, Lemke JH. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J-Infect-Dis, 1999, 180(5): 1584-1589
    21. Cohen J. The immunopathogenesis of sepsis. Nature, 2002, 420(6917): 885-891
    22. Silverman N, Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes-Dev, 2001, 15(18): 2321-2342
    23. Burns K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di-Marco F, French L, Tschopp J. MyD88, an adapter protein involved in interleukin-1 signaling. J-Biol-Chem, 1998, 273(20): 12203-12209.
    24. Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science, 1997, 278(5343): 1612-1615.
    25. Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J-Biol-Chem, 1999, 274(12): 7611-7614.
    26. Triantafilou M, Triantafilou K, Fernandez N. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influencedby endotoxin concentration. Eur-J-Biochem, 2000, 267(8): 2218-2226.
    27. Gluck T, Opal SM. Advances in sepsis therapy. Drugs, 2004, 64(8): 837-859.
    28. Ahrens T, Vollman K. Severe sepsis management are we doing enough? Crit-Care-Nurse, 2003, 23(5 Suppl): 2-15, quiz 17.
    29. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N-Engl-J-Med, 2001, 345(19): 1368-1377.
    30. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit-Care-Med, 2004, 32(3): 858-873.
    31. Kolleff MH. Appropriate antibiotic therapy for ventilator-associated pneumonia and sepsis: a necessity, not an issue for debate. Intensive-Care-Med, 2003, 29(2): 147-149.
    32. Yu DT, Black E, Sands KE, Schwartz JS, Hibberd PL, Graman PS, Lanken PN, Kahn KL, Snydman DR, Parsonnet J, Moore R, Platt R, Bates DW. Severe sepsis: variation in resource and therapeutic modality use among academic centers. Crit-Care, 2003, 7(3): R24-34.
    33. Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest, 2003, 123(5): 1615-1624.
    34. Garnacho-Montero J, Garcia-Garmendia JL, Barrero-Almodovar A. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit-Care-Med, 2003, 31(12): 2742-27451.
    35. MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L, Barchuk W. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin-Infect-Dis, 2004, 38(2): 284-288.
    36. Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, Clementi E, Gonzalez J, Jusserand D, Asfar P, Perrin D, Fieux F, Aubas S. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA, 2003, 290(19): 2588-2598.
    37. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science, 2002, 296(5574): 1880-1882.
    38. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr. Efficacy and safety of recombinant human activated protein C for severe sepsis. N-Engl-J-Med, 2001, 344(10): 699-709.
    39. van-den-Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in the critically ill patients. N-Engl-J-Med, 2001, 345(19): 1359-1367.
    40. Jimenez-Del-Rio M, Velez-Pardo C. Insulin-like growth factor-1 prevents Abeta[25-35]/(H2O2)- induced apoptosis in lymphocytes by reciprocal NF-kappaB activation and p53 inhibition via PI3K-dependent pathway. Growth-Factors, 2006, 24(1): 67-78.
    41. Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaut P, Bellissant E. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA, 2002, 288(7): 862-871.
    42. Shenker Y, Skatrud JB. Adrenal insufficiency in critically ill patients.Am-J-Respir-Crit-Care-Med, 2001, 163(7): 1520-1523.
    43. Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. HMGB1 as a late mediator of lethal systemic inflammation. Am-J-Respir-Crit-Care-Med, 2001, 164(10 Pt 1): 1768-1773.
    44. Guo RF, Huber-Lang M, Wang X, Sarma V, Padgaonkar VA, Craig RA, Riedemann NC, McClintock SD, Hlaing T, Shi MM, Ward PA. Protective effects of anti-C5a in sepsis-induced thymocyte apoptosis. J-Clin-Invest, 2000, 106(10): 1271-1280.
    45. Roger T, David J, Glauser MP, Calandra T. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature, 2001, 414(6866): 920-924.
    46. Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L, Heumann D, Mannel D, Bucala R, Glauser MP. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat-Med, 2000, 6(2): 164-170.
    47. O'Suilleabhain C, O'Sullivan ST, Kelly JL, Lederer J, Mannick JA, Rodrick ML. Interleukin-12 treatment restores normal resistance to bacterial challenge after burn injury. Surgery, 1996, 120(2): 290-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700