腐败微生物及腐败产物检测推断死亡时间的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]
     死亡时间(Postmortem interval,PMI)推断一直是法医病理学实践和研究的一项重、难点课题,尤其对晚期、腐败的尸体,推断其死亡时间更缺乏客观、准确的方法。以往研究主要关注于死后机体内源性物质随时间延长而降解的过程,因受到检材保存和内源性物质降解时限的影响,研究时间范围多局限于死后72h内,如何拓展PMI推断研究的时间范围,寻找死后更长时间的PMI推断方法,是法医学家面临的新挑战。
     死亡后,尸体在微生物的作用下逐渐发生腐败,腐败产物也逐渐在组织中生成并积聚,腐败微生物和腐败产物的量随着死亡时间的延长,而呈现一定的变化规律。借鉴食品卫生学中检测食品中腐败微生物和腐败产物的含量判断食品质量、预测食品货架期的思路,本实验对尸体腐败过程中微生物和腐败产物含量的检测方法及其随时间变化的规律进行了一系列初步研究,探讨利用腐败过程推断PMI的可行性。
     [目的]
     1.建立利用生物发光法检测尸体组织中微生物ATP含量的方法。
     2.检测死后0~10d大鼠尸体组织中微生物ATP的含量,并分析其变化与PMI的关系,建立推断PMI的回归方程。
     3.观察尸体腐败过程中腐败细菌的生长情况,并对优势腐败菌种进行鉴定。
     4.建立检测尸体组织中腐败产物三甲胺-氮(TMA-N)的实验方法。
     5.检测死后0~10d大鼠尸体组织中TMA-N的含量,并分析其变化与PMI的关系,建立推断PMI的回归方程。
     [方法]
     1.处死健康SD大鼠,于死后不同时间取待检组织样本100mg,加入4℃无菌生理盐水匀浆后,以3000r/min离心5min。取离心后上层清液50μl于检测管内,加入50μl的Triton X-100和三磷酸腺苷双磷酸酶(Apyrase)混和液(其中Triton X-100浓度0.2%,Apyrase浓度0.1%),37℃下孵育10min以消除组织细胞内ATP,然后于沸水中水浴1min以灭活Apyrase。平衡至室温后,加入100μl Bac Titer-Glo~(TM)检测液,用TD-20/20 Luminometer检测发光值(设置延时2s,检测时间10s,连续测3次,取最高值为结果)。以无菌生理盐水作空白对照,按标准曲线法计算ATP浓度。进行日内检测偏差和日间检测偏差的重复性实验。
     2.于死后即刻、1d、2d、3d、4d、5d、6d、7d、8d、9d、10d等11个时间点,按无菌操作要求,各取6只大鼠尸体的肌肉、肝脏、脾脏和肾脏组织,准确称取各组织样本100mg,用生物发光法检测各样本中微生物ATP含量,并进行统计分析。
     3.死后1d、2d、3d、4d、5d、6d、7d、8d、9d、10d等10个时间点各取1只大鼠尸体的肌肉、肝脏、脾脏和肾脏组织少量,将样品加无菌生理盐水匀浆后,每份样品以分区划线法接种于2个血液增菌培养基上,分别置于37℃有氧和厌氧环境下培养24h。蘸取长出的菌落进行涂片,革兰氏染色后显微镜下观察。分离纯化优势菌种后,用VITEK-32型全自动微生物分析仪进行菌种鉴定。
     4.大鼠尸体组织样本100mg加入4℃10%三氯乙酸匀浆处理后,以3000r/min离心3min,取上层清液1 ml依次加入0.2ml 10%甲醛溶液、2ml无水甲苯、0.6ml 1:1碳酸钾溶液,上下振摇60次,静置后吸去下面水层,加入少许无水硫酸钠脱水。取1ml上层液体加入已有1ml 0.02%苦味酸甲苯溶液的比色皿中,于410nm波长下读取光密度(OD)值,标准曲线法计算TMA-N含量。进行日内、日间重复检测及加样回收率实验。
     5.取健康SD大鼠处死,于死后即刻、1d、2d、3d、4d、5d、6d、7d、8d、9d、10d等11个时间点,分别各取6只大鼠尸体的肌肉、肝脏、肾脏组织,用分光光度法检测TMA-N浓度,对所得数据进行统计学处理。
     [结果]
     1.在10~(-6)mol/L~10~(-12)mol/L 6个数量级范围内,发光读数(RLU)的对数值与ATP浓度([ATP])对数值呈现良好的线性关系,以ATP浓度的对数值(Log([ATP]))为横坐标,以相应荧光读数的对数值(Log(RLU))为纵坐标,一元线性方程为y=0.815x+9.0148,R~2=0.9977,P<0.001。重复性实验显示,平均日内检测偏差为1.40%;平均日间检测偏差为1.74%。
     2.大鼠死后肌肉组织中微生物ATP含量在7d内随时间延长而增加,第8~9d下降,第10d再次升高;肝、脾和肾脏组织中微生物ATP含量在死后8d内随时间延长而增加,8~10d下降。因肝、脾和肾脏组织中微生物ATP含量检测结果无统计学差异性,故合并三个器官的数据为内脏组。PMI在0~9d内与肌肉组织中微生物ATP含量拟合最佳,以PMI为自变量的三次多项式回归方程为:y=0.02x~3-0.166x~2-0.666x+13.412(R~2=0.989,P<0.01);在0~10d内与内脏组织中微生物ATP拟合最佳,以PMI为自变量的三次多项式回归方程为:y=0.016x~3-0.127x~2-0.809x+13.324(R~2=0.986,P<0.01)。
     3.大鼠死后3天起,肌肉、肝脏、脾脏和肾脏组织中均有细菌生长,菌种并不单一,可见G~-、G~+杆菌、G~+球菌等,但四种组织匀浆液培养的细菌中始终有一种G~-小型杆菌存在,在有氧和无氧条件下均可生长。死后7~9d,四种组织中先后出现一种G~+的大杆菌,至死后10d,四种组织有氧和厌氧培养均可见。对优势菌种进行菌种分析,鉴定结果为奇异变形杆菌。
     4.在1 mg/L~10 mg/L范围内,光密度(OD)值与TMA-N浓度呈现良好线性关系,一元线性方程为y=0.053x+0.001 8(y为OD值,x为TMA-N浓度),R~2=0.9991,P<0.001。平均日内检测偏差为2.37%,平均日间检测偏差为3.2%。平均加样回收率为98.4%。
     5.肌肉、肝脏和肾脏组织中TMA-N含量随死亡时间延长而增加,肌肉组织中TMA-N含量于死后第7d,肝脏和肾脏组织于死后第8d达到浓度高峰,随后开始下降,于死后第10d再次升高;因肝、肾组织内TMA-N含量无统计学差异性,故合并两个器官的数据进行回归分析;PMI在2~7d内与肌肉中TMA-N浓度变化拟合最优,以PMI为自变量的三次多项式回归方程为:y=-0.457x~3+6.51 9x~2—24.574x+27.207(R~2=0.969);在3~8d内与肝肾中TMA-N浓度变化拟合最优,以PMI为自变量的三次多项式回归方程为:y=0.509x~3-9.153x~2+55.727x-95.819(R~2=0.953)。
     [结论]
     1.本实验方法可灵敏、准确、快速的检测尸体组织中的微生物ATP含量,填补了利用生物发光法检测尸体组织内微生物ATP含量方法的空白。
     2.尸体组织中微生物ATP含量变化可用于PMI推断,高度腐败或不完整的尸体仍可以取材检测,可大大拓宽PMI推断研究的时间范畴。
     3.尸体组织腐败的优势菌种为奇异变形杆菌,死后7~10d组织中出现一种新的G~+大杆菌,其出现时间与微生物ATP、TMA-N含量变化趋势发生波动的时间范围一致。
     4.分光光度法检测死后尸体组织中的TMA-N灵敏、准确、稳定、重复性好,可用于进一步检测尸体组织内TMA-N含量变化与PMI推断的研究。
     5.腐败产物TMA-N含量可以用于推断PMI,为晚期PMI推断提供了新思路和新指标。
[BACKGROUND]
     Estimation of Postmortem interval (PMI) has always being a crucial and difficult topicfor forensic pathology study and practice.Up to now,no objective and accurate method isoffered for the estimation of PMI,especially for late period after death and decomposedcorpse.The former researches focused on the decomposition of endogenous substances.Dueto the time limit of conservation and existence of these endogenous substances,most of theformer researches were not beyond 72h after death.How to expand the time range of studyand find new method for late PMI estimation is a new challenge in front of forensicpathologists.
     With the propagation of microorganisms after death,the body shall spoilage graduallyand spoilage products accumulate in tissues.Quantity of microorganisms and spoilageproducts shall change with the time after death.Mirroring the research in food hygiene aboutputrefactive organisms and spoilage products,this research is a pilot study of microorganismsand product in the spoilage of corpse in order to approach its value in PMI estimation.
     [OBJECTIVES[
     1.To build a bioluminescent method for the determination of microbial ATP in the tissues ofcorpse.
     2.Study the relationship between changes of the concentration of microbial ATP in fourtissues of cadaver and PMI during 0~10d since death.The regression equations for PMIestimation were established.
     3.To observe the putrefactive bacteria growth during the spoilage of corpse and identify thespecies of the overwhelming strain.
     4.To build an experimental method for the determination of trimethylamine-nitrogen(TMA-N),a spoilage product,in tissues of corpse.
     5.Study the relationship between changes of the concentration of TMA-N in three tissues ofcadaver and PMI during 0~10d since death.The regression equations for PMI estimationwere established.
     [METHODS]
     1.Healthy SD rats were put to death and 100mg of each the objective tissue was sampled atdifferent time after death.Each sample was given homogenate with 4℃sterilephysiological saline and the homogenate was centrifuged for 5 minutes under 3000r/min.To eliminate the ATP from somatic cells,a 50μl sample from the supernatant wasincubated for 10 min at 37℃with 50μl of a Triton-apyrase solution consisting of 0.1%apyrase and 0.2% Triton X-100.After bath in boiling water for 1min to deactivateApyrase,the samples were cooled to room temperature,and then,100μl ofBacTiter-Glo~(TM) reagent was added to the sample (100μl),luminescence was measuredfor 10s after 2s delayed by TD-20/20 Luminometer.The highest reading of threecontinuously measures was recorded as the final reading.The repetitive detections werecommitted to calculate the relative standard deviation (RSD) within day and betweendays.
     2.At 0d,1d,2d,3d,4d,5d,6d,7d,8d,9d and 10d since death,6 rats' corpses were sampled.100mg of muscle,liver,spleen and kidney tissues were removed from each corpse andmicrobial ATP in each sample was detected by bioluminescent method.The data wasstatistical analyzed.
     3.At 1d,2d,3d,4d,5d,6d,7d,8d,9d and 10d since death,small amounts of muscle,liver,spleen and kidney tissues were removed from rat corpse.Each sample was givenhomogenate with 4℃sterile physiological saline.The homogenate was transferred to twoenrichment medium plats respectively by sectional streak method.After 24h aerobic or anaerobic cultivation under 37℃,the colonies were smeared,Gram stained and observedunder microscope.The overwhelming strain was isolated and identified by VITEK-32Auto Microbic System.
     4.100mg of tissue sample was given a rapid homogenate with 4℃10 % trichloracetic acidand the homogenate was centrifuged for 5 minutes under 3000r/min.To lml of supernate,0.2ml of 10% formalin,2ml of Anhydro-methylbenzene,0.6ml of 1:1 solution ofcarbonicum kalium was added in order.The solutions were mixed well by shaking up anddown for 60 times.After about 3 minutes standing,the underlayer water was drawn off bypipette and suitable aliquot of natrii sulfas exsiccatus was added for dehydration.1ml ofupper layer liquid of each tube was added to the glass cell,which already has 1ml of0.02% solution of 2,4,6-trinitrophenol in it.The optical densities (OD) of the solutionswere measured at 410nm.The concentration of TMA-N in the sample was calculatedaccording to the calibration graph.
     5.Healthy SD rats were executed and at 0d,1d,2d,3d,4d,5d,6d,7d,8d,9d and 10d sincedeath,6 rats' corpses were sampled.100mg of muscle,liver,and spleen tissues wereremoved from each corpse.The concentration of TMA-N was detected usingspectrophotometric method and the data was statistical analyzed.
     [RESULTS]
     1.When the concentration of ATP was in the range of 10~(-12)mol/L to 10~(-6)mol/L,a calibrationgraph was obtained with a positive slope and the equation being y= 0.815x+9.0148 wherey is the logarithm of relative light unit (Log (RLU)) and x is the logarithm of ATPconcentration (Log ([ATP])).The correlation coefficient was 0.9977 (P<0.001).Theaverage RSD within day was 1.40%,that between days was 1.74 %.
     2.The concentration of microbial ATP in muscle increased while PMI extended.The peakappeared at the 7th day since death,and at the 10th day,microbial ATP in muscle tissueincreased again.In internal organs,the peaks of microbial ATP were observed atthe 8thday since death and decrease were seen in 8~10d.There was no statistic differencebetween microbial ATP concentration in liver,spleen and kidney.During 0d to 7d sincedeath,there was the best correlation between PMI and microbial ATP in muscle;having PMI as the independent variable,the cubic polynomial regression equation is y=0.02x~3-0.166x~2-0.666x+13.412 (R~2=0.989,P<0.01) .In internal organs,there was the bestcorrelation between PMI and microbial ATP during 0d to 10d;having PMI as theindependent variable,the cubic polynomial regression equation is y=0.016x~3-0.127x~2-0.809x+13.324 (R~2=0.986,P<0.01)
     3.After the third day since death,there were floras developed in muscle,liver,spleen andkidney of rats' corpses,including G~- bacillus,G~+ bacillus and G~+ coccus.There was asmall G~- bacillus which was observed in all smears of aerobic or anaerobic cultivations.After 7~9d since death,there was a large G~+ bacillus observed on the smears ofcultivations of four tissues successively.At the 10th day after death,the large G~+ bacilluswere observed in aerobic and anaerobic cultivations four tissuse
     4.When the concentration of TMA-N was in the range of lmg/L to 10 mg/L,a calibrationgraph was obtained with a positive slope and the equation being y = 0.053x + 0.0018where y is the OD and x (mg/L) is the concentration of TMA-N.The correlationcoefficient was 0.9991 (P<0.001).The average RSD within day was 2.37%,that betweendays was 3.2%,and the average recovery rate was 98.4%.
     5.The concentration of TMA-N in muscle,liver and kidney increased while PMI extended.The TMA-N peak in muscle appeared at the 7th day since death and that in liver andkidney appeared at the 8th day since death.At the 10th day,TMA-N in all above tissuesincreased once again.Changes of TMA-N in liver and kidney had homoplastic pattern andthe ANOVA showed there was no significant difference between data of liver and kidney.Having PMI as the independent variable,TMA-N concentration in muscle andliver-kidney as dependent variable respectively,the regression analysis was subjected andthe cubic polynomial regression equation was optimal.For group muscle,the equationwith highest R~2 was y=-0.457x~3 +6.519x~2-24.574x+27.207 (R~2=0.969),whichcorresponding 2-7d range of PMI;for group liver-kidney,the equation with highest R~2was y=0.509x3 - 9.153x~2+55.727x - 95.819 (R~2=0.953),which corresponding 3~8drange of PMI.
     [CONCLUSIONS]
     1.The bioluminescent method presented in this study was an initial way to detect themicrobial ATP concentration in postmortem tissues,which proved to be sensitive,accurateand rapid.
     2.There were high correlations between PMI and microbial ATP concentration inpostmortem tissues of rat.Since slight tissue was needed for the detection and the samplewas not influenced by self-decomposition,the method may broaden the time range of PMIestimation.
     3.Proteus mirabilis was an overwhelming flora developed in corpse,after 7~9d since death,there was a kind of large G~+ bacillus observed on the smears of cultivations of postmortemtissues.At the same time,an undulant tendency was seen in both microbial ATP andTMA-N concentration in corpse.
     4.The spectrophotometric method presented in this study was an initial way to detect theTMA-N concentration in postmortem tissues,which proved to be sensitive,accurate,reliable and repetitive.It could be use in the further research of PMI estimation byTMA-N concentration.
     5.The concentration of TMA-N,a spoilage product,could be use to estimate PMI.It offereda new parameter and a new way to the study of PMI estimation.
引文
[1]赵子琴.法医病理学.第三版.北京:人民卫生出版社,2004. 64~82
    [2]Chaudhary BL, Veena M, Tirpude BH. Potassium concentration in vitreous humor in relation to time since death.Journal of Forensic Medicine and Toxicology, 2007,24 (1):26~30
    [3]Shimizu R, Satoh T, Hanano M. Thermodynamic studies on the post-mortem generation of inorganic phosphorus in rat and human livers .Research Communications in Pharmacology and Toxicology, 1999, 4(1-2):49~54
    [4]王惠君,郑清平,.饶广勋,等.大鼠骨骼肌细胞DNA含量变化与死亡时间关系的研究.中国法医学杂志, 2002, 17 (1): 11~13
    [5]Singh D, Bandal YS,Pandey AN, et al. Linearization of exponential model to estimate time since death from cerebrospinal fluid electrolytes concentration in subjects in Chandigarh zone of India. Medico-Legal Update,2004, 4(2):53~61
    [6]Madea B,Kreuser C, Banaschak S .Postmortem biochemical examination of synovial fluid—A preliminary study. Forensic Science International, 2001,118(1):29~35
    [7]Boy SC, Bernitz H, VanHeerden WFP.Flow cytometric evaluation of postmortem pulp DNA degradation. American Journal of Forensic Medicine and Pathology, 2003,24(2):123~127
    [8]Kaiser C, Bachmeier B,Conrad C,et al.Molecular study of time dependent changes in DNA stability in soil buried skeletal residues .Forensic Science International, 2008,177(1):32~36
    [9]Buchan MJ, Anderson GS .Time since death: A review of the current status of methods used in the later postmortem interval .Journal of the Canadian Society of Forensic Science, 2001,34(1):1~22
    [10]Johnson LA, Ferris JAJ. Analysis of postmortem DNA degradation by single-cell gel electrophoresis.Forensic Science International, 2002,126(1):43~47
    [11]Inoue H, Kimura A, Tuji T. Degradation profile of mRNA in a dead rat body: Basic semi-quantification study. Forensic Science International,2002,130 (2-3):127~132
    [12]Pardue S,Zimmerman AL, Morrison-Bogorad M. Selective postmortem degradation of inducible heat shock protein 70 (hsp70)mRNAs in rat brain. Cellular and Molecular Neurobiology, 1994,14 (4):341~357
    [13]肖俊辉,陈玉川.蛋白质降解与死亡时间推断的初步研究.法医学杂志,2005, 21(2):110~112
    [14]Govekar G,Dikshit PC, Mishra TK, et al .Study of alkaline phosphatase in vitreous in relation to time since death and cause of death. Journal of Forensic Medicine and Toxicology, 1997, 14 (2):37~40
    [15]Munoz Bar(?)s JI, Su(?)rez-Penaranda JM, Otero XL, et al .Improved estimation of postmortem interval based on differential behaviour of vitreous potassium and hypoxantine in death by hanging. Forensic Science International, 2002,125(1):67~74
    [16]Usmani JA, Rizvi SJ. Postmortem changes of vitreous urea, creatinine, non protein nitrogen, uric acid and ammonia levels in rabbit: An experimental study. Afro-Asian Journal of Ophthalmology, 1989, 8(3):99~101
    [17]刘茜,武盛国,汪岚,等.双眼交替微量取样检测兔玻璃体液钾镁离子浓度推测死亡时间.中国法医学杂志,2007, 22 (1): 32~38
    [18]McMeekin TA, Olley JN, Ross T, et al.Predictive Microbiology: Theory and Application. Taunton, England: Research Studies Press,1993.32~340
    [19]Man CMD,Jones AA. Shelf life Evaluation of Foods. Gaithersburg Maryland USA:Aspen Publishers,2000. 110~139
    [20]McMeekin TA,Ross T .Shelf life prediction:status and future possibilities. International journal of food microbiology, 1996,33(1):65~83
    [21]Dalgaard P .Qualitative and quantitative characterization of spoilage bacteria form packed fish. International journal of food microbiology, 1995,26(3):319~333
    [22]Lund BM, Baird-Parker TC, Gould GW. The Microbiological Safety and Quality of Food. Gaithersburg Maryland USA: Aspen Publishers,2000. 472~506
    [23]Gram L, Dalgaard P .Fish spoilage bacteria--problems and solutions. Current Opinion in Biotechnotogy, 2002,13(3):262~266
    [24]Gram L, Ravn L, Rasch M, et al .Food spoilage—interactions between food spoilage bacteria. International Journal of Food Microbiology, 2002,78(1-2):79~97
    [25]Dalgaard P. Freshness, quality and safety in seafoods. http//www. exp.ie/flair.html
    [26]肖琳琳,张凤英,杨宪时,等.预报微生物学及其在食品货架期预测领域的研究进展.海洋渔业,2005, 27 (1):68~73
    [27]Dalgaard P .Modelling of microbial activity and prediction of shelf life of packed fresh fish. International Journal of Food Microbiology, 1995,26(3):305~317
    [28]Dalgaard P,Buch P,Silberg S.Seafood spoilage predictor—development and distribution of a product specific application software.International Journal of Food Microbiology, 2002, 73 (2-3):343~ 349
    [29]Koutsoumanis K, Giannakourou MC,Taoukis PS,et al .Application of shelf life decision systerm(SLDS)to marine cultured fish quality .International Journal of Food Microbiology, 2002, 73 (2-3):375~382
    [30]Thomas A,Meekin M,Thomas R .Shelf life prediction:status and future possibilities.Int J Food Microbil,1996, 33(1):65~83
    [31]Budowle B,Murch R,Chakraborty R .Microbial forensics:the next forensic challenge. Int J Legal Med, 2005,119(6):317~330
    [32]Roberts FJ. Procurement, interpretation, and value of postmortem cultures. Eur U Clin Microbiol Infect Dis, 1998,17(12):821~827
    [1]Gorus F,Schram E .Appications of Bio- and Chemiluminescence in the Clinical Laboratory. Clin Chem, 1979,25(4):512~519
    [2]胡天喜.发光分析与医学.上海:华东师范大学出版社,1990. 132 ~147
    [3]Stanley PE. A review of bioluminescent ATP techniques in rapid microbiology. J Biolumin Chemilumin, 1989,4(1):378~380
    [4]Mecozzi M, Amici M, Visco G. Correction of the interference by mixing the reagents in the bioluminescent determination of ATP in environmental samples by an interfaced PC photometer and a robust regression procedure. Fresenius J Anal Chem, 1997, 357(6):747~751
    [5]Bulleia NC.An improved method for the extraction of adenosine triphosphate from marine sediments and seawater. Limnol Oceanogr, 1977,23(1):174~178
    [6]Frundzhyan V, Ugarova N .Bioluminescent assay of total bacterial contamination of drinking water. Luminescence, 2007,22(3):241~244
    [7]Ukuku DO,Sapers GM,Fett WF .ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon. J Food Prot, 2005,68(11):2427~2432
    [8]Bell C,Stallard PA, Brown SE, et al. ATP-bioluminescent techniques for assessing hygienic condition of milk transport tankers .Int Dairy J, 1994, 4(7):629~640
    [9]Moir DT,Ming Di,Opperman T,et al .A high-throughput, homogeneous.bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents. J Biomol Screen, 2007, 12 (6): 855~864
    [10]Mecozzi M, Acquistucci R. Computer assisted determination of ATP in environmental and food samples by bioluminescent assay: comparison of algorithms.Comput Methods Programs Biomed, 2000,62(1):35~43
    [11]Molin O,Nilsson L, Ans(?)hn S.Rapid detection of bacterial growth in blood cultures by bioluminescent assay of bacterial ATP .J Clin Microbiol, 1983,18(3):521~525
    [12]舒柏华,赵志耀,徐顺清,等.利用生物发光分析技术快速检测微生物的方法学研 究.发光学报,1999, 20 (1): 77~80
    [13]Lundin A. Use of firefly luciferase in ATP-related assays of biomass. enzymes, and metabolites. Methods Enzymol, 2000,305:346~370
    [14]Hattori N, Sakakibara T, Kajiyama N, et al. Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal Biochem, 2003,319 (2):287~295
    [15]Kamidate T, Yanashita K, Tani H,et al. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes. Anal Chem, 2006,78(1):337~342
    [16]Conn RB,P Charache,and EW Chapelle .Limits of applicability of the firefly luminescence ATP assay for the detection of bacteria in clinical specimens. Am J Clin Pathol,1975,63(4):493~501
    [17]张菊梅,吴清平,李程思,等.生物发光法微生物快速检测试剂的性质及其影响因素研究.微生物学通报,2006, 33 (3): 36~41
    [1]Stanley PE. A review of bioluminescent ATP techniques in rapid microbiology.J Biolumin Chemilumin,1989,4(1):378~380
    [2]Mecozzi M,Acquistucci R. Computer assisted determination of ATP in environmental and food samples by bioluminescent assay: comparison of algorithms.Comput Methods Programs Biomed, 2000,62(1):35~43
    [3]M Mecozzi,M Amici,G Visco,Correction of the interference by mixing the reagents in the bioluminescent determination of ATP in environmental samples by an interfaced PC photometer and a robust regression procedure .Fresenius J Anal Chem,1997,357:747~751
    [4]Bulleia NC .An improved method for the extraction of adenosine triphosphate from marine sediments and seawater. Limnol Ocean,1977,23(1):174~178
    [5]Frundzhyan V,Ugarova N .Bioluminescent assay of total bacterial contamination of drinking water. Luminescence, 2007,22(3):241~244
    [6]Ukuku DO,Sapers GM,Fett WF.ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon. J Food Prot, 2005,68(11):2427~2432
    [7]Bell C,Stallard PA, Brown SE, et al. ATP-bioluminescent techniques for assessing hygienic condition of milk transport tankers.Int Dairy J,1994,4(7):629~640
    [8]Moir DT,Ming Di,Opperman T,et al .A high-throughput, homogeneous,bioluminescent assay for Pseudomonas aeruginosa gyrase inhibitors and other DNA-damaging agents .J Biomol Screen, 2007,12(6):855~864
    [9]黄安,龙仁,王伟平,等.死后大鼠骨骼肌组织ATP含量变化与PMI相关性的研究.美国中华临床医学杂志,2005, 7 (2): 127~131
    [10]龙仁,黄安,王伟平,等.低温下大鼠死后骨骼肌及肝组织平均ATP含量变化与PMI关系的研究.美国中华临床医学杂志,2005, 7 (3): 184~186
    [11]Kono Y. Significance of mitochondrial enhancenment in restoring hepatic energy charge after revascularization of isolated ischemic liver. Transplantation,1982,33(2):150~ 155
    [12]陈陛,李永宏.脑组织中ATP含量变化与死亡时间关系的初步研究.法医学杂志,1997,13(3):138~139
    [13]王冰,王国君,邵会师.检测人骨骼肌中ATP含量判断其变性程度的实验研究.白求恩医科大学学报,1999, 25 (6): 696~698
    [14]Henssge C,Madea B.The estimation of the time since death in the early postmortem period. Forensic Sci Int, 2004, 144 (2-3):167~175
    [1] Gram L, Dalgaardp. Fish spoilage bacteria-problems and solutions. Current Opinion in Biotechnology, 2002, 13 (3): 262-266
    [2] Dalgaard P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int J Food Microbial, 1995, 26 (3): 305-317
    [3] Buchanan RL. Predictive food microbiology. Trends Food Science Tech, 1993, 4(1):6-11
    [4] Dalgaard P, Vancanneyt M, Euras VN, et al. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stoted under modified atmospheres at temperatures between 0℃ and 25℃. J Appl Microbial, 2003, 94 (1): 80-89
    [5] Zwietering MH, Jongenburger I, Rombouts FM, et al. Modeling of the bacterial growth curve. Appl Environ Microbiol, 1990, 56 (6): 1875-1881
    [6] 徐天字.食品微生物生长预测模型.食品科学, 1995, 16 (1): 17-23
    [7] Koutsoumanis K, Nychas GJE. Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life prediction. Int J Food Micmbiol, 2000, 60 (2-3): 171-184
    [8] Boddy L, Wimpenny JW. Ecological concepts in food microbiology. Soc Appl Bacteriol SympSer, 1992, 21: 23S-38S
    [9] Gram L, RavnL, RaschM, et al. Food spoilage-interactions between food spoilage bacteria. International Journal of Food Microbiology, 2002, 78 (1-2): 79-97
    [10] Huss HH, Schaeffer ***, Rye Petersen E, et al. Toxin production by Cl. botulinum type E in smoked fish in relation to the measured oxidation-reduction potential (Eh), packaging method and the associated micro flora. In: Connell JJ. Advances in Fish Science and Technology. Farnham. England: Fishing News Books, 1980. 476-479
    [11] Cousin MA, Marth EH. Lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus in milk precultured with psychrotrophic bacteria. J Food Prot, 1977, 40 (7): 475-479
    [1]杨毓环,陈伟伟.VITEK全自动微生物检测系统原理及其应用.海峡预防医学杂志,2000, 6(3):38~39
    [2]陈太基,封幼玲,戴建华,等.VITEK全自动微生物分析系统的应用与研究.中国卫生检验杂志,1997, 7 (5):262~266
    [3]林涛,兰敏,冯小军,等.VIDAS-VITEK法快速检验食品中大肠杆菌O157的研究.中国卫生检验杂志,2008, 18 (8):1660~1662
    [4]吴文礼.食品微生物学进展.北京:中国农业科学技术出版社,2002. 198~210
    [5]CA Herter,CT Broeck.A Biochemical study of Proteus Vulgaris Hauser. http://www.jbc.org/cgi/reprint/9/6/491.pdf
    [6]Marrakchi AEL,Bouchriti N,Bennour M,et al. The bacteriology of Moroccan sardine (Sardina pilchardus) stored in ice .II—Enzymatic properties of the bacterial flora. Microbiol Alim Nutr, 1992,10: 147~155
    [1]Wolrat H,St(?)hlbom B,Hallen A,et al. Trimethylamine and trimethylamine oxide levels in normal women and women with bacterial vaginosis reflect a local metabolism in vaginal secretion as compared to urine.APMIS,2005,113(7-8):513~516
    [2]Barrett EL,Kwan H S .Bacterial reduction of trimethylamine oxide .Annu Rev Microbiol,1985,39: 131~149
    [3]邓后勤,夏延斌,邓友光,等.三甲胺测定方法的研究进展.食品与发酵工业,2005, 31(12):84~87
    [4]刘茜,沙滢涛,刘艳,等.大鼠尸体组织中三甲胺-氮的检测[J].中国法医学杂志,2009, 24(2):89~91
    [5]Marrakchi AEL,Bouchriti N,Bennour M,et al. The bacteriology of Moroccan sardine (Sardina pilchardus) stored in ice .Ⅱ—Enzymatic properties of the bacterial flora. Microbiol Alim Nutr, 1992,10: 147~155
    [6]赵子琴.法医病理学.北京:人民卫生出版社,2004. 64~82
    [7]朱锦田.死亡时间推断的研究与进展.河北公安警察职业学院学报,2007, 1 (7):57~59
    [8]龚志强,曾宪斌,孙跃刚,等.家兔眼玻璃体液21种元素含量与PMI关系的研究.法医学杂志,2002, 2 (18): 67~69
    [9]刘茜,武盛国,汪岚,等.双眼交替微量取样检测兔玻璃体液钾镁离子浓度推测死亡时间.中国法医学杂志,2007, 22 (1): 32~38
    [10]Henssge C,Madea B .The estimation of the time since death in the early postmortem period. Forensic Sci Int,2004,144(2-3):167~175
    [11]汪岚,刘良.人工神经网络的法医学应用.中国法医学杂志,2005, 20 (3 ): 161~165
    [1]Gorus F,Schram E.Appications of Bio- and Chemiluminescence in the Clinical Laboratory. Clin Chem, 1979, 25(4):512~519
    [2]胡天喜.发光分析与医学.上海:华东师范大学出版社,1990. 132~147
    [3]McElroy WD .The Energy Source for Bioluminescence in an Isolated System. Proc Natl Acad Sci USA, 1947, 33(11):342~345
    [4]Bitler B,McElrory WD.The preparation and properties of crystalline firefly luciferin. Arch Biochem Biophys,1957,72(2):358~368
    [5]Lundin A, Richardsson A, Thore A. Continous monitoring of ATP-converting reactions by purified firefly luciferase. Anal Biochem, 1976, 75(2):611~620
    [6]郝巧玲,吕斌,周宜开,等.生物发光法快速检测细胞内三磷酸腺苷.话中科技大学学报(医学版).2005, 34 (1): 61~64
    [7]Thore A, Ans(?)hn S,Lundin A, et al. Detection of bacteriuria by luciferase assay of adenosine triphosphate. J Clin Microbiol, 1975,1(1):1~8
    [8]Denburg JL, McElroy WD .Anion inhibition of firefly luciferase.Arch Biochem Biophys, 1970, 141(2):668~675
    [9]Gilles R, Pequeux A, Saive JJ, et al. Effect of various ions on ATP determinations using the “luciferine-luciferase” system. Arch Int Physiol Biochim, 1976, 84(4):807~817
    [10]张菊梅,吴清平,李程思,等.生物发光法微生物快速检测试剂的性质及其影响因素研究.微生物学通报,2006, 33 (3): 36~41
    [11]郭中钰,祝世功,李天舒,等.大鼠脑和肌肉组织 ATP含量的生物发光测定.白求恩医科大学学报,1998, 24 (1): 19~20
    [12]陈陛,李永宏.脑组织中ATP含量变化与死亡时间关系的初步研究.法医学杂志,1997,13(3):138~139
    [13]孙长贵.生物发光法在微生物检验中的应用及研究进展.国外医学临床生物化学与检验学分册,1995, 16 (1):29~32
    [14]舒柏华,赵志耀,徐顺清,等.利用生物发光分析技术快速检测微生物的方法学研究.发光学报,1999, 20, (1): 77~80
    [15]Schram E,Weyens-van,Witzenburg A. Improved ATP methodology for biomass assays .J Biolumin Chemilumin, 1989,4(1):390~398
    [16]Stanley PE.Extraction of adenosine triphosphate from microbial and somatic cells.Methods Enzymol, 1986,133:14~22
    [17]舒柏华,赵志耀,徐顺清,等.利用生物发光分析技术快速检测微生物的方法学研究.发光学报,1999, 20, (1): 77~80
    [18]王华全.生物发光法快速检测食品中的活菌总数.湖北商检科技,1992, 2 (2): 5~10
    [19]安云庆.用生物发光法取代现行卡介苗活菌计数法的实验研究.首都医学院学报,1988,9(2):189~191
    [20]Dexter SJ, C(?)mara M, Davies M, et al.Development of a bioluminescent ATP assay to quantify mammalian and bacterial cell number from a mixed population. Biomaterials,2003,24(1):27~34
    [21]Arthur PG, Hochachka PW. Automated analysis of cellular metabolites at nanomolar to micromolar concentrations using bioluminescent methods .Analytical Biochemistry,1995,227 (2):281~284
    [22]Hercules DM, Sheehan TL. Chemiluminescent determination of serum glycerol and triglycerides. Anal Chem, 1978,50(1):22~25
    [23]Bjorkhem I, Sandelln K, Thore A. A simple, fully enzymic bioluminescent assay for triglycerides in serum. Clin Chem, 1982,28(8):1742~1744
    [24]Lundin A, J(a|¨)derlund B,L(o|¨)vgren T. Optimized bioluminescent assay of creatine kinase and creatine kinase B-subunit activity. Clin Chem, 1982,28(4 pt 1):609~614
    [25]Kricka LJ, Calter TJN.Clinical and Biochemical Luminescence. New York: Marcel Dekker, 1982.62~64
    [26]徐志飞,蔡用之.超氧歧化酶和过氧化氢酶对缺血后再灌注心肌奠定保护.第二军 医大学学报,1989, 10 (4): 347 ~351
    [27]王国良,朱诚,陈克明.猫急性颅脑损伤后促甲状腺素释放激素对脑组织能量代谢的影响.上海医学,1992, 15 (6): 332~334
    [28]Jabs CM, Ferrell WJ, Robb HJ. Microdetermination of plasma ATP and creatine phosphate concentrations with a luminescence biometer. Clin Chem, 1977,23(12):2254~2257
    [29]Mengug R. Mechanism of stress ulcer: Influence of hypovolemic shock on energy metabolism in the gastric mucosa. Gastroenterology, 1974, 66(1):46~55
    [30]Wang XM, Chen KM, Shi Y, et al. Functional changes of the NADH respiratory chain in rat-liver mitochondria and the content changes of high-energy phosphate groups in rat liver and heart during the early phase of burn injury. Burns, 1990, 16(5):377~80
    [31]Trifillis AL, Kahng MW, Trump BF.Metabolic studies of glycerol-induced acute renal failure in the rat. Exp Mol Pathol,1981,35(1):1~13
    [32]Serio M, Pazzagli M.Luminescence Assay:Perspectives in Endocrinology and Clinical Chemistry. New York: Raven press, 1982.79~87
    [33]Summerfield GP,Keenan JP,Brodie NJ, et al. Bioluminescent assay of adenine nucleotides: rapid analysis of ATP and ADP in red cells and platelets using the LKB luminometer. Clin Lab Haematol,1981,3(3):257~371
    [34]骆群,刘景汉,王青梅.温度对ACD、 CPDA全血ATP作用的研究.军医进修学院学报,1998, 19 (2): 121~122
    [35]Harber MJ, Asscher AW.A new method for antibiotic assay based on measurement of bacterial adenosine triphosphate using the firefly bioluminescence system .J Antimicrob Chemother, 1977, 3(1):35~41
    [36]赵文明,王敏珍.ATP依赖性生物发光试验测定金黄色葡萄球菌对药物的敏感性.中国图书评论,1989, 12 (4): 217~219
    [37]Limb DI,Wheat PF,Hastings JG,et al. Antimicrobial susceptibility testing of mycoplasmas by ATP bioluminescence. J Med Microbiol, 1991,35(2):89~92
    [38]Nilsson LE, Hoffner SE, Ans(?)hn S .Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP .Antimicrob Agents Chemother, 1988,32(8):1208~1212
    [39]Walker AJ, Holah JT, Denyer SP,et al. The antibacterial activity of Virkon measured by colony growth and bioluminescence of lux recombinant Listeria monocytogenes.Lett Appl Microbiol,1992,15(2):80~82
    [40]Hanberger H, Nilsson LE, Nilsson M, et al. Post-antibiotic effect of beta-lactam antibiotics on gram-negative bacteria in relation to morphology, initial killing and MIC .Eur J Clin Microbiol Infect Dis,1991,10(11):927~934
    [41]Hanberger H,Nilsson LE,Svensson E,et al. Synergic post-antibiotic effect of mecillinam, in combination with other beta-lactam antibiotics in relation to morphology and initial killing. J Antimicrob Chemother, 1991,28 (4):523~532
    [42]Isaksson B,Hanberger H, Maller R, et al. Synergic post-antibiotic effect of amikacin in combination with beta-lactam antibiotics on gram-negative bacteria. J Antimicrob Chemother, 1991,28(1):25~34
    [43]陈秀枢,李有武,孙长贵.体外抗菌素后效应的方法学及其对临床金黄色葡萄球菌的研究.临床检验杂志,1991, 9 (2): 58~62
    [44]安云庆.用生物发光技术快速测定卡介苗活菌数—检测方法的建立.中华微生物和免疫学杂志.1988, 8 (1):56~58
    [45]曹秀和,项金忠,陈正仁,等.用生物发光技术测定卡介苗活菌数—BL法与CFU法的比较.中华微生物学和免疫学杂志,1989, 9 (3): 194~196
    [46]安云庆,李玉兰,程松高,等.生物发光技术在卡介苗质量鉴定中的实际考核.中华结核和呼吸杂志,1991, 14 (1): 35~37
    [47]韩国荣,张林,苏佩敏,等.ATP生物发光法检测卵巢癌细胞化疗敏感性的可行性研究.江苏医药,1999, 25 (5): 340~341
    [48]宁勇,姚群峰.应用生物发光技术检测DNA聚合酶活性.临床输血与检验,2005,7(1):25~26
    [49]叶哲伟,陈晓春,鲁功成,等.生物发光技术定量检测SD鼠睾丸组织内端粒酶活性的实验研究.临床泌尿外科杂志,2003, 18 (5): 299~300
    [50]Bulanova EG, Budagyan VM,Romanova NA, et al. Bioluminescent assay for human lymphocyte blast transformation. Immunol Lett, 1995,46: 153~155
    [51]王胜利,舒柏华.生猪肉中腺苷酸与细菌及硫化氢含量关系.中国公共卫生,2004,20(2):239~240
    [52]吴慧清,吴清平,张菊梅,等.肉品新鲜度的ATP生物发光法检测研究.中国卫生检验杂志,2006, 16 (8): 902~903, 933
    [53]Bautista DA, Vaillancourt JP, Clarke RA,et al. Adenosine triphosphate bioluminescence as a method to determine microbial levels in scald and chill tanks at a poultry abattoir. Poult Sci, 1994,73(11):1673~1678
    [54]Bautista DA, Vaillancourt JP,Clarke RA,et al. Rapid assessment of the microbiological quality of poultry carcasses using ATP bioluminescence. J Food Prot, 1995, 58(3):551~554
    [55]Chen J. ATP bioluminescence: a rapid indicator for environmental hygiene and microbial quality of meats.Dairy Food Environ Sanit, 2000, 20(3):617~620
    [56]Siragusa GR,Cutter CN .Microbial ATP bioluminescence as a means to detect contamination on artificially contaminated beef carcass tissue. J Food Prot, 1995,58(4):764~769
    [57]Brovkao L, Froundjian VG, Babunova VS,et al. Quantitative assessment of bacterial contamination of raw milk using bioluminescence.J Dairy Res,1999, 66(4):627~631
    [58]Kyriakides A. ATP bioluminescence applications for microbiological quality control in the dairy industry. J Soc Dairy Technol,1992,45(1):91~93
    [59]Niza-Ribeiro J, Louz(?) AC,Santos P,Lima M. Monitoring the microbiological quality of raw milk through the use of an ATP bioluminescence method. Food Control,2000,11(3):209~216
    [60]Samkutty PJ, Gough RH,Adkinson RW,et al. Rapid assessment of bacteriological quality of raw milk using ATP bioluminescence. J Food Prot, 2001,64(2):208~212
    [61]Webster JAJ, Hall MS,Rich CN, et al. Improved sensitivity of the bioluminescent deternination of numbers of bacteria in milk samples.J Food Prot, 1988,51(5):949~954
    [62]Dowhanick TM, Sobczak J. ATP bioluminescence procedure for viability testing of potential beer spoilage microorganisms.J Am Soc Brew Chem, 1994, 52(1):19~23
    [63]伍季,王燕,章建军,等.ATP生物发光法快速检测啤酒中的菌落总数.河南科学,2006,24(1):63~65
    [64]Ukuku DO,Pilizota V,Sapers GM.Bioluminescence ATP assay for estimating total plate counts of surface microflora of whole cantaloupe and determining efficacy of washing treatments .J Food Prot, 2001,64(6):813~819
    [65]连英姿,董雪,李勇,等.ATP生物发光技术快速检测水中细菌的研究.中国卫生检验杂志,2007, 17 (10): 1859~1860
    [66]V Frundzhyan, N Ugarova. Bioluminescent assay of total bacterial contamination of drinking water. Luminescence, 2007,22: 241~244
    [67]Webster JJ, Walker BG, Ford SR, et al.Determination of sterilization effectiveness by measuring bacterial growth in a biological indicator through firefly luciferase determination of ATP .J Biolumin Chemilumin, 1988,2(3):129~133
    [68]中华人民共和国铁道部.TB/T 3121-2005铁路食(饮)具洁净度ATP生物发光检测法和分级判定.北京:中国标准出版社,2005.
    [69]Davidson CA, Griffith CJ, Peters AC, et al. Evaluation of two methods for monitoring surface cleanliness—ATP bioluminescence and traditional hygiene swabbing. Luminescence, 1999, 14(1):33~38
    [70]Griffith CJ, Davidson CA, Peters AC,et al. Towards a strategic cleaning assessment programme: hygiene monitoring and ATP luminometry, an options appraisal .Food Sci Technol Today, 1997, 11(1):15~24
    [71]Kono Y. Significance of mitochondrial enhancenment in restoring hepatic energy charge after revascularization of isolated ischemic liver. Transplantation, 1982,33(2):150~155
    [72]陈陛,李永宏.脑组织中ATP含量变化与死亡时间关系的初步研究.法医学杂志,1997,13(3):138~139
    [73]黄安,龙仁,王伟平,等.死后大鼠骨骼肌组织ATP含量变化与PMI相关性的研究.美国中华临床医学杂志,2005, 7 (2): 127~131
    [74]龙仁,黄安,王伟平,等.低温下大鼠死后骨骼肌及肝组织平均ATP含量变化与PMI关系的研究.美国中华临床医学杂志,2005, 7 (3): 184~186
    [75]王冰,王国君,邵会师.检测人骨骼肌中ATP含量判断其变性程度的实验研究.白求恩医科大学学报,1999, 25 (6): 696~698
    [76]刘茜,翁义星,杨帆,等.肌肉组织中微生物ATP含量与死亡时间推断.法医学杂志,2009, 25 (2): 81~84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700