冻存山羊角膜缘干细胞构造角膜上皮移植及检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角膜上皮完整性的维持依赖于表浅细胞不断脱落和基底层细胞不断增殖来完成,上皮细胞持续不断的水平向心运动和垂直向上运动源于角膜缘基底层的干细胞增殖和分化。因此,角膜缘干细胞对正常角膜生理功能的稳定起重要作用。许多研究报道体外培养角膜缘干细胞构建上皮植片,可以满足临床移植的需要。但是这些报道中,多采用3T3细胞做饲养层促进上皮细胞的增殖,由于3T3细胞是来自胎鼠的成纤维细胞,其在临床应用有将异种动物疾病传播给人类的危险。另外,目前培养角膜缘干细胞用于重建角膜上皮的研究与临床应用,都是在培养结束后就直接应用于临床,需要患者的身体状况与培养结束后细胞的最佳生长状态相吻合,否则,就会导致整个操作和手术失败。如果能够将培养好的角膜缘干细胞在体外保存一定时间,于不同时间根据患者的身体状况,解冻细胞再继续培养,将极大地方便其临床应用与研究。近年来成体干细胞可塑性的报道不断涌现,几乎所有哺乳动物的成体干细胞都具有横向分化潜能。但是角膜缘干细胞体外诱导分化少见报道。
     本研究从山羊角膜缘干细胞分离、培养入手,系统比较了原代角膜缘干细胞的分离方法,优化了角膜缘干细胞有血清培养体系,建立了角膜缘干细胞无血清培养体系。对分离富集的角膜缘干细胞体外连续传代后,液氮中长期冻存。解冻后,对其干细胞相关特性进行了研究。本研究以人羊膜为载体负载冻存角膜缘干细胞,在无饲养层无血清的培养体系中构建组织工程化角膜上皮,手术移植给角膜缘干细胞缺损模型羊眼表,结合药物使用抑制免疫排斥反应,最后对其移植治疗效果进行综合评价。实验研究主要内容包括:
     1山羊角膜缘干细胞的分离培养与鉴定研究
     (1)比较酶消化法与组织块培养法分离山羊角膜缘干细胞上的效率,认为酶消化法在分离所得细胞中干细胞的比例,分离效率,分离细胞增殖活性,以及分离细胞纯度上均优于组织块培养法。
     (2)筛选不同浓度的IV胶原,以及不同粘附时间,对角膜缘干细胞分离的影响。结果表明:IV胶原最佳粘附浓度为20μg/mL,最佳粘附时间为20min。
     (3)筛选出EGF和Insulin对角膜缘干细胞增殖影响的最佳作用浓度分别为20ng/mL和10μg/mL,优化了角膜缘干细胞有血清培养体系,建立了角膜缘干细胞无血清无饲养层培养体系,此无血清培养体系已申请国家专利,专利申请号:200710018160.9。
     (4)角膜缘干细胞最高传至28代,液氮中共冻存角膜缘干细胞6×107,解冻细胞仍然保持了角膜缘干细胞的相关生物学特性。研究中所建立的冻存体系可以满足不同的实验条件下,对角膜缘干细胞的运输、保存和增殖的要求。
     2山羊角膜缘干细胞体外定向诱导分化研究
     (1)解冻扩增角膜缘干细胞经1m mol/Lβ-Me预诱导24h后,再用5m mol/Lβ-Me正式诱导18h,改用无血清培养基培养7d,角膜缘干细胞分化为神经样细胞,表达NSE神经细胞标志。
     (2)解冻扩增角膜缘干细胞经10 u mol 5-氮胞苷诱导48h,用含心肌条件培养基的培养液体外连续培养25d,角膜缘干细胞逐渐聚集生长,最终分化为心肌样细胞,表达α-actin心肌细胞标志蛋白。
     (3)解冻扩增角膜缘干细胞经50μg/mL抗坏血酸、10m mol/Lβ-磷酸甘油和0.1u mol/L地塞米松联合诱导7d后,部分细胞死亡,部分细胞呈三角形或多角形聚集生长,连续诱导21d后,诱导细胞形成细胞结节,茜素红染色阳性,呈成骨样细胞。
     (4)解冻扩增角膜缘干细胞经2m mol/L谷氨酰胺、0.01%大豆胰酶抑制剂、10m mol/L烟碱、5ng/ml肝细胞生长因子(HGF)联合诱导,5d后,细胞胞体逐渐变大,继续诱导,细胞开始聚集成团,连续诱导21d后,诱导形成的细胞团Insulin抗体染色呈阳性,呈胰岛样细胞。
     3山羊组织工程角膜上皮植片的构建移植与检测研究
     (1)以冻存角膜缘干细胞为种子细胞,用无血清无饲养层培养体系,以去上皮羊膜为载体,体外培养12-14天,成功构建具有与正常角膜相似结构的组织工程角膜上皮。
     (2)冻存角膜缘干细胞组织工程化角膜上皮移植可重建角膜缘干细胞完全缺失失明病理模型羊眼表。跟踪观察3个月,实验组100%(15/15)形成角膜型上皮(荧光素不着色);跟踪观察6个月,实验组20%(3/15)角膜上皮基本透明,80%(12/15)部分角膜开始透明;有6只实验组山羊,跟踪观察12个月,33.3%(2/6)成功修复受损角膜,角膜上皮完全透明,66.7%(4/6)部分修复,视力得到一定恢复。而角膜缘干细胞缺失未进行角膜上皮移植的对照组山羊,全部角膜结膜化失明。眼罩蒙蔽正常眼,对另一侧试验眼进行功能性检测,对试验羊进行驱赶,角膜完全修复组山羊能辨别方向正确躲避;病理模型组山羊完全无方向感,不能正确躲避甚至出现撞墙现象。
     (3)提出了异体移植的角膜缘干细胞修复角膜缘干细胞完全缺失病理模型的机理可能是:外源移植的异体干细胞抑制了自身周围结膜以及血管向中央角膜上皮的生长,协同机体其他来源的前体细胞共同参与完成了角膜上皮的修复过程,实现角膜上皮重建。
     (4)系统评价了组织工程化人工角膜上皮移植效果,首次通过检测SRY基因的办法,动态监测了供体细胞在受体动物机体中是否长期存在。并且采用酶标仪测定了角膜上皮透光度,此方法操作简单,结果真实可靠,可以在实验动物中很好地评价角膜上皮透光度。
Stem cells (SC) of the corneal epithelium have been found in the limbal palisades of Vogt, between the conjunctiva and limbus. Complete loss of the corneal limbal epithelium leads to re-epithelialization by bulbar conjunctival cells, which is followed by neovascularisation, chronic inflammation, causing a pronounced decrease in visual acuity and severe discomfort. Transplantation of of limbal stem cells (LSCs) is necessary to restore vision and the corneal surface in these diseases.The isolation, in vitro cell culture, and transplantation of LSCs for clinical applications has been well documented, although there are still many unsolved problems. All cornea transplantations reported to date used freshly cultured cells, which were usually cultured on NIH 3T3 feeder cells, applied directly to cornea-damaged patients or experimental animals. A disadvantage of this approach is that it limits the clinical practice. To resolve this, we report the use of cryopreserved LSCs cultured in a feeder-free system to generate the applicable artificial corneal epithelium, and the allograft transplantation of these corneal membranes in LSCD models. We used a series of methods to determine the outcome of the ex vivo-expanded stem cell allograft for LSCD, to provide reference experiences and data for clinical application. Many reports of human adult stem cell plasticity have focused on hematopoietic, mesenchymal, skeletal muscle, and neural stem cells. In contrast, little is known about the plasticity of LSCs. In the present study, we investigated the plasticity of LSCs in vitro and in vivo to further demonstrate the potential therapeutic benefits of these cells. The details of the research include the following three points:
     1. The isolation and identification of goat LSCs
     (1) Comparing the methods of digestion and explant, we find the digestion was much better than explant in terms of ration of stem cell, efficiency, proliferation and purification.
     (2) We selected the optimal the concentration of collagen IV and time of adherence, the results showed the optimal concentration is 20μg/mL, and the optimal adherence time is 20min.
     (3)We selected the optimal concentration of EGF and Insulin on LSCs were 20ng/mL and 10μg/mL respectively. We also optimized the culture system including serum, and established the serum free and feeder free culture system of LSCs, which was applied for a patent and the applied number was 200710018160.9.
     (4) The LSCs were subcultured 28 times in serum free system, and 6×107 LSCs were cryopreserved in liquid nitrogen. The studied the relative characteristics of thawed LSCs, the results showed that the stem cell characteristics were well maintained. The cryopreserved system set up in this research could satisfied with the needs of LSCs transportation, preservation and proliferation.
     2. Differentiation properties of LSCs in vitro
     (1)The thawed LSCs can be induced into neurons by theβ-mercaptoethanol(β-Me). Being treated with medium supplemented with 1 m mol/L pre-induced for 24h and then with 5 m mol/Lβ-Me formal induced for 18h, serum free medium cultured for 7d,LSCs differentiated towards neural cells which expressed the NSE marker of neural cells.
     (2)The thawed LSCs would differentiated towards myocardium when exposed to 10μmol/L 5-Azacitidine for 24h,then cultured in myocardium conditional medium for 25d, the cells congregated together and became longer in shape which expressedα-actin myocardial protein.
     (3)Differentiation of thawed LSCs towards the osteoblast lineage can be induced by supplementing with 0.1μmol/L dexamethasone,10m mol/Lβ-glycerophosphate and 50μg/mL ascorbic acid, the induced cells formed nodules after cultured 21 days, and the nodules were staining positive with Alizarin Red.
     (4)The thawed LSCs were induced by 2m mol/L glutamine, 0.01% soybean trypsin inhibitor, 10m mol nicotin and 5ng/ml hepatocyte growth factor for 21d ,the cell were induced to pancreatic cells which staining positive with insulin antibody.
     3. Construction, transplantation and assay of tissue engineered corneal epithelium
     (1)Seed the thawed LSCs on denuded amniotic membrane, the cell membrane was cultured in serum free medium for 12-14 days, the constructed artificial epithelium with multiple layers of cells which had the similar structure as normal corneal epithelium.
     (2)The artificial corneal epitheliums were transplanted into the limbal stem cells deficiency (LSCD) eyes. We surveiled the clinical outcomes, after 3 months, 100% (15/15) LSCD model transplanted with artificial epitheliums goat corneal type epithelium; after 6 months, 20% (3/15) LSCD models corneal epitheliums get transparency basically, and 80% (12/15) started to get transparency; We observed 6 transplanted goats for 12 months, 33.3%(2/6)reconstructed corneal epitheliums successfully which had transparent epitheliums and immune type as normal control, 66.7%(4/6)reconstructed partially. The negative control without transplantation corneal surface was entirely covered with conjunctiva and blood vessels, and the cornea lost vision completely.
     (3)We supposed the mechanism of transplanted LSCs reconstructed the corneal epithelium as the following: the therapeutic effect of the transplantation may be associated with the inhibition of inflammation-related angiogenesis after transplantation of thawed LSCs, the allograft plays a key role to corporate with autologous progenitor cells to repair the damaged goat cornea.
     (4)The effects of reconstruction were evaluated by a series methods such as clinical observation, histological and immunofluorescence examination, detected transparency of corneal epitheliums and the SRY gene of transplanted seed cells. We first used the Bio-Tek Instrument to evaluate the transparency of corneas, this is a feasible and objective method to evaluate the effect of reconstruction used for animal experiments.
引文
[1] Braun KM, Watt FM. Epidermal label-retaining cells: back-ground and recent applications [J]. Investig Dermatol Symp Proc, 2004, 9:196-201.
    [2] Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties lessons for and from the crypt [J]. Development, 1990, 110(4):1001-1020.
    [3] Richards LJ, Murphy M, Dutton R, et al. Lineage Specification of Neuronal Precursors in the Mouse Spinal Cord [J]. Proc Nat Acad Sci, 1995, 92(22):10079-10083.
    [4] Rietze RL, Valcanis H, Brooker GF, et al. Purification of a pluripotent neural stem cell from the adult mouse brain [J].Nature, 2001, 412: 736-739.
    [5] Davanger M, Evensen A. Role of the pericorneal papillary Structure in the renewal of corneal epithelium [J]. Nature, 1971, 229: 560-564.
    [6] Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells [J]. Cell Bio, 1986, 103: 49-62.
    [7] Shorrt AJ, Secker GA, Munro PM, et al. Characterization of the Limbal Epithelial Stem Cell Niche:Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of Limbal Epithelial Stem Cells[J].STEM CELLS 2007,25:1402–1409.
    [8] Schwartz GS, Gomes JAP, Holland EJ. Ocular surface disease: medical and surgical management [J]. Springer Verlag, 2002, 158 -167.
    [9] Chung H, DeGregorio PG, Wasson M, et al. Epithelial regeneration after limbus-to-limbus debridement expression of alpha-enolase in stem and transient amplifying cells [J]. Invest Ophthalmol Vis Sci, 1995; 36: 1336 -1343.
    [10] Wolosin JM , Schutte M , Zieske JD, et al. Changes in connexin-43 in early ocular surface development [J]. Curr Eye Res,2002, 24 :430-438.
    [11] Barrandon Y. and Green H. Three clonal types of keratinocyte with different capacities for multiplication [J]. Natl Acad Sci, 1987, 84:2302-2306.
    [12] Joyce NC, Meklir B, Joyce SJ, et al. Cell cycle protein expression and proliferative status in human corneal cells [J]. Invest Ophthalmol Vis Sci, 1996, 37 :645-655.
    [13] Braun KM , Watt FM. Epidermal label-retaining cells: background and recent applications[J]. Investig Dermatol Symp Proc, 2004, 9 :196-201.
    [14] Ebato B, Friedn J, Thoft RA. Comparison of limbal and peripheral human corneal epithelium in tissue culture [J]. Invest Ophthalmol Vis Sci, 1988, 29: 1533.
    [15] Schermer A, Galvin S, Sun TT. Differentiation- related expression of a major 64K corneal keratin invivo and in culture suggests limbal location of corneal epithelial stem cells [J]. Cell Biol, 1986,103:49-62.
    [16] Thoft RA, Friend J. The x, y, z hypothesis of corneal epithelia maintenance [J]. Invest Ophthalmol Vis Sci, 1983, 24:1442-1443.
    [17] Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation [J]. Cell Sci,1998,111:2867-2875.
    [18] Robert ML, Scheffer CGT, Tung-TS. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle [J]. Experimental Eye Research,2004, 78:433-446.
    [19] Schrehardt US, Kruse FE. Identification and characterization of limbal stem cells [J]. Experimental Eye Research,2005, 81:247-264.
    [20] Blaisek I, Chagraoui J, Peacclt B. Ontogenic emergence of the hematon, a morphogenetic stromal unit that supports multipotential hematopoietic progenitor in mouse Blood [J].2000, 96:3763-3771.
    [21] Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila Ovary[J]. Science,2000, 290:328-330.
    [22] Han W, Ye A, Moore MA. A soluble form of human Delta-like-1 inhibits differentiation of hematopoietic progenitor cells [J]. Blood, 2000, 95:1616-1625.
    [23] Wei Li, Yasutaka Hayashida1, Ying-Ting Chen, et al. Niche regulation of corneal epithelial stem cells at the limbus[J].Cell Research, 2007, 17:26-36.
    [24] Wang Ling , Lu Luo. Pathway-Specific Effect of Caffeine on Protection against UV Irradiation–Induced Apoptosis in Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2007, 48(2):652–660.
    [25] David HM, Archana Thakur, Nerida Cole, et al. The Induction and Suppression of the Apoptotic Response of HSV-1 in Human Corneal Epithelial Cells[J]. Investigative Ophthalmology & Visual Science, 2007, 48(2):789-796.
    [26] Goodkin ML, Seth Epstein, Asbell PA, et al. Nuclear Translocation of NF-B Precedes Apoptotic Poly (ADP-ribose) Polymerase Cleavage during Productive HSV-1 Replication in Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2007, 48(11):4980-4988.
    [27] Potten CS. The epidermal proliferative unit: the possible role of the central basal cell [J]. Cell Tissue, 1974,7(1):77-78.
    [28] Lavker RM. Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes[J].Invest Ophthalmol Vis Sci, 1991,32:1864.
    [29] Ziesker JD. Indentification and charactization of limbal stem cell [J].Eye,1994, 8(2):163.
    [30] Ljubimov AV. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle [J]. Lab Invest, 1995, 72 (4):461.
    [31] Robertson DM, Li Li, Stephen Fisher, et al. Characterization of Growth and Differentiation in a Telomerase-Immortalized Human Corneal Epithelial Cell Line[J].Investigative Ophthalmology & Visual Science, 2005, 46(2):470-478.
    [32] Sherley JL, Asymmetric. Cell Kinetics Genes:The key to Expansion of adult stem cells in culture [J]. Stem Cells, 2002,20:561-572.
    [33] Pellegrini G, Golisano O, Paterna P, et al. Location and clonal analysis of stem cells and their differentiated p rogeny in the human ocular surface [ J ]. Cell Biol, 1999, 145∶769 -782.
    [34] Pellegrini G, Dellambra E, Golisano O, et al. P63 identifies keratinocyte stem cells[J]. Cell Biol, 2001, 98:3156-3161.
    [35] Kaur PL A. Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells [J]. Invest Dermatol, 2000, 114: 413-420.
    [36] Li D, Song X, Chen Z, et al. Partial Isolation of Corneal Epithelial Stem Cells by Adhesion to Collagen IV [J]. Invest Ophthalmol Vis Sci, 2003, 44: E-Abstract 1348.
    [37] Cintia S. DE paiva, Stephen C, et al. Cell Size Correlates with Phenotype and Proliferative Capacity in Human Corneal Epithelial Cells[J]. STEM CELLS, 2006,24:368-375.
    [38] Schlotzer SU, Kruse FE. Indentification and charactization of limbal stem cell [J]. Exp Eye Res, 2005, 81:247-264.
    [39] Pablo A, Ann Tisdale, Sandra SM, et al. Mucin Characteristics of Human Corneal-Limbal Epithelial Cells that Exclude the Rose Bengal Anionic Dye [J].Invest Ophthalmol Vis Sci. 2006,47:113–119.
    [40] Wakako Adachi, Hagit Ulanovsky, Yan Li, et al. Serial Analysis of Gene Expression (SAGE) in the Rat Limbal and Central Corneal Epithelium[J].Investigative Ophthalmology & Visual Science, 2006, 47(9):3801-3810.
    [41] Kim HS, Luo LH, Pflugfelder SC, et al. Doxycycline Inhibits TGF-β Induced MMP-9 via Smad and MAPK Pathways in Human Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2005, 46(3):840-848.
    [42] Faramarz Taheri,Haydee EPB. Platelet-Activating Factor Overturns the Transcriptional Repressor Disposition of Sp1 in the Expression of MMP-9 in Human Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2007, 48(5):1934-1941.
    [43] Figueira EC, Girolamo ND, Coroneo MT, et al. The Phenotype of Limbal Epithelial Stem Cells[J].Investigative Ophthalmology & Visual Science, 2007, 48(1):144-156.
    [44] Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integvin function and expression [J]. Cell, 1993,73: 713-724。
    [45] Chen Z, de Paiva CS, Luo L, et al. Characterization of putative stem cell phenotype in human limbal epithelia [J]. Stem Cells, 2004, 22:355-366.
    [46] Ahdeah PG, Sonali PG, Samuel J, et al. Integrins in Slow-Cycling Corneal Epithelial Cells at theLimbus in the Mouse [J].Stem Cells, 2006, 24:1075-1086.
    [47] Kim M, Turnquist H, Jackson J. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells [J]. Clin Cancer Res, 2002, 8:22-28.
    [48] Zhou S, Schuetz JD, Bunting KD. The ABC transporter Bcrp1/ ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side- population phenotype [J]. Nat Med, 2001; 7:1028-1034.
    [49] De Paiva CS, Chen Z, Corrales RM, et al. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells [J].Stem Cells, 2005, 23:63-73.
    [50] Parsa R , Yang A , Mckeon F , et al. Association of p63 with proliferative potential in normal and neoplastic human kerationcytes[J ]. Invest Dermatol, 1999 ,113 :1099-1105.
    [51] Der YW, Chien CC, Kao MH, et al. Regulation of Limbal Keratinocyte Proliferation and Differentiation by TAp63 and Np63 Transcription Factors[J].Investigative Ophthalmology & Visual Science, 2005, 46(9):3102-3108.
    [52] Iorio ED, Vanessa Barbaro, Alessandro Ruzza, et al. Isoforms of Np63 and the migration of ocular limbal cells in human corneal regeneration[J].PNAS, 2005,102(27):9523–9528.
    [53] Parthasarathy Arpitha, Namperumalsamy VP, Muthiah Srinivasan, et al. High Expression of p63 Combined with a Large N/CRatio Defines a Subset of Human Limbal EpithelialCells: Implications on Epithelial Stem Cells[J].Investigative Ophthalmology & Visual Science, 2005, 46(10):3631-3636.
    [54] Wang DY, Hsueh YJ , Yang VC , et al. Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane[J]. Invest Ophthalmol Vis Sci, 2003, 44 : 4698- 4704.
    [55] Hsueh YJ, Wang DY, Cheng CC, et al. Age-related expressions of p63 and ot her keratinocyte stem cell markers in rat cornea[J ]. Biomed Sci, 2004,11 (5) :641-6511.
    [56] 庄铭忠,肖位保,徐国兴.角膜缘干细胞移植后供体干细胞的检测与分析[J].福建医科大学 学报, 2005 ,39 (4) :3562-3591.
    [57] Tseng SC, Zhang SS. Limbal epithelium is more resistant to 5 fluorouracil toxicity than corneal epithelium [J]. Cornea, 1995, 14: 394-401.
    [58] Schermer A, Galvin S, Sun TT. Differentiation2related exp ression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells [J]. Cell Biol, 1986, 103:49-53.
    [59] Matic M, Evans WH, Brink PR, et al. Epidermal stem cell do not communicate through gap junctions [J]. Invest Dermatol,2002, 118(1):110-116.
    [60] Zuo Chen, Howard Evans W, Stephen C, et al. Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell-Containing Population of Human Limbal Epithelial Cells [J].Stem Cells,2006,24:1265-1273.
    [61] Gumbiner BM. Regulation of cadherin adhesive activity[J].Cell Biol, 2000, 148:399-404.
    [62] Matic M, Petrov IN, Chen S, et al. Stem cells of the corneal ep ithelium lack connexins and metabolite transfer capacity [J]. Differentiation,1997, 61:251-260.
    [63] 陈卓,孙慧敏,苑晓勇.人角膜上皮干细胞的识别[J].中华眼科杂志,2005,41(11):1014 -1019.
    [61] 张晓敏,孙慧敏,赵少贞,李筱荣, 等.兔角膜缘干细胞两种培养方法的比较[J].眼科研究,2005,6(23): 575-578.
    [65] Cintia S, Paiva de, Zhuo Chen, et al. ABCG2 Transporter Identifies a Population of Clonogenic Human Limbal Epithelial Cells [J]. Stem Cells. 2005, 23:63-73.
    [66] 崔彦,董晓光,谢立信,等.人角膜缘干细胞的原代培养和生物学鉴别[J].眼科新进展,2001;4(21): 231.
    [67] 史伟云,董晓光,郭萍,等.兔角膜缘干细胞的体外培养[J].眼科研究.2002,20(2):114.
    [68] Wilson SE, He YG, Lloyd SA. EGF, EGF receptor, basic FGF, TGF beta-1, and IL-1 alpha mRNA in human corneal epithelial cells and stromal fibroblasts [J]. Invest Ophthalmol Vis Sci, 1992, 33: 1756.
    [69] Xu KP, Yin Jia, Yu FSX. Src-Family Tyrosine Kinases in Wound- and Ligand-Induced Epidermal Growth Factor Receptor Activation in Human Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2006, 47(7):2832-2839.
    [70] Hyung KL, Joon HL, Min Kim, et al. Insulin-like Growth Factor-1 Induces Migration and Expression of Laminin-5 in Cultured Human Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2006, 47(3):873-882.
    [71] 崔馨,贺翔鸽,白继. E G F,bFG F 单独及联合应用对原代培养的兔角膜缘干细胞增殖的影响[J].中国现代医学杂志,2005,4(15):533-535.
    [72] Hoppenreijs VP, Pels E, Felten PC.Synergistic action of heparin and serum on basic fibroblast growth factor modulated DNA synthesis and mitochondrial activity of cultured bovine comeal endothelia cells[J]. cornea,1996,15(4): 386- 396.
    [73] Wang R, Xue SB, Liu HT. Cell Biology [M]. 1998, 278- 287.
    [74] Zhang Z, Zhao ZP, Wang JL. Effects of b FGF /CPC on the growth of murine bone marrow mesenchymal stem cells in vitro [J]. Zhongguo Xiandai Yixue Zazhi, 2003, 13(8): 64- 66.
    [75] Ljubimor AV. Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms [J]. Lab Invest, 1995,72 (4)B461.
    [76] 吴静,徐锦堂.层粘连蛋白对体外角膜上皮细胞凋亡的保护.眼科研究[J].2000, 2 (18):112-113.
    [77]Kazuhiro Kimura, Koji Kawamoto, Shinichiro Teranish, et al. Role of Rac1 in Fibronectin-Induced Adhesion and Motility of Human Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2006, 47(10):4323-4329.
    [78] Zieske JD, Mason VS, Wasson ME, et al. Basement membrane assembly and differentiation ofcultured corneal cells: importance of culture emironment and endothelial cell. Interaction [J]. Exp cell Res, 1994, 214: 621.
    [79] Tetsuya Kawakita, Edgar ME, He Hua, et al. Intrastromal Invasion by Limbal Epithelial Cells Is Mediated by Epithelial-Mesenchymal Transition Activated by Air Exposure[J].Am J Pathol, 2005, 167:381-393.
    [80] Kim JC, Tseng SCG. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas [J] .Cornea, 1995,14: 473.
    [81] Sun CC, Cheng CY, Chien CS, et al. Role of Matrix Metalloproteinase-9 in Ex Vivo Expansion of Human Limbal Epithelial Cells Cultured on Human Amniotic Membrane[J].Investigative Ophthalmology & Visual Science, March 2005, 46(3):808-815.
    [82] Schwab IR, Reyes M, Isseroff R. Succussful transplantation of bioengineered tissue replace-ments in patients with ocular surface disceases [J]. Cornea 2000,19: 421.
    [83] Ebato B, Friend J, Thoft RA. Comparison of central and peripheral human corneal epithelium in tissue culture [J]. Invest Ophthalmol Vis Sci, 1987,28: 1450.
    [84] He YG, Meculley JP. Growing human corneal epithelium on collagen shied and subsequent transfer to denuded cornea in vitro [J]. Curr Eye Res, 1991,10: 851.
    [85] Nishida1 K, Yamato M, Hayashida Y, et al. A Novel Tissue Engineering Approach for Ocular Surface Reconstruction using Bioengineered Corneal Epithelial Cell Sheet Grafts from Limbal Stem Cells Expanded ex vivo on a Temperature-responsive Cell Culture Surface [J]. Invest Ophthalmol Vis Sci, 2003, 44: E-Abstract 3149.
    [86] Pellegrini G, Traverso CE, Franti AT, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium [J]. Lancer, 1997, 349: 990.
    [87] 才瑜,吴静安,李美玉. 人角膜上皮干细胞生物学特性的研究[J].眼科研究. 2003, 1(21):39-42.
    [88]陆雯娟,傅瑶,范先群.角膜缘干细胞的研究进展[J].中国实用眼科杂志,2007, 5(25):458-461
    [89] Kruse FE, Tseng SC. A serum-free clonal growth assay for limbal, peripheral, and central corneal epithelium [J]. Invest Ophthalmol Vis Sci,1991, 32 :2086-2095.
    [90] Biedermann B, Wolf S, Kohen L, et al. Patch clamp recording of Muller glial cells after cryopreservation [J]. Neurosci Methods, 2002,12 (2):173-178.
    [91] 王亚冬,袁南荣,杜青.角膜缘上皮细胞体外培养、冻存和复苏的实验研究[J].眼科研究,2003,21(4):402-405.
    [92] 高明宏,蓝平,陈伟,等.简化四步法低温保存角膜的实验研究[J].中国实用眼科杂志,2000,18 (6):350-352.
    [93] 郑穗联,蔡剑秋,陈峰,等.深低温保存的异体角膜缘干细胞的角膜移植术[J].眼视光学杂志, 2003,5(2):97-100.
    [94] Ferraris CG, chebalier B, Favier, et al. Adult corneal epidermal, pilosebaceous and sweet gland geneticprograms in resporse to embryonic dermal stimuli [J]. Development 2000,127: 5487-5495.
    [95] Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 1997, 385:810-813.
    [96] Weimann JM, Johansson CB, Trejo A, et al. Stable rep rogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transp lant [J]. Nat Cell Biol, 2003, 5: 959-966.
    [97] Tsai RY, Kittappa R, McKay RD. Plasticity, niches, and the use of stem cells[J]. Dev Cell, 2002, 2: 707-712.
    [98] Anderson DJ, Gage FH, Weissnam IL. Can stem cells cross lineage boundaries? [J]. Nat Med, 2001, 7: 393-395.
    [99] Noble M. Can neural stem cells be used to track down and destroy migratory brain tumor cells while also providing a means of repairing tumor associated damage [J]. Proc Natl Acad Sci, 2000, 97: 12393-12395.
    [100] Judware R and Cup LA. Concomitant down-regulation of expression of integrin subunits by N-myc in human nearoblastoma cells: differential regulation of α2, α3, and β1 [J]. Gene 1997,14:1341-1350.
    [101] Kam E, Melville L and Pitts LD. Patterns of junctional communication in skin [J].Invest. Dermatol. 1986, 87:748-753.
    [102] Kaminura J, David Lee and Howard P. Brissette. Primary mouse keratinocyte cultures contain hair follicle progenitor cells with multiple differentiation Potential [J].Invest Dermatol, 1997, 109:534.
    [103] Kaur PLA. Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells[J]. Invest Dermatol, 2000, 114: 413-420.
    [104] Kenyon, KR, Tseng, SC. Limbal aintograft transplantation for ocular surface disorders[J]. Ophthalmology.1989,96: 709-722.
    [105] Kitamura Y, et al. Development of mast cells from grafted bone marrow cells in irradisted mice[J]. Nature, 1997, 268: 442.
    [106] Kligman, AM[J]. Invest Dermatol,1959, 33:307-316.
    [107] Klyushnenkova E, Mosca JD, Mcintosh KR. Human mensenchymal stem cells suppress allogeneic Tcell responses in vitro: implications for allogeneic transplantation[J]. 1998, Blood, 92: 642.
    [108] Verffaillie CM. Adult stem cells: assessing case for p luripotency [J]. Trends Cell Biol, 2002, 12: 502-508.
    [109] Pivarcsi A, Sz é llM, Kem é ny L, et al. Serum factors regulate the expression of the proliferation-related genesα5 integrin and keratin 1, but not keratin 10 in HaCaT keratino-cytes[J]. Arch Dermatol Res, 2001, 293: 206-213.
    [110] Fu XB, Sun X, Li X, et al . Dedifferentiation of ep idermal cells to stem cells in vivo[J]. Lancet, 2001, 358:1067-1068.
    [111] Fu XB, Sun XQ, Sun TZ, et al. Epidermal growth factor induce the epithelial stem cell islandformation in the regenerated ep idermis[J]. Natl Med J China, 2001, 81: 733-736.
    [112] Fu XB, Sun TZ, Sun XQ, et al. Identification of stem cell islands in regenerated epidermis[J]. Med J Chin PLA, 2002, 27: 390-391.
    [113] Li JF, Fu XB, Sheng ZY, et al. The significance and characteristics of distribution of epidermal stem cells during wound healing process[J]. Med J Chin PLA, 2003, 28: 588-589.
    [114] Li JF, Fu XB, Sheng ZY, et al. Redistribution of epidermal stem cells in wound edge in the process of re-epithelialization. Natl Med J China, 2003, 83: 228-231.
    [115] McGann CJ, Odelberg SJ, Keating MT. Mammalian myotube dedifferentiation induced by newt regeneration extract[J]. Proc Natl Acad Sci, 2001, 98: 13699-13704.
    [116] Chen S, Zhang Q, Wu X, et al. Dedifferentiation of lineage committed cells by a small molecule[J]. Am Chem Soc, 2004, 126: 410-411.
    [117] Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial- mesenchymal transdifferentiation in vitro analysis[J]. Circ Res, 2002, 90:1189-1196.
    [118] Shen CN, Horb ME, Slack JMW, et al. Transdifferentiation of pancreas to liver[J]. Mech Dev, 2003, 120:107-116.
    [119] Lindberg K, Brown ME, Chaves HV, et al. In vitro propagation of human ocular surface epithelial cells for transplantation [J]. Invest Ophthalmol Vis Sci, 1993, 34(9): 2672-2679.
    [120] Reidy JJ, Sun W, Salvi R, et al. Human corneal stem cells exbibit functional neuronal properties. Invest ophthalmol Vis Sci, 2003, 44: E-abstract 2035.
    [121] Ferraris C, Chevalier G, Favier B, et al. Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli[J]. Development, 2000,127: 5487-5495.
    [122] Touhami A, Grueterich M, Tseng SCG. The role of NGF signaling in human limbal epithelium expanded by amniotic membrane culture[J]. Invest Ophthalmol Vis Sci 2002,43:987-994.
    [123] Thomson JA, Itskovitz2Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J]. Science, 1998, 282: 1827.
    [124] Kaoru Araki, Yuichi Ohashi, Tetsuo Sasabe, et al. An SV40 immortalized human corneal epithelial cell line and its characterization[J]. IOVS, 1995, 36: 614-621.
    [125] Huang B, Wang ZC, Ge J, et al. A pilot study on transdifferentiation of skin stem cell in reconstructing corneal epithelium [J]. Natl Med J China, 2004, 84: 838-842.
    [126]Yasutaka Hayashida, Kohji Nishida, Masayuki Yamato, et al. Transplantation of Tissue-Engineered Epithelial Cell Sheets after Excimer Laser Photoablation Reduces Postoperative Corneal Haze[J].Investigative Ophthalmology & Visual Science, 2006, 47(2): 552-557.
    [127] 孙兴才,刘典恩.角膜移植发展简史及其认识论意义[J].医学与哲学,1995,16(2):104.
    [128] Schemer A. Galvin S, Sun TT. Differentiation related expression of a major 64K corneal Koratin in vivo and in culture suggests limbal epithelial stem cell [J].Cell Biol,1986,103: 49.
    [129] Alexandre Mezentsev, Vladimir Mastyugin, Francesca Seta, et al. Transfection of Cytochrome P4504B1 into the Cornea Increases Angiogenic Activity of the Limbal Vessels[J].THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS,2005, 315(1):42–50.
    [130] Virender S, Sangwan MS, Himanshu P, et al. Early Results of Penetrating Keratoplasty After Cultivated Limbal Epithelium Transplantation[J]. ARCH OPHTHALMOL, 2005, 123: 334-340.
    [131] Djalilian AR, Sankaranarayana PM, Koch CA, et al. Survival of Donor Epithelial Cells after Limbal Stem Cell Transplantation[J].Investigative Ophthalmology & Visual Science, March 2005, 46(3):803-807.
    [132] Marco Zarbin, David Chu. Transplantation of Ex Vivo Cultured Limbal Epithelial Stem Cells: A Review of Techniques and Clinical Results[J].SURVEY OF OPHTHALMOLOGY,2005,52 (2):483-502.
    [133] Kenyon KR, Tseng SCG. Limbal autograft transplantation for ocular surface disorder [J]. Ophthalmology,1989,96: 709- 723.
    [134] Chen JJY, Tseng SCG. Corneal epithelial wound healing in partial limbal deficiency [J].Invest Ophthalmol Vis Sci,1990,31: 1301.
    [135] Tsubota K, Toda I , Saito H ,et al. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe surfaces orders[ J ]. Ophthalmology, 1995, 102 :1486.
    [136] Rao SK, Rajagopal R, Sitalakshmi G, et al. Limbal allografting from related live donors of corneal surface reconstruction[J].Ophthalmology,1999,106(4) :822-828
    [137] Daya S M, Ilari FA. Living related conjunctival limbal allograft for the treatment of stem cell deficiency[J].Ophthalmology, 2001,108(1): 126-133.
    [138] Pellegrini G,Traverso CE,Franzq AT, et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium [J].Lancet 1997,349 (7) :990-993.
    [139] Tsai RJ, Li LM, Cheng JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells[ J].N Engl J Med,2000,343(2): 86 – 93.
    [140] 潘志强,张文华.培养角膜缘干细胞羊膜移植片移植治疗角膜缘功能障碍[J].中国实用眼科杂志,2000,18(9) :524 -526.
    [141] Koizumi N, Inatomi T,Suzuki T,et al. Cultivated corneal epithelial stem cell transplantation in ocular surface disorder [J]. Ophthalmology, 2001,108 (9) :1569-1574.
    [142] 王智崇.角膜基质诱导胚胎干细胞定向分化的初步实验研究[J]. 眼科学报.1999,15: 195-198.
    [143] Nakamura T, Ken IE, Cooperet L J, et al. The Successful Culture and Autologous Transplantation of Rabbit Oral Mucosal Epithelial Cells on Amniotic Membrane [J].Invest Ophthalmol Vis Sci, 2003,44: 106-116.
    [144] Yuan C, Sawada Y, Boehlke CS, et al. Growth of Epidermal Keratinocytes on Human Amni- -otic Membrane[J]. Invest Ophthalmol Vis Sci, 2002,43: E-Abstract 1682.
    [145] Hua He, Cho HT, Li Wei, et al. Signaling-Transduction Pathways Required for Ex Vivo Expansion of Human Limbal Explants on Intact Amniotic Membrane[J].Investigative Ophthalmology & Visual Science, 2006, 47(1):151-157.
    [146] Lee JH, Ryu IH, Kim EK, et al. Induced Expression of Insulin-like Growth Factor-1 by Amniotic Membrane-Conditioned Medium in Cultured Human Corneal Epithelial Cells[J].Investigative Ophthalmology & Visual Science, 2006, 47(3):864–872.
    [147] Ebato B, Friend J, Thoft RA. Comparison of central and peripheral human corneal epitheli- um in tissue culture [J]. Invest Ophthalmol Vis Sci, 1987, 28: 1450.
    [148] Minami Y, Sugihara H, Oono S. Reconstruction of cornea in three-dimensional collagen gel matrix culture[J]. Invest Ophthalmol Vis Sci, 1993, 34: 2316-2324.
    [149] Zieske JD, Mason VS, Wasson ME, et al. Parenteau Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction[J]. Exp Cell Res, 1994, 214(2): 621-633.
    [150] Germain L, Auger FA, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering[J]. Pathobiology, 1999, 67(3): 140-147.
    [151] Pellegrini G, Traverso CE, Franti AT, et al. Long-term restoration of damaged corneal surfa-ces with autologous cultivated corneal epithelium [J]. Lancer, 1997; 349: 990.
    [152] Nakao H, Matsuda T, Nakayama Y, et al. Design concept and construction of a hybrid lamellar keratoprosthesis [J]. ASAIO, 1993, 39 (3): 257-260.
    [153] Hadlock T, Singh S, Vacanti JP, et al. Ocular cell monolayers cultured on biodegradable Substrates [J]. Tissue Eng, 1999, 5(3): 187-196.
    [154] 胡晓洁, 商庆新, 曹谊林. 角膜基质细-PGA 生物支架复合物体外培养研究[J]. 眼科研究, 2001,19( 4): 308-310.
    [155] Griffith M, Osborne R, Munger R. Functional human corneal equivalents constructed from cell lines [J]. Science, 1999, 286: 2169-2172.
    [156] 许丽英,陈家祺,周世有等.新鲜羊膜的活性维持方法研究[J].中国实用眼科杂志,2002;20(2):137 -139
    [157] 钟一声,叶纹,沈玺.冷冻保存羊膜的超微结构观察[J].眼科学报,2001;17:202 -205
    [158] Philip JA, Charles JH, John KGD. Amniotic membrane graft “fresh” or “frozen”? a clinical and in vitro comparison [J].Br J Ophthalmol,2001,85: 905 -907.
    [159] Koizumi N, Inatomi T, Suzuki T, et al. Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome[ J]. Arch Ophthalmol, 2001, 19, 298-300.
    [160] Tsai RJF, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells[J]. N Engl J Med, 2003, 43, 86-93.
    [161] SUN CC, PANG JHS, CHENGCY, et al. Interleukin-1 Receptor Antagonist (IL-1RA) Prevents Apoptosis in Ex Vivo Expansion of Human Limbal Epithelial Cells Cultivated on Human Amniotic Membrane[J].STEM CELLS, 2006,24:2130–2139.
    [162] Li Wei, He Hua, Kuo CL, et al. Basement Membrane Dissolution and Reassembly by Limbal Corneal Epithelial Cells Expanded on Amniotic Membrane[J].Investigative Ophthalmology & Visual Science, 2006, 47(6):2381-2389.
    [163] Tsai RJ. Amniotic membrane is the niche for limbal stem cells expansion[J]. Invest ophthalmol Vis Sci, 2003, 44: E-abstract 1360.
    [164] Meller D, Pires RTF, Tseng SCG. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures[J]. Br J Ophthalmology, 2002,86: 463 -471.
    [165] Koizumi N, Cooper L J, Fullwood NJ, et al. An Evaluation of Cultivated Corneal Limbal Epithelial Cells, Using Cell-Suspension Culture [J]. Invest Ophthalmol Vis Sci, 2002, 43: 2114 -2121.
    [166] Wolosin JM, xiong X, Schutte M, et al. Stem cells and differentiation stages in the limbo-corneal epithelium[J]. Prog Retinal Eye Res.2000,19: 223-255.
    [167] Grueterich, Espana M, Tseng SCG. Connexin 43 Expression and Proliferation of Human Limbal Epithelium on Intact and Denuded Amniotic Membrane[J] .Invest Ophthalmol Vis Sci, 2002,43: 63-71.
    [168] Wang D, Hsueh Y, chen J. Epitheloal outgrowth of Limbal Explant on Amniatic membrane Exhibits limbal, but not corneal, phenotypic characteristics [J]. Invest ophthalmlol Vis Sic 2003, 44: E-abstract 2033.
    [169] Ban Y, Cooper LJ, Fullwood NJ, et al. Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting[J]. Exp Eye Res, 2003, 76(6): 735-743.
    [170] Koizumi N, Inatomi T, Suzuki T, C, et al. Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome [J]. Arch Ophthalmol, 2001,19:298-300. 171] Hu DJ, Basti S, wen A, et al. Prospectibe comparison of corneal Reepithelialization over the stromal and Basement membrane surfaces of preserved Human Amuiotic membrane[J]. Invest ophthalmol Vis Sci, 2003; ,44: E-abstract 3151.
    [172] Ti SE, Anderson DF, Touhami A. Factors affecting outcome following successful tromsplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits. Invest ophthalmol Vis Sci, 2002,43: 2584-2592.
    [173] 全国眼外伤职业眼病学组,眼部烧伤分度标准[J].眼外伤职业病学杂志, 1983; 5: 3.
    [174] Motoko Kawashima, Tetsuya Kawakita, Yoshiyuki Satake, et al.Phenotypic Study After Cultivated Limbal Epithelial Transplantation for Limbal Stem Cell Deficiency[J].Arch Ophthalmol. 2007,125(10):1337-1344. [175 ] 李凤鸣主编. 眼科全书(中册) [M] . 第1 版. 北京:人民卫生出版社,1996 ,1341-1349. [176 ] Pfister RR. Corneal stem cell disease: concepts ,categorization and treatment by auto - and homo - transplantation of limbal stem cells[J]. CLAO J,1994,20 :64-72.
    [177] Dua, HS, Joseph A, Shanmuganathan VA, et al. Stem cell differentiation and the effects of deficiency[J]. Eye, 2003,17: 877-885.
    [178] Li D, Song X, Chen Z, Paiva CS, et al. Partial Isolation of Corneal Epithelial Stem Cells by Adhesion to Collagen IV[J]. Invest Ophthalmol Vis Sci, 2003;44: E-Abstract 1348.
    [179] Egarth M, Hellkvist J, Claesson M, et al. Longterm survival of transplanted human corneal epithelial cells and corneal stem cells[J].Acta Ophthalmol Scand,2005 ,83(4): 456-461
    [180] Baradaran RA, Di MA, Gao YY, et al. Effect of Simultaneous Intraoperative Application of Mitomycin C on Corneal Epithelial Healing by Keratolimbal Allograft in Patients With Total Limbal Stem Cell Deficiency[J].Invest Ophthalmol Vis Sci,2005,46: E-Abstract 4965.
    [181] Du Y, Funderburgh ML, Mann MM, et al. Adult Stem Cells Secrete Corneal Specific Matrix Components [J]. Invest Ophthalmol Vis Sci, 2005, 46: E-Abstract 2188.
    [182] Tsai RJF., Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells[J]. N Engl J Med, 2000,343, 86-93.
    [183] Krause DS. Multi-organ, multi-lineage engraftement by a single bone marrow-derived stem cell [J]. Cell,2001, 105: 369.
    [184] Anderson DJ. Can stem cells cross lineage boundaries? [J]. Nat Med, 2001, 7, 393.
    [185] Lagasse E. Purified hematopoietic stem cells and differentiate into hepatocytes in vivo[J]. Nat Med, 2000, 6:1229.
    [186] Lagasse E, Connors H, halimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo[J]. Nature Medicine, 2000, 6(11):1229-1234.
    [187] Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis[J]. Nature Medicine, 2002, 8(4):403-409.
    [188] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues [J]. Science, 1997, 276: 71.
    [189] 杨立业, 刘相名, 孙兵, 等. 脂肪组织源性基质细胞表达神经元表型的实验研究[J]. 中华神经医学杂志, 2002, 1(1): 45-49.
    [190] Woodbury D, Schwarz EJ, Prockop DJ, et al. Aault rat and human bone marrow stromal cells differentiate into neurons [J].Journal of Neuroscience Research, 2000,61:364-370.
    [191] Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells forcardiovascular tissue engineering [J]. Artif Organs, 2001,25:187-193.
    [192] Fukuda K. Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells[J].Congenital Anomalies, 2002,42:1-9.
    [193] Wakitani S, Saito T, Caplan AI, et al. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine[J]. Muscle Nerve, 1995, 18:417-428.
    [194] Konieczny SF, Emerson CP. 5-azacytidine induction of stable mesodermal stem cell lineages from 10 T1-cells: evidence for regulatory genes controlling determination[J].Cell, 1984, 38:791-800.
    [195] Pitenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999, 284(5411):143-147.
    [196] Otsuka E, Yamaguchi A, Hirose S, et al. Characterizations of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid [J]. American Journal of Physiology: Cell Physiology, 1999, 277 (1): C132 - C138.
    [197] Jaiswal N, Haynesworth SE, Caplan AL, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro[J].Journal of Cellular Biochemistry, 1997, 64: 295-312.
    [198] Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinetics, 1987, 20: 263-272.
    [199] 宋小平.小鼠胚胎干细胞定向诱导分化成骨细胞研究[D].西北农林科技大学2003届攻读博士学位(毕业)论文,中国 杨凌,2003.
    [200] Tsai, RJ, Sun TT, Tseng SC. Comparison of limbal and conjunctival autograft transplantation ophthalmology [J].1990,97: 446-455
    [201] Tsai RJF, Tseng SC. Limbal autograft transplantation for ocular surface reconstructions [J]. Cornea, 1994, 13(5): 389-400.
    [201] Jenkins C, Tuft S, Liu C, et al. Limbal transplantation in the management of chronic contact-lens-associated epitheliopathy[J]. Eye,1993,7:629-635.
    [203] Gangolf Sauder, Jonas JB. Limbal Stem Cell Deficiency After Subconjunctival Mitomycin C Injection for Trabeculectomy[J].Am J Ophthalmol, 2006,141:1129–1130.
    [204] Ma D, Ya Z, Yeh, et al. Moducation of in vitro Anti-angiogenic activity of human limbo-corneal Episthelial cells by preserved human Anniotic membrane[J]. Invest Ophthalmol Vis Sci, 2003,44: E-abstract 827.
    [205] Koizumi NJ, Inatomi TJ, Sotozono CJ. Growth factor mRNA and protein in preserved human amniotic membrane[J]. Curr Eye Res, 2000, 20(3): 173-177.
    [206] Kim JC, Tseng SCG. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas [J]. Cornea, 1995,14: 473-484.
    [207] Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-betareceptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix [J]. J Cell Physiol, 1999,179(3): 325-335.
    [208] Tsai RJ. Amniotic membrane is the niche for limbal stem cells expansion [J]. Invest ophthalmol Vis Sci, 2003,44: E-abstract 1360.
    [209] Wang D, Hsueh Y, Chen J. Epitheloal outgrowth of Limbal Explant on Amniatic membrane Exhibits limbal, but not corneal, phenotypic characteristics[J]. Invest ophthalmlol Vis Sic, 2003,44: E-abstract 2033.
    [210] Grueterich M, Tseng SC. Human limbal progenitor cells expanded on intact amniotic membrane [J]. Arch Ophthalmol, 2002,120:783-792.
    [211] Grueterich M, Espana EM, Touhami A. Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency [J]. Ophthalmology, 2002, 109:1547.
    [212] Koizumi N, Inatomi T, Suzuki T. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders [J]. Ophthalmology, 2001,108:1569-1574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700