miR-183在人骨肉瘤细胞系中的表达及其对骨肉瘤转移能力影响的初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     骨肉瘤是青少年中最常见的原发于骨的的恶性肿瘤,骨肉瘤具有很高的全身转移的倾向,大约20%的患者在初次诊断的时候已经发生肺转移,另外还有40%的患者晚期发生远处器官的转移。随着化疗药物的出现和应用,目前骨肉瘤患者的5年生存率已由上世纪70年代之前的10-20%上升至现在的60-80%。但是无论是原发性骨肉瘤还是转移性骨肉瘤,对常规的化疗药物都具有耐药性,肿瘤耐药是骨肉瘤患者保肢手术治疗失败及发生转移的主要原因,而肿瘤发生转移是骨肉瘤患者死亡的主要原因。
     转移性肿瘤对治疗不敏感的主要原因是药物抵抗。研究发现,发生肺转移的骨肉瘤细胞表现出了和原发性肿瘤细胞完全不同的生物学特性,发生转移后的肿瘤细胞群在细胞的倍增速度、酶表达谱、染色体组型和化疗药物的敏感性方面都不同于其原发的肿瘤细胞群。这就解释清楚了对原发肿瘤有效的化疗方案,为什么却对转移性肿瘤丝毫不起作用。
     恶性肿瘤最后在人体内形成转移病灶需要经过很多重要的步骤。要能够从分子水平上控制肿瘤的转移,首先需要对肿瘤的转移机制有彻底的认识,通过控制肿瘤转移的各个步骤,进而防止肿瘤发生转移。尽管经过的大量的基础研究和临床试验,骨肉瘤的转移机制仍然不是很清楚。对骨肉瘤转移的生物学机制进行彻底研究将会为治疗骨肉瘤提供革命性的理论基础。
     microRNA作为基因的一种表现形式,是否在骨肉瘤发生转移的过程中发挥作用以及以何种形式发挥作用,引起了学者的关注。因此,本实验旨在通过比较高、低不同转移能力的骨肉瘤细胞中microRNA的表达水平的差异,并通过瞬时转染microRNA的方法对细胞进行干预,观察干预后肿瘤细胞的生长及转移特性,以探索瞬时转染microRNA对骨肉瘤细胞生物学性质的即刻效应,为更好的明确骨肉瘤的转移机制提供理论依据和实验指导。
     研究方法:
     首先比较高、低转移能力骨肉瘤细胞中miR-183及Ezrin蛋白的表达差异,根据表达水平的差别对骨肉瘤细胞转染外源性miR-183,建立不同表达水平miR-183的骨肉瘤细胞模型。然后采用MTT、流式细胞仪、细胞划痕实验、transwell实验、免疫细胞化学、westernbloting等实验方法对细胞的生长特性和形态学表现进行研究,以评估miR-183在不同转移能力细胞中的表达,miR-183对细胞蛋白表达水平的影响和细胞转移能力的影响。最后通过相关的统计学分析,以明确miR-183表达水平与Ezrin蛋白的表达量、肿瘤的侵袭和转移能力之间的相关性。
     研究结果:
     1.无论是在骨肉瘤细胞还是在骨肉瘤组织中,高转移性骨肉瘤中Ezrin蛋白的表达量高于低转移性骨肉瘤中的表达;而实时定量PCR研究发现,高转移性骨肉瘤细胞中miR-183的表达量显著低于高转移性细胞中的表达量。
     2.通过瞬时转染外源性miR-183可以使高转移性骨肉瘤细胞F5M2中miR-183的表达量显著升高,成功建立不同表达水平miR-183的骨肉瘤细胞模型。
     3.MTT、流式细胞仪、细胞划痕实验、transwell等实验结果表明外源性过表达miR-183的F5M2细胞转移能力显著下降,呈剂量依赖关系;miR-183对F5M2细胞的增殖和凋亡能力无影响。
     4.免疫细胞化学、westernbloting等实验结果表明外源性过表达miR-183的F5M2细胞中Ezrin蛋白的表达量下降,呈剂量依赖关系。
     结论:
     高转移性骨肉瘤细胞F5M2中miR-183的表达量较低转移性骨肉瘤F4中表达量较低,而高转移性肿瘤中Ezrin蛋白的表达量显著高于低转移性肿瘤。通过转染外源性miR-183可以显著提高miR-183在F5M2的表达量,降低Ezrin蛋白表达。miR-183的表达量提高不仅会使F5M2中Ezrin蛋白的表达量降低,而且可以使肿瘤的侵袭和迁移能力显著抑制,而增殖和凋亡特性无明显变化。相关性研究发现,Ezrin蛋白的表达量和骨肉瘤细胞的转移潜能存在正相关。这些研究结果提示通过提高miR-183在高转移性骨肉瘤F5M2中的表达量,可以抑制Ezrin蛋白的表达,从而抑制肿瘤转移潜能。miR-183抑制骨肉瘤转移的这一机制还有待于进一步的实验验证,且为深入的基础研究和潜在的临床应用开辟了新途径。
Background and Objective:Osteosarcoma (OS) is the most common primary malignant bone tumour in children and adolescents. The estimated incidence rate worldwide is4/million/year, with a peak incidence at the age of15-19years. In OS there is a high tendency to metastatic spread. Approximately20%of patients present with lung metastases at initial diagnosis and, additionally, in40%of patients metastases occur at a later stage. Eighty percent of all metastases arise in the lungs, most commonly in the periphery of the lungs, and exhibit resistance to conventional chemotherapy. The5-year survival rate for OS patients with metastases is20%compared to65%for patients with localised disease and most deaths associated with OS are the result of metastatic disease.
     Metastasis is considered to be the final though most critical step in tumorigenesis of malignant tumours. It has been shown that OS lung metastases display a biological behaviour different from the primary tumours. Metastases are comprised of cell clones that differ from primary tumours with respect to ploidy, enzyme profile, karyotype and chemosensitivity. Therapeutic regimens that target primary tumours are therefore unlikely to be successful in the treatment of metastatic disease.
     The metastatic cancer cells subsequently complete many steps to metastasis. Over the last decade, much research has been performed to try to unravel the biology of OS metastasis and many (pre)clinical studies have attempted to discover new treatment options for metastatic OS. However, the exact metastatic mechanism of OS remains unclear. Further study about the molecular mechanism of OS will provide novel treatments for therapy in metastatic OS.
     miRNA expression profiling analyses have reported a general dysregulation of miRNA expression in all tumors. In this study we will outline the biological and molecular roles of miRNAs in OS and metastasis by highlighting the most promising advances for the use of miRNAs in the clinical setting. The aim of this study is to explore the biology of metastatic OS cells and how these may contribute to designing a metastasis directed treatment for OS.
     Methods:Firstly, we compared the differences of miR-183and Ezrin expression in high-metastatic human OS F5M2and low-metastatic human OS F4cells. Functional analysis was then carried out by transfection of miR-183mimics or inhibitors into the high-metastasis OS F5M2cell line with low endogenous miR-183expression. The results of the transfection were subsequently assessed on cell viability pattern by proliferation and apoptosis assay, cell migration by transwell insert and wound healing assay, gene expression alterations by real-time PCR and protein levels by western blotting and immunocytochemistry (ICC). At last we study the relationship between the miR-183level and the metastatic potential of OS.
     Results:
     1. The expression level of Ezrin in high metastatic OS was significantly higher than that of in low metastatic OS. There is a same tendency either in cells or in samples. Real-time PCR demonstrated that miR-183expression in high metastatic F5M2cells was significantly lower than in low metastatic F4cells.
     2. It showed that miR-183was significantly over-expressed in F5M2cells after transfection with the miR-183mimics. In this study, we successfully established OS cell models with different expression of miR-183.
     3. Transwell insert and wound healing assay demonstrated that ectopic expression of miR-183inhibited F5M2cell migration and invasion potential in vitro. The results of flow cytometry and MTT assay showed that there was no difference on apoptosis and proliferation between F5M2cells untreated or transfected with miR-183mimics.
     4. Western blotting and ICC showed that the expression of Ezrin in F5M2cells decreased markedly after transfection with miR-183mimics, compared with cells untreated or treated with NC. There was an inverse correlation between Ezrin production and miR-183levels.
     Conclusion:Overexpression of miR-183mainly inhibited the migration and invasion of F5M2cells, not proliferation and apoptosis. Ezrin expression was positively correlated to migration and invasion of OS cells. It is concluded that alteration of miR-183might act as a significant inhibitory factor in regulate cell migration and invasion targeting the downregulation of Ezrin expression. To our knowledge, this is the first in vitro study to regulate metastasis and progression of OS, by upregulation of miR-183to target the expression of Ezrin in F5M2cells. Our study might provide an important avenue for further analysis in vivo with the aim to develop a new potential diagnostic and therapeutic targets for the screening and treatment of high metastatic OS. Further studies are required to fully understand the regulation mechanisms of miR-183and Ezrin in OS in vitro and in vivo.
引文
[1]Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from1973to2004:data from the Surveillance, Epidemiology, and End Results Program. Cancer,2009,115(7):1531-1543
    [2]Bacci G, Rocca M, Salone M et al. High grade osteosarcoma of the extremities with lung metastases at presentation:treatment with neoadjuvant chemotherapy and simultaneous resection of primary and metastatic lesions. J Surg Oncol,2008,98(6):415-420
    [3]Bielack SS, Carrle D, Hardes J et al. Bone tumors in adolescents and young adults. Curr Treat Options Oncol,2008,9(1):67-80
    [4]Harting MT, Blakely ML. Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg,2006,15(1):25-29
    [5]Hughes DP. Strategies for the targeted delivery of therapeutics for osteosarcoma. Expert Opin Drug Deliv,2009,6(12):1311-1321
    [6]Messerschmitt PJ, Garcia RM, bdul-Karim FW et al. Osteosarcoma. J Am Acad Orthop Surg,2009,17(8):515-527
    [7]Kager L, Zoubek A, Potschger U et al. Primary metastatic osteosarcoma:presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol,2003,21(10):2011-2018
    [8]Bielack SS, Kempf-Bielack B, Delling G et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk:an analysis of1,702patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol,2002,20(3):776-790
    [9]Eccles SA, Welch DR. Metastasis:recent discoveries and novel treatment strategies. Lancet,2007,369(9574):1742-1757
    [10]Pradelli E, Karimdjee-Soilihi B, Michiels JF et al. Antagonism of chemokine receptor CXCR3inhibits osteosarcoma metastasis to lungs. Int J Cancer,2009,125(11): 2586-2594
    [11]Rodriguez NI, Hoots WK, Koshkina NV et al. COX-2expression correlates with survival in patients with osteosarcoma lung metastases. J Pediatr Hematol Oncol,2008,30(7):507-512
    [12]Brand RA.50years ago in CORR:the present trend in treatment of osteogenic sarcoma. Clin Orthop Relat Res,2009,467(11):3038-3039
    [13]Weis LD. The success of limb-salvage surgery in the adolescent patient with osteogenic sarcoma. Adolesc Med,1999,10(3):451-458, xii
    [14]Lietman SA and Joyce MJ. Bone sarcomas:Overview of management, with a focus on surgical treatment considerations. Cleve Clin J Med,2010,77(Suppl1):8-12
    [15]Jaffe N. Adjuvant chemotherapy in osteosarcoma:an odyssey of rejection and vindication. Cancer Treat Res,2009,152:219-237
    [16]Cortes EP, Holland JF, Wang JJ et al. Amputation and adriamycin in primary osteosarcoma. N Engl J Med,1974,291(19):998-1000
    [17]Goorin AM, Abelson HT and Frei E. Osteosarcoma:fifteen years later. N Engl J Med,1985,313(26):1637-1643
    [18]Goorin AM, Frei E and Abelson HT. Adjuvant chemotherapy for osteosarcoma:a decade of experience. Surg Clin North Am,1981,61(6):1379-1389
    [19]Jaffe N, Goorin A, Link M et al. High-dose methotrexate in osteogenic sarcoma adjuvant chemotherapy and limb salvage results. Cancer Treat Rep,1981,65(Suppl1):99-106
    [20]Rodriguez-Galindo C, Navid F, Liu T et al. Prognostic factors for local and distant control in Ewing sarcoma family of tumors. Ann Oncol,2008,19(4):814-820
    [21]Meyers PA, Schwartz CL, Krailo MD et al. Osteosarcoma:the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children's Oncology Group. J Clin Oncol,2008,26(4):633-638
    [22]Winkler K, Beron G, Delling G et al. Neoadjuvant chemotherapy of osteosarcoma: results of a randomized cooperative trial (COSS-82) with salvage chemotherapy based on histological tumor response. J Clin Oncol,1988,6(2):329-337
    [23]Wilkins RM, Cullen JW, Camozzi AB et al. Improved survival in primary nonmetastatic pediatric osteosarcoma of the extremity. Clin Orthop Relat Res,2005,438:128-136
    [24]Fuchs J, Seitz G, Ellerkamp V et al. Analysis of sternotomy as treatment option for the resection of bilateral pulmonary metastases in pediatric solid tumors. Surg Oncol,2008,17(4):323-330
    [25]Briccoli A, Rocca M, Salone M et al. High grade osteosarcoma of the extremities metastatic to the lung:long-term results in323patients treated combining surgery and chemotherapy,1985-2005. Surg Oncol,2010,19(4):193-199
    [26]Krishnan K, Khanna C, Helman LJ. The biology of metastases in pediatric sarcomas. Cancer J,2005,11(4):306-313
    [27]Bacci G, Ferrari S, Mercuri M et al. Predictive factors for local recurrence in osteosarcoma:540patients with extremity tumors followed for minimum2.5years after neoadjuvant chemotherapy. Acta Orthop Scand,1998,69(3):230-236
    [28]Enneking WF, Spanier SS and Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res,2003,(415):4-18
    [29]Goorin AM, Schwartzentruber DJ, Devidas M, Gebhardt MC, Ayala AG, Harris MB, Helman LJ, Grier HE and Link MP. Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J Clin Oncol,2003,21(8):1574-1580
    [30]Bacci G, Longhi A, Cesari M, Versari M and Bertoni F. Influence of local recurrence on survival in patients with extremity osteosarcoma treated with neoadjuvant chemotherapy:the experience of a single institution with44patients. Cancer,2006,106(12):2701-2706
    [31]Blakely ML, Spurbeck WW, Pappo AS, Pratt CB, Rodriguez-Galindo C, Santana VM, Merchant TE, Prichard M and Rao BN. The impact of margin of resection on outcome in pediatric nonrhabdomyosarcoma soft tissue sarcoma. J Pediatr Surg,1999, 34(5):672-675
    [32]Davis AM, Kandel RA, Wunder JS, Unger R, Meer J, O'Sullivan B, Catton CN and Bell RS. The impact of residual disease on local recurrence in patients treated by initial unplanned resection for soft tissue sarcoma of the extremity. J Surg Oncol,1997,66(2):81-87
    [33]Gupta GR, Yasko AW, Lewis VO, Cannon CP, Raymond AK, Patel S and Lin PP. Risk of local recurrence after deltoid-sparing resection for osteosarcoma of the proximal humerus. Cancer,2009,115(16):3767-3773
    [34]Chandrasekar CR, Wafa H, Grimer RJ, Carter SR, Tillman RM and Abudu A. The effect of an unplanned excision of a soft-tissue sarcoma on prognosis. J Bone Joint Surg Br,2008,90(2):203-208
    [35]Bramer JA, Abudu AA, Grimer RJ, Carter SR and Tillman RM. Do pathological fractures influence survival and local recurrence rate in bony sarcomas? Eur J Cancer,2007,43(13):1944-1951
    [36]van Kampen M, Grimer RJ, Carter SR, Tillman RM and Abudu A. Replacement of the hip in children with a tumor in the proximal part of the femur. J Bone Joint Surg Am,2008,90(4):785-795
    [37]Frink SJ, Rutledge J, Lewis VO, Lin PP and Yasko AW. Favorable long-term results of prosthetic arthroplasty of the knee for distal femur neoplasms. Clin Orthop Relat Res,2005,438:65-70
    [38]Belthur MV, Grimer RJ, Suneja R, Carter SR and Tillman RM. Extensible endoprostheses for bone tumors of the proximal femur in children. J Pediatr Orthop,2003,23(2):230-235
    [39]Gupta A, Meswania J, Pollock R, Cannon SR, Briggs TW, Taylor S and Blunn G. Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours. J Bone Joint Surg Br,2006,88(5):649-654
    [40]Gupta A, Pollock R, Cannon SR, Briggs TW, Skinner J and Blunn G. A knee-sparing distal femoral endoprosthesis using hydroxyapatite-coated extracortical plates. Preliminary results. J Bone Joint Surg Br,2006,88(10):1367-1372
    [41]Jeys LM, Kulkarni A, Grimer RJ, Carter SR, Tillman RM and Abudu A. Endoprosthetic reconstruction for the treatment of musculoskeletal tumors of the appendicular skeleton and pelvis. J Bone Joint Surg Am,2008,90(6):1265-1271
    [42]Myers GJ, Abudu AT, Carter SR, Tillman RM and Grimer RJ. The long-term results of endoprosthetic replacement of the proximal tibia for bone tumours. J Bone Joint Surg Br,2007,89(12):1632-1637
    [43]Myers GJ, Abudu AT, Carter SR, Tillman RM and Grimer RJ. Endoprosthetic replacement of the distal femur for bone tumours:long-term results. J Bone Joint Surg Br,2007,89(4):521-526
    [44]Futani H, Minamizaki T, Nishimoto Y, Abe S, Yabe H and Ueda T. Long-term follow-up after limb salvage in skeletally immature children with a primary malignant tumor of the distal end of the femur. J Bone Joint Surg Am,2006,88(3):595-603
    [45]Hardes J, Gebert C, Schwappach A, Ahrens H, Streitburger A, Winkelmann W and Gosheger G. Characteristics and outcome of infections associated with tumor endoprostheses. Arch Orthop Trauma Surg,2006,126(5):289-296
    [46]Zeegen EN, Aponte-Tinao LA, Hornicek FJ, Gebhardt MC and Mankin HJ. Survivorship analysis of141modular metallic endoprostheses at early followup. Clin Orthop Relat Res,2004,(420):239-250
    [47]Jeys LM, Grimer RJ, Carter SR and Tillman RM. Periprosthetic infection in patients treated for an orthopaedic oncological condition. J Bone Joint Surg Am,2005,87(4):842-849
    [48]Muscolo DL, Ayerza MA, Aponte-Tinao L and Farfalli G. Allograft reconstruction after sarcoma resection in children younger than10years old. Clin Orthop Relat Res,2008,466(8):1856-1862
    [49]Ramseier LE, Malinin TI, Temple HT, Mnaymneh WA and Exner GU. Allograft reconstruction for bone sarcoma of the tibia in the growing child. J Bone Joint Surg Br,2006,88(1):95-99
    [50]Deijkers RL, Bloem RM, Kroon HM, Van Lent JB, Brand R and Taminiau AH. Epidiaphyseal versus other intercalary allografts for tumors of the lower limb. Clin Orthop Relat Res,2005,439:151-160
    [51]Abed YY, Beltrami G, Campanacci DA, Innocenti M, Scoccianti G and Capanna R. Biological reconstruction after resection of bone tumours around the knee:long-term follow-up. J Bone Joint Surg Br,2009,91(10):1366-1372
    [52]Jeon DG, Kim MS, Cho WH, Song WS and Lee SY. Pasteurized autograft-prosthesis composite for distal femoral osteosarcoma. J Orthop Sci,2007,12(6):542-549
    [53]Chang DW and Weber KL. Use of a vascularized fibula bone flap and intercalary allograft for diaphyseal reconstruction after resection of primary extremity bone sarcomas. Plast Reconstr Surg,2005,116(7):1918-1925
    [54]Watanabe H, Ahmed AR, Shinozaki T, Yanagawa T, Terauchi M and Takagishi K. Reconstruction with autologous pasteurized whole knee joint Ⅱ:application for osteosarcoma of the proximal tibia. J Orthop Sci,2003,8(2):180-186
    [55]Hong A, Stevens G, Stalley P, Pendlebury S, Ahern V, Ralston A, Estoesta E and Barrett Ⅰ. Extracorporeal irradiation for malignant bone tumors. Int J Radiat Oncol BiolPhys,2001,50(2):441-447
    [56]Sugiura H, Takahashi M, Nakanishi K, Nishida Y and Kamei Y. Pasteurized intercalary autogenous bone graft combined with vascularized fibula. Clin Orthop Relat Res,2007,456:196-202
    [57]Chen TH, Chen WM and Huang CK. Reconstruction after intercalary resection of malignant bone tumours:comparison between segmental allograft and extracorporeally-irradiated autograft. J Bone Joint Surg Br,2005,87(5):704-709
    [58]Farid Y, Lin PP, Lewis VO and Yasko AW. Endoprosthetic and allograft-prosthetic composite reconstruction of the proximal femur for bone neoplasms. Clin Orthop Relat Res,2006,442:223-229
    [59]deNigris F, Rossiello R, Schiano C et al. Deletion of Yin Yang1protein in osteosarcoma cells on cell invasion and CXCR4/angiogenesis and metastasis. Cancer Res,2008,68(6):1797-1808
    [60]Diaz-Montero CM, Wygant JN, McIntyre BW. PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation. Eur J Cancer,2006,42(10):1491-1500
    [61]Guo Y, Rubin EM, Xie J et al. Dominant negative LRP5decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res,2008,466(9):2039-2045
    [62]Hingorani P, Zhang W, Gorlick R et al. Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clin Cancer Res,2009,15(10):3416-3422
    [63]Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol,2007,26(1):1-18
    [64]Kansara M, Tsang M, Kodjabachian L et al. Wnt inhibitory factor1is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest,2009,119(4):837-851
    [65]Khanna C, Wan X, Bose S et al. The membrane-cyto-skeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med,2004,10(2):182-186
    [66]Kim SY, Lee CH, Midura BV et al. Inhibition of the CXCR4/CXCL12chemokine pathway reduces the development of murine pulmonary metastases. Clin ExpMetastasis,2008,25(3):201-211
    [67]Lafleur EA, Koshkina NV, Stewart J et al. Increased Fas expression reduces the metastatic potential of human osteosar-coma cells. Clin Cancer Res,2004,10(23):8114-8119
    [68]Pasello M, Michelacci F, Scionti I et al. Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res,2008,68(16):6661-6668
    [69]Ren L, Hong SH, Cassavaugh J et al. The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene,2009,28(6):792-802
    [70]Wang IC, Chen YJ, Hughes DE et al. FoxMl regulates transcription of JNK1to promote the Gl/S transition and tumor cell invasiveness. J Biol Chem,2008283(30):20770-20778
    [71]Zucchini C, Rocchi A, Manara MC et al. Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int J Oncol,2008,32(1):17-31
    [72]Gorlick R, Anderson P, Andrulis I et al. Biology of childhood osteogenic sarcoma and potential targets for therapeutic development:meeting summary. Clin Cancer Res,2003,9(15):5442-5453
    [73]Kawabe T. G2checkpoint abrogators as anticancer drugs. Mol Cancer Ther,2004,3(4):513-519
    [74]Nyberg KA, Michelson RJ, Putnam CW et al. Toward maintaining the genome:DNA damage and replication checkpoints. Annu Rev Genet,2002,36:617-656
    [75]Reinhardt HC, Aslanian AS, Lees JA et al. p53-deficient cells rely on ATM-and ATR-mediated checkpoint signaling through the p38MAPK/MK2pathway for survival after DNA damage. Cancer Cell,2007,11(2):175-189
    [76]Syljuasen RG, Jensen S, Bartek J et al. Adaptation to the ionizing radiation-induced G2checkpoint occurs in human cells and depends on checkpoint kinase1and Polo-like kinase1kinases. Cancer Res,2006,66(21):10253-10257
    [77]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell,2000,100(1):57-70
    [78]Kashima T, Nakamura K, Kawaguchi J et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer,2003104(2):147-154
    [79]Steeg PS. Tumor metastasis:mechanistic insights and clinical challenges. Nat Med,2006,12(8):895-904
    [80]Worth LL, Lafleur EA, Jia SF et al. Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep,2002,9(4):823-827
    [81]Worth LL, Lafleur EA, Jia SF et al. Fas expression inversely correlates with metastatic potential in osteosarcoma cells. Oncol Rep,2002,9(4):823-827
    [82]Hynes RO. Metastatic potential:generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell,2003,113(7):821-823
    [83]Khanna C, Khan J, Nguyen P et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res,2001,61(9):3750-3759
    [84]Minn AJ, Gupta GP, Siegel PM et al. Genes that mediate breast cancer metastasis to lung. Nature,2005,436:518-524
    [85]Anderson P, Kopp L, Anderson N et al. Novel bone cancer drugs:investigational agents and control paradigms for primary bone sarcomas (Ewing's sarcoma and osteosarcoma). Expert Opin Investig Drugs,2008,17(11):1703-1715
    [86]Hughes DP () How the NOTCH pathway contributes to the ability of osteosarcoma cells to metastasize. Cancer Treat Res,2010,152:479-496
    [87]Laverdiere C, Hoang BH, Yang R et al. Messenger RNA expression levels of CXCR4correlate with metastatic behavior and outcome in patients with osteosarcoma. Clin Cancer Res,2005,11(7):2561-2567
    [88]Fan DG, Dai JY, Tang J et al. Silencing of calpain expression reduces the metastatic potential of human osteosarcoma cells. Cell Biol Int,2009,33(12):1263-1267
    [89]Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol,2009,6(10):587-595
    [90]Pignochino Y, Grignani G, Cavalloni G et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1and ezrin pathways. Mol Cancer,2009,8:118
    [91]Rubin EM, Guo Y, Tu K et al. Wnt inhibitory factor1decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther,2010,9(3):731-741
    [92]Guo Y, Zi X, Koontz Z et al. Blocking Wnt/LRP5signaling by a soluble receptor modulates the epithelial to123mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2cells. J Orthop Res,2007,25(7):964-971
    [93]Engin F, Bertin T, Ma O et al. Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet,2009,18(8):1464-1470
    [94]Tanaka M, Setoguchi T, Hirotsu M et al. Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation. Br J Cancer,2009,100(12):1957-1965
    [95]Zhang P, Yang Y, Zweidler-McKay PA et al. Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res,2008,14(10):2962-2969
    [96]Igney FH, Krammer PH. Death and anti-death:tumour resistance to apoptosis. Nat Rev Cancer,2002,2(4):277-288
    [97]Leow PC, Tian Q, Ong ZY, Yang Z, Ee PL. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/b-catenin antagonists against human osteosarcoma cells. Invest New Drugs,2010,28(6):766-782
    [98]Cai Y, Mohseny AB, Karperien M et al. Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol,2010,220(1):24-33
    [99]Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer:how does cadherin dysfunction promote tumor progression? Oncogene,2008,27(55):6920-6929
    [100]Duan X, Jia SF, Koshkina N et al. Intranasal interleukin-12gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer,2006,106(6):1382-1388
    [101]Yang C, Yang S, Wood KB et al. Multidrug resistant osteosarcoma cell lines exhibit deficiency of GADD45alpha expression. Apoptosis,2009,14(1):124-133
    [102]Schuetze S, Wathen K, Choy E et al. Results of a Sarcoma Alliance for Research through Collaboration (SARC) phase Ⅱ trial of dasatinib in previously treated, high-grade, advanced sarcoma. J Clin Oncol,2010,28(15):10009
    [103]Whelan J, Patterson D, Perisoglou M et al. The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer,2010,54(3):350-354
    [104]Lafleur EA, Jia SF, Worth LL et al () Interleukin (IL)-12and IL-12gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells. Cancer Res,2001,61(10):4066-4071
    [105]Nakamura Y, Yamada N, Ohyama H et al. Effect of interleukin-18on metastasis of mouse osteosarcoma cells. Cancer Immunol Immunother,2006,55(9):1151-1158
    [106]Chou AJ, Kleinerman ES, Krailo MD et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma:a report from the Children's Oncology Group. Cancer,2009,115(22):5339-5348
    [107]Lewis VO. What's new in musculoskeletal oncology. J Bone Joint Surg Am,2009,91(6):1546-1556
    [108]Yuan XW, Zhu XF, Huang XF et al. Interferon-alpha enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. Acta Pharmacol Sin,2007,28(11):1835-1841
    [109]Huang CY, Lee CY, Chen MY et al. Stromal cell-derived factor-1/CXCR4enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-kappaB-dependent pathways. J Cell Physiol,2009,221(1):204-212
    [110]Pradelli E, Karimdjee-Soilihi B, Michiels JF et al. Antagonism of chemokine receptor CXCR3inhibits osteosarcoma metastasis to lungs. Int J Cancer,2009,125(11):2586-2594
    [111]Wan X, Kim SY, Guenther LM et al. Beta4integrin promotes osteosarcoma metastasis and interacts with ezrin. Oncogene,2009,28(38):3401-3411
    [112]Hauben EI, Bielack S, Grimer R et al. Clinico-histologic parameters of osteosarcoma patients with late relapse. Eur J Cancer,2006,42(4):460-466
    [113]Barkan D, Green JE, Chambers AF. Extracellular matrix:a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer,2010,46(7):1181-1188
    [114]Almog N, Ma L, Raychowdhury R et al. Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res,2009,69(3):836-844
    [115]Scotlandi K, Picci P, Kovar H. Targeted therapies in bone sarcomas. Curr Cancer Drug Targets,2009,9(7):843-853
    [116]Abdeen A, Chou AJ, Healey JH et al. Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma. Cancer,2009,115(22):5243-5250
    [117]Ryu K, Choy E, Yang C, Susa M, Hornicek FJ, Mankin H, Duan Z. Activation of signal transducer and activator of transcription3(Stat3) pathway in osteosarcoma cells and over expression of phosphorylated-Stat3correlates with poor prognosis. J Orthop Res,2010,28(7):971-978
    [118]Kolb EA, Kamara D, Zhang W et al. R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr Blood Cancer,2010,55(1):67-75
    [119]Bartel DP. MiRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116:281-297
    [120]Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell,2010,38:323-332
    [121]Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell,2008,132:9-14
    [122]Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet,2007,3:e215
    [123]Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A. Regulation of the p27(Kipl) tumor suppressor by miR-221and miR-222promotes cancer cell proliferation. EMBO J.2007,26:3699-3708
    [124]Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C. MicroRNA cluster221-222and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst,2010,102:706-721
    [125]Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MiR-221controls CDKNlC/p57and CDKNlB/p27expression in human hepatocellular carcinoma. Oncogene,2008,27:5651-5661
    [126]Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, et al. MicroRNA-221targets Bmf in hepatocellular carcinoma and correlates with tumor multi-focality. Clin Cancer Res,2009,15:5073-5081
    [127]Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A. miR-221&222regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3downregulation. Cancer Cell,2009,70:3638-3646
    [128]Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. NatMed,2011,18:74-82
    [129]Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer,2006,6:857-866
    [130]Calin GA, Sevignani C, Dumitru CD, Hyslop T,Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA.2004,101:2999-3004
    [131]Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15and miR-16induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA.2005,102:11755-11760
    [132]KleinU, LiaM, CrespoM, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell,2010,17:28-40
    [133]Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G, et al. Functional dissection of the chromosome13q14tumor suppressor locus using transgenic mouse lines. Blood,2012,119(13),2981-2990
    [134]Musumeci M, Coppola V, Addario A, Patrizii M, Maugeri-Sacca M, Memeo L, et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16in prostate cancer. Oncogene,2011,30:4231-4242
    [135]Cannell IG, Bushell M. Regulation of Myc by miR-34c. Cell Cycle,2010,9:2726-2730
    [136]Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K, et al.Methylation-associated silencing ofmicro-RNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis.2010,31:2066-2073
    [137]Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34inhibits human pancreatic cancer tumor-initiating cells. PLoS One,2009,4:e6816
    [138]Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ,2008,17:236-245
    [139]Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol,2010,130:1249-1257
    [140]Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med,2011,17:211-215
    [141]Cole KA, Attiyeh EF, Mosse YP, Laquaglia MJ, Diskin SJ, Brodeur GM, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene.Mol Cancer Res,2008,6:735-742
    [142]YamakuchiM, FerlitoM, Lowenstein CJ. miR-34a repression of SIRT1regulates apoptosis. Proc Natl Acad Sci USA.2008,105:13421-13426
    [143]Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, et al. miR-34-miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol,2011,13:1353-1360.
    [144]Chen L, Zheng J, Zhang Y, Yang L, Wang J, Ni J, et al. Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and-independent pathways. Mol Ther,2011,19:1521-1528
    [145]Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH, et al. Repression of the miR-143/145cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev,2010,24:2754-2759
    [146]Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet,2007,39:673-677
    [147]Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM, et al. MicroRNAs in the miR-106b family regulate p21/CDKNlA and promote cell cycle progression. Mol Cell Biol,2008,28:2167-2174
    [148]Koralov SB, Muljo SA, Galler GR et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell,2008,132:860-874
    [149]Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, et al. Genetic dissection of the miR-17-92cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev,2009,23:2806-2811
    [150]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA,2006,103:2257-2261
    [151]Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17through92family of miRNA clusters. Cell,2008,132:875-886
    [152]Qian B, Katsaros D, Lu L, PretiM, Durando A, Arisio R, et al. High miR-21expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-betal. Breast Cancer Res Treat,2009,117:131-140
    [153]Selaru FM, Olaru AV, Kan T,David S, Cheng Y,Mori Y, et al. MicroRNA-21is over expressed in human cholangiocarcinoma and regulates programmed cell death4and tissue inhibitor of metalloproteinase3. Hepatology,2009,49:1595-1601
    [154]Hummel R, Hussey DJ, Michael MZ, Haier J, Bruewer M, Senninger N, et al. MiRNAs and their association with locoregional staging and survival following surgery for esophageal carcinoma. Ann Surg Oncol,2011,18:253-260
    [155]Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M, et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer,2010,9:12
    [156]Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21induces resistance to5-fluorouracil by down-regulating humanDNAMutS homolog2(hMSH2). Proc Natl Acad Sci USA,2010,107:21098-21103
    [157]Ma X, Kumar M, Choudhury SN, Becker Buscaglia LE, Barker JR, Kanakamedala K, et al. Loss of the miR-21allele elevates the expression of its target genes and reduces tumor-igenesis. Proc Natl Acad Sci USA,2011,108:10144-10149
    [158]Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200family expression. Genes Dev,2009,23:2140-2151
    [159]Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med,2011,17:1101-1108
    [160]Png KJ, Yoshida M, Zhang XH, Shu W, Lee H, Rimner A, et al. MicroRNA-335inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes Dev,2011,25:226-231
    [161]Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther,2011,19:1116-1122
    [162]Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet,2011,43:673-678
    [163]Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, et al. An HNF4-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell,2011,147:1233-1247
    [164]Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet,2011,43:371-378
    [165]GarofaloM, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene,2008,27:3845-3855
    [166]Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem,2008,283:29897-2903
    [167]Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, et al. MicroRNA-221/222confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene,2011,30:1082-1097
    [168]Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221and microRNA-222-regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer,2010,10:367
    [169]Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther,2011,131:18-32
    [170]Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T. Dysregulation of microRNA-34a expression causes drug-resistance to5-FU in human colon cancer DLD-1cells. Cancer Lett,2011,300:197-204
    [171]Algrain M, Turunen O, Vaheri A, et al. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol,1993,120:129-139
    [172]Bruce B, Khanna G, Ren L, et al. Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis,2007,24:69-78
    [173]Adam Elzagheid, Eija Korkeila, Riyad Bendardaf et al. Intense cytoplasmic ezrin immunoreactivity predicts poor survival in colorectal cancer. Human Pathology,2008,39:1737-1743
    [174]Hong-Jian Wang, Jin-Shui Zhu, Qiang Zhang et al. High level of ezrin expression in colorectal cancer tissues is closely related to tumor malignancy. World J Gastroenterol,2009,15(16):2016-2019
    [175]Marcelo P, Erika Maria MS, Renata de AC et al. Ezrin Expression as a Prognostic Marker in Colorectal Adenocarcinoma. Pathol Oncol Res,2011,17:827-833
    [176]Eija A. Korkeila, Kari Syrjanen, Riyad Bendardaf et al. Preoperative radiotherapy modulates ezrin expression and its value as a predictive marker in patients with rectal cancer. Human Pathology,2011,42:384-392
    [177]Merce Martina, Patricia Simon-Assmann, Michele Kedinger et al. DCC regulates cell adhesion in human colon cancer derived HT-29cells and associates with ezrin. Eur J Cell Biology,2006,85:769-783
    [178]Amelie Rebillard, Sandrine Jouan-Lanhouet, Elodie Jouan et al. Cisplatin-induced apoptosis involves a Fas-ROCK-ezrin-dependent actin remodelling in human colon cancer cells. Eur J Cancer,2010,46:1445-1455
    [179]Ming Ou-Yang, Hong-Rui Liu, Yu Zhang et al. ERM stable knockdown by siRNA reduced in vitro migration and invasion of human SGC-7901cells. Biochimie,2011,93:954-961
    [180]Li Li, Yuan-Yu Wang, Zhong-Sheng Zhao et al. Ezrin is Associated with Gastric Cancer Progression and Prognosis. Pathol Oncol Res,2011,17:909-915
    [181]Kaori Ohtani, Hideki Sakamotob, Thomas Rutherford et al. Ezrin, a membrane-cytoskeletal linking protein, is involved in the process of invasion of endometrial cancer cells. Cancer Letters,1999,147:31-38
    [182]Kaori Ohtani, Hideki Sakamotoa, Thomas Rutherford et al. Ezrin, a membrane-cytoskeletal linking protein, is highly expressed in atypical endometrial hyperplasia and uterine endometrioid adenocarcinoma. Cancer Letters,2002,179:79-86
    [183]Joon Songa, Ahmed Fadiel, Valentine Edusa et al. Estradiol-induced ezrin over expression in ovarian cancer:a new signaling domain for estrogen. Cancer Letters,2005,220:57-65
    [184]Jarna Moilanen, Heini Lassus, Arto Leminen et al. Ezrin immunoreactivity in relation to survival in serous ovarian carcinoma patients. Gynecologic Oncology,2003,90:273-281
    [185]Bruce E Elliottl, Jalna A Meensl, Sandip K SenGupta et al. The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Res,2005,7:R365-373
    [186]David Sarriol, Socorro Maria Rodnguez-Pinillal, Ana Dotor et al. Abnormal ezrin localization is associated with clinic opathological features in invasive breast carcinomas. Breast Cancer Res Tre,2006,98:71-77
    [187]Qiong Li, MingfuWu, HuiWang et al. Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Letters,2008,261,55-63
    [188]See-Tong Pang, Xioalei Fang, Alexander Valdman et al. Expression of ezrin in prostatic intraepithelial neoplasia. Urology,2004,63(3):609-612
    [189]Alexander Valdmana, Xiaolei Fang, See-Tong Pang et al. Ezrin expression in prostate cancer and benign prostatic tissue. European Urology,2005,48:852-857
    [190]Afrodite A, Panagiotis A, Dimitrios N et al. Decreased ezrin and paxillin expression in human urothelial bladder tumors correlate with tumor progression. Urol Oncol.2011Aug23.[Epub ahead of print] doi:10.1016/j.urolonc.2011.07.003.
    [191]Hye-Rim Park, Woon Won Jung, Patrizia Bacchini et al. Ezrin in osteosarcoma: Comparison between conventional high-grade and central low-grade osteosarcoma. Pathology-Research and Practice,2006,202:509-515
    [192]Yuxi Su, Xiaoji Luo, Bai-Cheng He et al. Establishment and characterization of a new highly metastatic human osteosarcoma cell line. Clin Exp Metastasis,2009,26:599-610
    [193]Sebastien Salas, Catherine Bartoli, Jean-Laurent Deville et al. Ezrin and alpha-smooth muscle actin are immunohistochemical prognostic markers in conventional osteosarcomas. Virchows Arch,2007,451:999-1007
    [194]Hsuan-Ying Huang, Chien-Feng Li, Fu-Min Fang et al. Prognostic Implication of Ezrin Overexpression in Myxofibrosarcomas. Ann Surg Oncol,2010,17:3212-3219
    [195]Ana Carneiro, Par-Ola Bendahl, Ma Akerman et al. Ezrin expression predicts local recurrence and development of metastases in soft tissue sarcomas. J Clin Pathol2011,64:689-694
    [196]胡晓晖,施鑫,吴苏稼.化疗对骨肉瘤患者血中整合素α2β1的影响.医学研究生学报,2011,24(1):43-45.
    [197]Yao Fei Wang, Jing Nan Shen, Xian Biao Xie et al. Expression change of ezrin as a prognostic factor in primary osteosarcoma. Med Oncol,2011, Suppl1:S636-643
    [198]Ymera Pignochino, Giovanni Grignanil, Giuliana Cavalloni et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1and ezrin pathways. Molecular Cancer,2009,8:118-834
    [199]Claudio Di Cristofano, Martina Leopizzi, Antonella Miraglia et al. Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Modern Pathology,2010,23,1012-1020
    [200]Sebastien Salas, Gonzague de Pinieux, Anne Gomez-Brouchet et al. Ezrin immunohistochemical expression in cartilaginous tumours:a useful tool for differential diagnosis between chondroblastic osteosarcoma and chondrosarcoma. Virchows Arch,2009,454:81-87
    [201]Isidro Machado, Samuel Navarro, Francisco Giner et al. Ezrin immunohistochemical expression in chondrosarcomas, osteosarcomas and Ewing sarcoma family of tumors. Virchows Arch,2010,457:87-89
    [202]Dass CR, Ek ET, Contreras KG, Choong PF. A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis,2006,23:367-380
    [203]Chen X, Yang TT, Wang W, Sun HH, et al. Establishment and characterization of human osteosarcoma cell lines with different pulmonary metastatic potentials. Cytotechnology,2009,61:37-44
    [204]Felgner PL, Gadek TR, Holm M, et al. Lipofection:a highly efficient, lipid-mediated enhancement of transfection procedure. Natl Acad Sci USA,1987,84:7413-7416
    [205]Wang G, Mao W and Zheng S. MicroRNA-183regulates Ezrin expression in lung cancer cells. FEBS Lett,2008,582:3663-3668
    [206]Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R et al. Identification by real-time PCR of13mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,2006,5:29
    [207]Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L and Zucman-Rossi J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology,2008,47:1955-1963
    [208]Motoyama K, Inoue H, Takatsuno Y et al. Over-and under-expressed microRNAs in human colorectal cancer. Int J Oncol,2009,34:1069-1075
    [209]Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L, Bandres E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+cells increases USF2-mediated cell growth. Mol Cancer Res,2008,6:1830-1840
    [210]Mattie MD, Benz CC, Bowers J, Sensinger K, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer,2006,5:24
    [211]Lowery AJ, Miller N, Dwyer RM and Kerin MJ. Dysregulated miR-183inhibits migration in breast cancer cells. BMC Cancer,2010,10:502
    [212]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M and Rajewsky N. Combinatorial microRNA target predictions. Nat Genet,2005,37:495-500
    [213]Yu Y, Khan J, Khanna C, Helman L, Meltzer PS and Merlinom G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six21as key metastatic regulators. Nat Med,2004,10:175-181
    [214]Mangeat P, Roy C and Martin M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol,1999,9:187-192
    [215]Bretscher A, Edwards K and Fehon RG. ERM proteins and merlin:integrators at the cell cortex. Nat Rev Mol Cell Biol,2002,3:586-599
    [216]Wang JW, Peng SY, Li JT, Wang Y, Zhang ZP, Cheng Y, Cheng DQ, Weng WH, Wu XS, Fei XZ, et al. Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channell. Cancer Lett,2009,281:71-81
    [217]Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med,2004,10:201-204
    [218]Weng WH, Ahlen J, Astrom K, Lui WO and Larsson C. Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clin Cancer Res,2005,11:6198-6204
    [219]Kim MS, Song, WS, Cho WH, Lee SY and Jeon DG. Ezrin expression predicts survival in stage IIB osteosarcomas. Clin Orthop Relat Res,2007,459:229-236
    [220]Xu-Dong S, Zan S, Shui-Er Z, Li-Na T, Wen-Xi Y, Feng L and Yang Y. Expression of ezrin correlates with lung metastasis in Chinese patients with osteosarcoma. Clin Invest Med,2009,32:E180-E188
    [221]Wang YF, Shen JN, Xie XB Wang J and Huang G. Expression change of ezrin as a prognostic factor in primary osteosarcoma. Med Oncol,2011,28:S636-S643
    [222]Y Yu. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1as key metastatic regulators. Nat Med,2004,10:175-181
    [223]Khanna C. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med,2004,10:182-186
    [224]Martin TA. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol,2003,46:165-186
    [225]Pujuguet P. Ezrin regulates E-cadherin-dependent adherens junction assembly through Racl activation. Mol Biol Cell,2003,14:2181-2191
    [226]Gildea JJ. RhoGDI2is an invasion and metastasis suppressor gene in human cancer. Cancer Res,2002,62:6418-6423
    [227]Laclef C. Altered myogenesis in Sixl-deficient mice. Development,2003,130:2239-2252
    [228]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008,451:147-152
    [229]Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A, Antunes AA and Srouqi M. Change in expression of miR-let7c, miR-100and miR-218from high grade localized prostate cancer to metastasis. Urol Oncol,2011, 29:265-269
    [230]Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS and Benz CC. Coordinate suppression of ERBB2and ERBB3by enforced expression of micro-RNA, miR-125a or miR-125b. J Biol Chem,2007,282:1479-1486
    [231]Kumar MS, Lu J, Mercer KL, Golub TR and Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet,2007,39:673-677
    [232]Wu L, Cai C, Wang X, Liu M, Li X and Tang H. MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett585,2011:1322-1330
    [233]Tan S, Li R, Ding K, Lobie PE and Zhu T. miR-198inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Lett,2011,585:2229-2234
    [234]Kang HW, Wang F, Wei Q Zhao YF, Liu M, Li X and Tang H. miR-20a promotes migration and invasion by regulating TNKS2in human cervical cancer cells. FEBS Lett,2012,586:897-904
    [235]Wu L, Li H, Jia CY, Cheng W et al. MicroRNA-223regulates FOXO1expression and cell proliferation. FEBS Lett,2012,586:1038-1043
    [236]Huang N, Lin J, Ruan J, Su N, et al. MiR-219-5p inhibits hepatocellular carcinoma cell proliferation by targeting glypican-3. FEBS Lett,2012,586:884-891
    [237]Li G, Luna C, Qiu J, Epstein DL and Gonzalez P. Targeting of integrin betal and kinesin2alpha by microRNA183. J Biol Chem,2010,285:5461-5471

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700