人结肠癌奥沙利铂耐药细胞株的建立及逆转
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结肠癌是的常见恶性肿瘤之一,术后化疗是结肠癌治疗的一个重要步骤,对患者生存期的延长和生活质量的改善有重要的作用。其中奥沙利铂(oxaliplatin, L-OHP)是目前临床治疗结肠癌的最重要的药物之一,具有较广泛的抗瘤谱。但是,肿瘤细胞对L-OHP产生耐受严重地影响了它的疗效,是临床上急待解决的问题之一。
     为了了解恶性肿瘤对L-OHP产生耐药的特征规律和耐药机理,本研究采用逐步递增L-OHP浓度,间歇作用体外诱导法培养建立了人结肠癌奥沙利铂耐药细胞模型—HT29/L-OHP。然后采取RNA干扰(RNA interferece,RNAi)技术,成功构建了TSG101(tumour susceptibility gene101,TSG101)小干扰RNA(TSG101-siRNA)的真核表达载体,顺利地逆转了结肠癌耐药细胞株HT29/L-OHP对L-OHP的耐药性。
     第一部分人结肠癌奥沙利铂耐药细胞模型的建立及耐药机理的初步探讨
     目的奥沙利铂(Oxaliplatin,L-OHP)是目前临床使用的最重要的抗癌药物之一,但肿瘤细胞对L-OHP产生耐受严重地影响了它的疗效。本研究建立人结肠癌奥沙利铂耐药细胞系HT29/L-OHP,了解恶性肿瘤细胞对L-OHP产生耐药的特征规律和耐药机理。方法本研究用逐步递增L-OHP浓度,间歇作用体外诱导法培养建立了人结肠癌L-OHP耐药细胞模型—HT29/L-OHP。MTT法测定生长曲线、交叉耐药性和耐药指数;并用光镜、电镜、流式细胞仪(FCM)等方法观察其一般生物学特性的改变;采用免疫组化检测GST-π、bcl-2等的表达水平了解其耐药的可能机理;通过RT-PCR和Western blotting检测tsg101mRNA和TSG101基因表达蛋白的水平。结果历时3个月建成了L-OHP耐药细胞模型—HT29/L-OHP,其耐药性能稳定,耐药指数为10.6430;并且与5-氟尿嘧啶、长春新碱、阿霉素等多种抗癌药有不同程度的交叉耐药性。HT29/L-OHP的细胞形态及染色体数目发生了改变;体外细胞群体倍增时间较亲代细胞延长29.7107小时;细胞周期分析发现其S期与G_0/G_1期细胞减少、G_2/M期细胞增多;tsg101mRNA和TSG101蛋白表达均较HT29亲代细胞增高;HT29/L-OHP细胞GST-π、MRP、NF-kB、INOS、HSP70、MTP53、Bcl-2和E-cd的表达升高,Bax和AE1/AE3等则无明显变化。结论HT29/L-OHP细胞是模拟临床用药特点建立的耐药性较稳定的多药耐药细胞,是研究L-OHP耐药机理及筛选逆转剂的理想细胞模型。HT29/L-OHP细胞具有耐药细胞的基本生物学特性。奥沙利铂耐药与GST-π、MRP、NF-kB、INOS、HSP70、MTP53、Bcl-2和TSG101蛋白表达升高有关。
     第二部分TSG101-siRNA表达载体的构建及对结肠癌耐药细胞株的逆转作用
     目的构建TSG101(tumour susceptibility gene101,TSG101)小干扰RNA(TSG101-siRNA)的真核表达载体,观察RNA干扰沉默TSG101基因后化疗药物奥沙利铂(L-OHP)对结肠癌耐药细胞株HT29/L-OHP增殖的影响。方法根据小干扰RNA的设计原则由计算机软件辅助设计TSG101的靶序列,应用DNA重组技术将目的序列克隆入小干扰RNA的表达载体;RT-PCR检测TSG101-siRNA对HT29/L-OHP细胞tsg101mRNA表达的影响;Western blotting检测TSG101-siRNA对TSG101基因表达蛋白的抑制效率;采用MTT法测定TSG101-siRNA联合化疗药物奥沙利铂对HT29/L-OHP的增殖抑制作用;FCM分析TSG101-siRNA转染HT29/L-OHP细胞前后的细胞周期分布情况。结果测序显示干扰载体构建成功,TSG101-siRNA能抑制tsg101mRNA表达,使HT29/L-OHP细胞TSG101蛋白的表达下降,明显增强奥沙利铂对HT29/L-OHP的增殖抑制;TSG101-siRNA转染HT29/L-OHP细胞后G_0/G_1期和S期细胞数有增加,而G_2/M期细胞数有减少。结论TSG101-siRNA的真核表达载体能有效地抑制HT29/L-OHP细胞的tsg101mRNA、TSG101蛋白的表达,提高化疗药物奥沙利铂对HT29/L-OHP的抑制率,能逆转结肠癌耐药细胞株HT29/L-OHP对L-OHP的耐药性。
Human colon carcinoma is one of most common maligmant tumors. Chemotherapy is an important step in treatment of colon carcinoma, and have important effect on prolong of exist and improving life’s quality. Oxaliplatin (L-OHP) is one of the most important anticancer agents now used to colon carcinoma. Despite its broad clinical application, however, the resistance of cancer cells to oxaliplatin often culminates in chemotherapeutic failure and becomes one of the urgent questions to resolve in clinical chemotherapy.
     In order to explore its resistant mechanisms, a resistant cell line—HT29/L-OHP was established by stepwise increasing dose of L-OHP and intermittent administration. The eukaryotic expression plasmids of TSG101-siRNA was constructed successfully by RNA interference technology. The eukaryotic expression vector of TSG101-siRNA combined with oxaliplatin inhibits the proliferation of HT29/L-OHP and increases the sensitivity to chemotherapy.
     PART ONE ESTABLISHMENT OF OXALIPLATIN-INDUCED RESISTANT HUMAN COLON CANCER CELL MODEL AND PRELIMINARY STUDY ON THE RESISTANT MECHANISMS
     Objective Oxaliplatin(L-OHP) is one of the most important anticancer agents now used. Despite its broad clinical applications, however, the resistance of cancer cells to L-OHP often culminates in chemotherapeutic failure. In order to explore its resistant mechanisms, a resistant cell line—HT29/L-OHP was established. Methods A resistant cell line—HT29/L-OHP was established by stepwise increasing dose of L-OHP and intermittent administration. The growth curves、multidrug resistance and resistance index of HT29/L-OHP cell line to anticancer agents were detected by MTT assay. The changes of its biological characteristics were determined by light microscope, electron microscope, flow cytometry etc. The expression of glutathione S-transferase-π(GST-π) and Bcl-2 etc were analyzed and compared by immunohistochemical technique. The expression of tsg101mRNA and TSG101 protein in HT29 and HT29/L-OHP cell line was detected by RT-PCR and Western-blot. Results HT29/L-OHP cell line was established after 3 moths with stable resistance to L-OHP and resistance index 10.6430; HT29/L-OHP cells exhibited cross resistance to many other chemotherapeutic agents. As compared with parental cells, the morphological and chromatosome number of HT29/L-OHP changed; its doubling time prolonged; and the number of cells in S phase and G_0/G_1 phase decreased while in G_2/M phase increased by cell cycle analysis. The expression of tsgmRNA and TSG101 protein was decreased in the HT29 cell line. The expression of GST-π, MRP, NF-kB, INOS, HSP70, MTP53, Bcl-2 and E-cd was enhanced, but the expression of Bax and AE1/AE3 protein kept stable in the HT29/L-OHP cell line. Conclusion HT29/L-OHP cell line showed the typical multidrug resistant phenotype and might to serve as an ideal model for studying the mechanisms of resistance to L-OHP and filtrating reversing drug. HT29/L-OHP cell line possessed the basic characteristics of resistant cells. The primary factors resulting in HT29/L-OHP resistance to L-OHP were higher expression of GST-π, MRP, NF-kB, INOS, HSP70, MTP53, Bcl-2 and TSG101.
    
     PART TWO Construction and effect of TSG101-siRNA eukaryotic expression vectors with oxaliplatin on proliferation of HT29/L-OHP
     Objective To construct the eukaryotic expression plasmids of TSG101-siRNA and investigate the effect of RNA interference targeting tsg101 gene with oxaliplatin on colon cancer resistant cell line HT29/L-OHP. Methods The targeting fragments specifically against TSG101 were designed according to the principle of small interfering RNA designation using computer software. The sequences were cloned into siRNA expression plasmids through DNA recombinant technology. The expression of tsg101mRNA after transfected TSG101-siRNA was detected by RT-PCR. The expression levels of TSG101 after transfected TSG101-siRNA was detected by Western blotting. MTT test were applied to measure the inhibition combined with oxaliplatin on proliferation of HT29/L-OHP strain. Distribution of cell cycle was analyzed using flow cytometry after RNA interference HT29/L-OHP. Results The expected fragments were obtained by digestion identification and further confirmed by DNA sequencing. These TSG101-siRNA inhibited the expression of tsg101mRNA , and the expression of TSG101 protein, and proliferation of HT29/L-OHP obviously when combined with oxaliplatin. The analysis of cell cycle indicated that cells of G_2/M phases reduced and of G_0/G_1 and S phases increased. Conclusion The eukaryotic expression vector of TSG101-siRNA combined with oxaliplatin inhibits the proliferation of HT29/L-OHP and increases the sensitivity to chemotherapy.
引文
[1] 王鑫, 王洁, 张燕等. 肿瘤细胞耐药机制的研究进展[J]. 癌症进展杂志, 2007, 5(1): 73-78.
    [2] Carole Voland , Annie Bord, Annick Peleraux, et al . Repression of cell cycle-related proteins by oxaliplatin but not Cisplatin in human colon cancer cells [J]. Mol Cancer Ther, 2006,5(9): 2149-57.
    [3] 汤为学, 骆云鹏, 王瑞雪. 人实体瘤药物敏感试验 MTT 法的建立[J]. 重庆医科大学学报, 1992,17(21):103-108.
    [4] 司徒镇强,吴军正. 细胞培养[M]. 西安: 世界图书出版社西安公司. 1996: 136-137.
    [5] 韩锐. 肿瘤化学预防及药物治疗[M]. 北京: 北京医科大学, 中国协和医科大学联合出版社. 1991:315-320.
    [6] 张胜本,张连阳. 肿瘤化学治疗敏感性与抗药性[M].. 成都:四川科学技术出版社. 1995: 17-19.
    [7] Yang LY, Trujillo JM. Biological characterization of multidrug resistant human colon carcinoma sublines by two mrthods[J]. Cancer Res, 1990, 50(11): 3215-3218.
    [8] Hammond JR, Johnstone RM, Gros P. Enhanced efflux of [3H] vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdrl gene[J]. Cancer Res, 1989, 49(14): 3867-3871.
    [9] Snow K, Judd W. Characterisation of adriamycin-and amasacrine- resistant human leukaemic T cell lines[J]. Br J Cancer, 1991, 63(1): 17-28.
    [10] 张立阳,赵玉沛,吴元德等. 胰腺癌阿霉素耐药细胞株 SW1990/ADM 的建立及其耐药机理研究[J]. 中国普外基础与临床杂志,2005,12(1):46-50.
    [11] 张覃沐. 抗肿瘤药物的药理与临床应用[M]. 河南:河南医科大学出版社. 1999: 27-28.
    [12] 张天泽,徐光炜. 肿瘤学[M]. 天津: 天津科学技术出版社,1996:716-717.
    [13] Conseil G, Deeley RG, Cole SP. Polymorphisms of MRP1(ABCC1) and relatedATP-dependent drug transporters[J]. Phormacogenet Genomies, 2005, 15(8): 523-533.
    [14] Serofino A, Sinibaldi VP, Plerimarch P, et al. Induction of apoptosis in neoplastic cells by anthracycline antitumor drugs: nuclear and cytoplosmic triggering[J]. Anticancer Res. 1999, 19(3A): 1909-1918.
    [15] Keppler D, Kamisako T, Leier I, et al. Localization, Substrate specificity, and drug resistance conferred by conjugate export pumps of the MRP family[J]. Adv Enzyme Regul, 2000, 40(10): 339-349.
    [16] Yakirevich E, Sabo E, Naroditsky I, et al. Multidrug resistance-related phenotype and apoptosis-related expression in ovarian serous carcinomas[J]. Gynecol oncol, 2006, 100(1): 2152-2159.
    [17] Depeille P, Cuq P, Passagne I, et al. Combined effects of GSTP1 and MRP1 in melanoma drug resistance[J]. Br J Cancer, 2005, 93(2): 216-223.
    [18] Mulder TP, Verspaget HW, Sier CF, et al. Glutathione s-transferase π in colorectal tumors is predictive for overall survival [J]. Cancer Res, 1995, 55(12): 2696-2699.
    [19] Kuo PL, Hsu YL, Kuo YC, et al. The anti-proliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction [J]. Anticancer Drugs, 2005, 16(7): 789-795.
    [20] Gadducci A, Cosio, Muraca S, et al.Molecular mechaniams of apoptosis and Chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications [J]. Eur J Gynaecol Oncol,2002, 23(5): 390-396.
    [21] Fu O, Shi Z, Wang Y. Bcl-2 plays a key role instead of mdrl in the resistance to nexadecylphocholime in human epidermoid tumor cell line KB[J]. Cancer leu, 1999, 142(2): 147-153.
    [22] Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cell [J]. Biochemistry Mosc, 2000, 65(1): 95-106.
    [23] Ye D, Li H. Bcl-2/Bax expression and P53 gene status in human bladder cancer: relationship to early recurrence with inrravesical chemorherapy after resection [J]. Urol, 1998, 160: 2025-2028.
    [24] Sen R, Baltimore D, Multiple nuclear factors interact with the immunoglobulin enhancer sequences [J]. Cell, 1986, 46(5): 705-716.
    [25] Anto RJ, Mukhopadhyay A, Shishodia S, et al. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of I kappa B: correlation with induction of cyclooxygenase-2 [J]. Carcinogenesis, 2002, 23(9): 1511-1518.
    [26] Wedon CB, Burou ME, Rolfe KW, et al. NF-kappa B mediated chemoresistance in breast cancer cells [J]. Surgery, 2001, 130(2): 143-150.
    [27] Chuang SE, Yeh PY, Lu YS, et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappa B(NF-kappa B), and its attenuation by tamoxifen, dexamethasome, and curcumin in carcinoma cells [J]. Biochem Pharmacol, 2002, 63(9): 1709-1716.
    [28] Weaver KD, Yeyeodu S, Cusack JC Jr, et al. Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas[J]. J Neurooncol, 2003, 61(3): 25-30.
    [29] 陈主初. 病理生理学(供七年制临床医学等专业用)[M]. 北京: 人民卫生出版社,2001,193-194.
    [30] 王涛. 肿瘤多药耐药性与信号转导[J]. 国外医学呼吸系统分册,2003,23(3): 154-156.
    [31] Li ,Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells [J]. Cell , 1996,85(3):319-329.
    [32] Zhu G , Glchrist R , Borley N , et al. Reduction of TSG101 protein has a negative impact on tumor cell growth[J]. Int J Cancer, 2004, 109(4):541-547.
    [33] Shen H, Pan Y, Han Z, et al. Reversal of multidrug resistance of gastric cancer cells by downregulation of TSG101 with TSG101 siRNA [J]. Cancer Biol Ther, 2004, 3(6): 561-565.
    [1] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature,2001,8:411,498.
    [2] Fresno-Vara JA, Casado E, De-Castro J, et al.P13K/Akt signal-ling pathway and cancer[J]. Cancer Treat Rev, 2004,30(2):193-204.
    [3] Jones L, Ratcliff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger Metl for maintenance[J]. Curr Biol,2001,11:747-757.
    [4] Li, Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells[J]. Cell , 1996, 85(3): 319-329.
    [5] Li L, Li X, Francke U, et a1. The TSG101 tumor susceptibility gene is located in chromosome band p15 and is mutated in human breast cancer[J]. Cell, 1997, 88(1): 143-154.
    [6] Wagner KU, Dieriseau P, Rucker EB 3rd, et a1.Genomic architecture and transcriptional activation of the mouse and human tumor susceptibility gene TSG101: common types of shorter transcripts are true alternative splice variants[J]. Oncogene, 1998, 17(21):2761-2770.
    [7] Watanabe M,Yanagi Y,Masuhiro Y,et a1.A putative tumor suppressor,TSGIO1, acts as a transcriptional suppressor through its coiled-coil domain[J].Biochem Biophys Res Commun, 1998,254(3):900-905.
    [8] Li L, Liao J, Ruland J, et a1. A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback contro1[J]. Proc Natl Acad Sci USA, 2001, 98(4): 1619-1624.
    [9] Feng GH, Lih CJ, Cohen SN.TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence [J]. Cancer Res, 2000, 60(6):1736-1741.
    [10] Zhu G, Gilchrist R, Borley N, et a1. Reduction of TSG10l protein has a negative impact on tumor cell growth[J].Int J Cancer, 2004, 109(4):541-547.
    [1] Calatozzolo C, Gelati M, Ciusani E, et al. Expression of drug resistance proteins Pgp, MRP1, MRP3,MRP5 and GST-pi in human glioma[J]. J Neurooncol, 2005, 74(2):113.
    [2] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants[J]. Biochim Biophys Acta, 1976, 455(1): 152-162.
    [3] Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, et al. P-glycoprotein: from genomics to mechanism[J]. Oncogene, 2003, 22(47): 74468-7485.
    [4] Kuwano M, Toh S, Uchiumi T, et al. Multidrug resistance-associated protein subfamily transporters and drug resistance[J]. Anticancer Drug Des, 1999, 4(2): 123-131.
    [5] Loo TW, Clarke DM. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein[J]. J Biol Chem, 2002, 277(46): 44332 -44338.
    [6] Hipfner DR, Deeley RG, Cole SP, Structural. mechanistic end clinical aspects of MRPI[J]. Biochem Biophys Acta,1999, 1461(2):359-376.
    [7] 李续建, 王椿, 乔振华等. 急性奠性白血病细胞MRP基因表达[J].中华肿瘤杂志. 1992,20(1):1l.
    [8] Scheper RJ, Broxterman HJ, Scheffer GL, et al. Overexpression of a M(r) 110000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance[J]. Cancer Res, 1993,53(7):1475-1479.
    [9] Slovak ML, Ho JP, Cole SP, et al. The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on chromosome 16: Evidence that chromosome breakage plays a key role in MRP or LRP gene amplification [J]. Cancer Res, 1995,55(19): 4214-4219.
    [10] Kawabata S, Oka M, Shiozawa k, et a1.Breast cancer resistance protein directly confera SN-38 resistance of lung cancer cell[J]. Biochem Biophys ResCommun,2001,280: 1216-1223.
    [11] Doyle LA, Yang W, Abruzzo LV, et al.A multidrug resistance transporter from human MCF-7 breast cancer cells[J]. Proc Natl Acad Sci USA, 1998, 95(26): 15665-15670.
    [12] Rocchi E, Khodjakov A, Volk El, et al. The product of the ABC half- transporter gene ABC62 (BCRP/MXR/ABCP) is expressed in the plasma membrane[J]. Biochem Biophys Res Commun, 2000,271(1): 42-46.
    [13] Ho SB, Yan PS, Dahiya R, et al. Stable differentiation of a human colon adcnocarcinoma cell line by sodium butyrate is associated with multidrug resistance[J]. J Cell Physiol , 1994, 160: 213-226.
    [14] Mulder TP, Roelofs HM, Peters WH, et al. Glutathlone S-transferases in live metastases of colorectal cancer[J]. A comparlson with normal liver and primary carclnomas Carclnogenesis, 1994, 15: 2149-2153.
    [15] Eijdems EM,de Haas M, Timmerman AJ, et al. Reduced topoisomerase Ⅱ activity in multidrug-resistant human non-small cell lung cancer cell lines[J]. Br J Cancer, 1995, 71: 40-47.
    [16] 李江涛, 彭淑牅, 刘颖斌等. 糖基化神经酰胺合成酶及相关基因的表达与人胆囊癌多药耐药[J]. 中华普通外科杂志,2005,20(6):382-383.
    [17] Uberll F, Werner-Felmayer C, Schubert C, et al. Neopterin derivatives together with cyclic guanosine monophosphate induce c-fos gene expression[J]. FEBS Lett, 1994, 352: 11-14.
    [18] Hsueh CT, Dolnick BJ. Regulation of folate-binding protein gene expression by DNA methylation in methotrexate –resistant KB cells[J]. Biochem Pharmacol, 1994, 47: 1019-1027.
    [19] Barakat RR, Wong W, Curtin JP, et al. Tamoxifen use in breast cancer patients who subsequently develop corpus cancer is not associated with a higher incidence of adverse histologic features[J]. Cynccol Oncol, 1994, 55: 164-168.
    [20] Liu B, Maher KJ, Hannun YA, et al.12(S)-HETE enhancement of prostate tumor cell invasion: selective role of PKC alpha[J]. J Natl Cancer Inst, 1994, 86:1145-1151.
    [21] Frankfurt OS, Seckinger D, Sugarbaker EV, Plelotropic drug resistance and survival advantage in ieukemic cells with dlminished apoptotic response[J]. Int J Cancer, 1994, 59: 217-224.
    [22] Gadducci A, Cosio, Muraca S, et al.Molecular mechaniams of apoptosis and Chemosensitivity to platinum and paclitaxel in ovarian cancer: biological data and clinical implications[J]. Eur J Gynaecol Oncol, 2002, 23(5): 390-396.
    [23] Schneider HJ, Sampson SA, Cunningham D, et al.Bcl-2 expression and response to chemotherapy in colorectal adenocarcinomas[J]. Br J Cancer, 1997, 75(3): 427.
    [24] Kuhl JS, Krajewski S, Duran GE, et al. Spontaneous over expression of the long form of the Bcl-X protein in a highly resistant P388 leukaemia[J]. Br J Cancer, 1997, 75(2): 268.
    [25] Kohn KW, Regulatory genes and drug sensitivity[J]. J Natl Cancer Inst, 1996, 88(18): 1255.
    [26] Li , Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells[J]. Cell, 1996, 85(3):319-329.
    [27] Zhu G , Glchrist R , Borley N , et al. Reduction of TSG101 protein has a negative impact on tumor cell growth[J]. Int J Cancer, 2004, 109(4):541-547.
    [28] Shen H, Pan Y, Han Z, et al. Reversal of multidrug resistance of gastric cancer cells by downregulation of TSG101 with TSG101 siRNA[J]. Cancer Biol Ther, 2004, 3(6): 561-565.
    [29] Sen R, Baltimore D, Multiple nuclear factors interact with the immunoglobulin enhancer sequences [J]. Cell, 1986, 46(5): 705-716.
    [30] Anto RJ, Mukhopadhyay A, Shishodia S, et al. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of I kappa B: correlation with induction of cyclooxygenase-2 [J]. Carcinogenesis, 2002, 23(9): 1511-1518.
    [31] Wedon CB, Burou ME, Rolfe KW, et al. NF-kappa B mediated chemoresistance inbreast cancer cells [J]. Surgery, 2001, 130(2): 143-150.
    [32] Chuang SE, Yeh PY, Lu YS, et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappa B(NF-kappa B), and its attenuation by tamoxifen, dexamethasome, and curcumin in carcinoma cells [J]. Biochem Pharmacol, 2002, 63(9): 1709-1716.
    [33] Weaver KD, Yeyeodu S, Cusack JC Jr, et al. Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas[J]. J Neurooncol, 2003, 61(3): 25-30.
    [34] 陈主初. 病理生理学(供七年制临床医学等专业用)[M]. 北京: 人民卫生出版社,2001,193-194.
    [35] 王涛. 肿瘤多药耐药性与信号转导[J]. 国外医学呼吸系统分册,2003,23 (3):154-156.
    [36] Karran P. Mechanisms of tolerance to DNA damaging therapeutic drug[J]. Carcinogenesis, 2001, 22(12): 1931-1937.
    [37] Hamkalo BA, Farnham PJ, Johnslon R, et al. Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line[J]. Proc Natl Acad Sci USA, 1985, 82(4): 1026.
    [38] Schoenlein PV, Barrett JT, Welter D. The degradation profile of extrachromosomal circular DNA during cisplatin-induced apoptosis is consistent with preferential cleavage at matrix attachment regions[J]. Chromosoma, 1999, 108(2): 121.
    [39] Ruiz JC, Choi KH, Von Hoff DD, et al. Autonomously replicating episomes contain mdrl genes in a multidrug-resistant human cell line[J]. Mol Cell Biol, 1989, 9(1): 109.
    [40] Breuninger LM, Paul S, Gaughan K, et al. Expression of multidrug resistance- associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution[J]. Cancer Res, 1995, 55(22): 5342.
    [41] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells[J]. Nature, 2001, 414: 105-111.
    [42] Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance[J]. Nat Rev Cancer, 2005, 5(4): 275-284.
    [1] Elbashir S M, Harborth J, Lendeckel W, et a1.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J] . Nature, 2001, 8 : 411, 498.
    [2] 王继文. RNA干扰技术的进展及应用[J]. 国外医学分子生物学分册. 2003,25 (3):152-157.
    [3] Gupta S, Schoer RA, Egan JE, et a1. Inducible,reversible. and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA. 2004, 101(7):927- 1932.
    [4] Bergstrom CT, McKittrick E, Antia R.Mathematical models of RNA silencing: unidirectional amplification limits accidental self-directed reactions. Proc Natl Acad Sci USA, 2003, 100(20):11511-11516.
    [5] Sohail M. Doran G. Riedemann J, et a1. A simple and cost effective method forproducing small interfering RNAs with high efficacy. Nucleic Acids Res, 2003. 31(7): e38.
    [6] Kaykas A, Moon RT.A plasmid-based system for expressing small interfering RNA libraries in mammalian cells.BMC Cell Biol, 2004,5: 16.
    [7] Castanotto D. Ii H. Rossi JJ. Functional siRNA expression from transfected PCR products. RNA. 2002.8(11):1454-1460.
    [8] Nieth C, Priebsch A, Stege A, Lage H.Modulation of the classical multi-drug resistance (MDR) phenotype by RNA interference(RNAi).FEBS Lett, 2003. 545 (223):1442-l50l.
    [9] Wu H, Hait W N, Yang J M. Small interfering RNA induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug resistant cancer cells. CancerRes, 2003, 63(7):1515-1519.
    [10] Peng Z, Xiao Z J, Wang Y. et a1. Reversal of multidrug resistencc in k562/A02 cells by small interference RNA of mdrl gene. Zhong Hua Xue Ye Xue Za Zhi, 2004, 25(1):5-7.
    [11] Li WT, Zhou GY, Song XR et al. Modulation of BCCRP mediated atypical multidrug resistance phenotype by RNA interference [J]. Neoplasma, 2005, 52(3): 219-224.
    [12] Linn SC, Honkop AH, Hoekman K, et al. P53 and p-glycoprotein are often co-expressed and are associated with poor prognosis in breast cancer [J]. Br J Cancer, 1996, 74: 63.
    [13] Collis SJ, Swartz MJ, Nelson WG, et al. Enhanced radiation and chemotherapy- mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factor [J]. Cancer Res, 2003,63(7): 1550-1554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700