全双工ROF系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息时代的不断前进,人们对海量数据的长距离传输和宽带接入需求日益突显。光纤通信技术的大带宽、低损耗等特点满足了加载高数据速率的光载毫米波信号的长距离传输要求,无线通信技术的灵活接入优势满足了终端用户的接入多样化需求,因此结合光纤通信与无线通信的射频光纤传输RoF (Radio over Fiber)技术应运而生。近年来,RoF技术逐渐向高数据速率、高频光载波的趋势发展。其中,光载毫米波信号的产生、传输以及探测解调等均为RoF技术中的关键技术。如何进一步实现高速率数据的调制、高频光载毫米波信号的产生和光纤的长距离传输,并实现基站的有效接收解调,成为RoF技术中不断探索讨论的热点问题。基于光纤接入的无源光网络PON(Passive Optical Network)能够提供足够带宽以满足目前及未来各种宽带业务的需求,且设备成本和维护成本相对较低,在解决“最后一公里”的接入瓶颈问题中显示出独有的优势,因此PON与RoF的融合技术也逐渐成为研究应用的一大方向。
     本论文中,首先综合概述RoF技术的产生背景、技术特点、国内外应用、研究前景,以及PON技术的基本特征。分析RoF技术中光载毫米波信号的几种产生方案,着重介绍了目前应用最为广泛的外调制方案,比较外调制方案中的双边带调制DSB、单边带调制SSB和中心载波抑制调制OCS三种调制方式的频谱结构和传输性能。分析基于马赫曾德调制器非线性效应的倍频技术产生高频光载毫米波信号的方案。
     基于RoF技术的基础研究,提出基于QAM四倍频光载毫米波信号的全双工RoF链路。链路基于马赫曾德调制器的非线性效应产生高阶边带,实现四倍频光载毫米波的产生,Gbit/s级别的数据单载波调制于光载波并实现光纤长距离传输。上行链路中光载波由下行信号中提取,无需额外光源,简化基站结构,完成RoF全双工链路。基于Optisystem仿真平台进行RoF链路搭建,通过眼图、星座图和EVM演化曲线分析信号的传输性能,进行参数优化,得出加载高速率数据的高频光载毫米波的最佳传输方案。
     进一步融合RoF与PON技术,提出基于RoF无线/PON有线混合接入方案。通过偏振正交实现光载波的复用,产生RoF无线/PON有线的融合光信号,满足用户终端的有线/无线灵活接入。其中上行载波由下行链路中提取,基站无需额外光源,实现全双工RoF链路。基于Optisystem仿真平台搭建全双工链路,仿真结果表明经70km单模光纤传输后信号仍保持良好的传输性能。最后对论文所完成的工作进行总结,并对RoF技术的未来发展进行展望。
As the development of informational society, the requirement of capacity and quality communication is increasing rapidly, in which the Radio over Fiber (RoF) technology comes to being. RoF technology combines the optical fiber and wireless technology. The low attenuation and almost unlimited bandwidth advantages of optical fiber technology meet the need of high speed, high frequency millimeter-wave's long distance transmission, and the wireless technology provides a convenient access way in user terminal. Nowadays, RoF technology focuses on the generation of millimeter-wave signal, long distance transmission and demodulation technology more and more. The Passive Optical Network (PON) has its advantages in solving the problem of "Last Kilometre" access, so the combination of RoF and PON technology attacts lots attention of researchers.
     In this paper, firstly, we introduce the background, features, application and development of RoF technology, and the advantage of PON technology. We highlight the generation of optical millimeter-wave signal, and compare the difference between double sideband modulation (DSB), single sideband modulation (SSB) and optical carrier suppression (OCS) of external modulation technology. Also we investigate frequency multiplication technology in obtaining frequency quadrupling millimeter-wave signal. Secondly, we put forward a full-duplex RoF link with16-ary QAM vector modulation on lOGbit/s binary data and using frequency quadrupling to generate the60GHz millimeter-wave signal. Thirdly, we propose a full-duplex hybrid wired/wireless link with Gbit/s 16-ary QAM format, which can provide wired and wireless access alternately for the user terminal, and the remote base station free from the lightwave source. The simulations for both wired and wireless accesses show the good performance of the hybrid optical signal. Lastly, a conclusion and prospect of this paper are given in the final chapter.
引文
[1]Wake D., Trends and prospeets for radio over fibre pieoeells, Mierowave Photonies International Topical Meeting on 5-8, Nov.2002, Page(s):21-24.
    [2]E. Wong, Next-generation broadband access networks and technologies, J. Lightw. Technol., vol.30, no.4, pp.597-608, Feb.15,2012.
    [3]Lee Kwansoo, Radio over Fiber for Beyond 3G, Microwave Photonics, International Topical Meeting on 12-14, Oct.2005, pp.9-10.
    [4]Sakamoto T., shinada S., Kawanishi T., Izutsu M., Millimeter-wave-band amplitude-shift-keyed radio-on-fiber signal generationwith a reciprocating optical modulator, OSA/OFC, vol.2,23-27, Feb.2004, pp.1-3.
    [5]Sakamoto T., Lu Guo-wei, Chiba A., Kawanishi T., Miyazaki T., Coherent Demodulation of 10-Gb/s Optical Minimum-Shift Keying, OSA/OFC/NFOEC, 21-25, March 2010, pp.1-3.
    [6]Parekh D., Yang Weijian, Ng'Oma A., et al., Multi-Gbps ASK and QPSK-modulated 60 GHz RoF link using an optically injection locked VCSEL, OFC/NFOEC,21-25, Mar.2010, pp.1-3.
    [7]Zhang Ye, Xu Kun, Zhu Ran, et al., Photonic Generation of M-QAM/M-ASK Signals at Microwave/Millimeter-Wave Band Using Dual-Drive Mach-Zehnder Modulators With Unequal Amplitudes, Journal of Lightwave Technology, vol.26 NO.15,1, Aug.2008, pp.2604-2610.
    [8]Salman Ghafoor, Lajos Hanzo, Sub-Carrier-Multiplexed Duplex 64-QAM Radio-over-Fiber Transmission for Distributed Antennas, IEEE Commun. Lett., 2011,pp.1-4.
    [9]C.-K. Weng, Y.-M. Lin, W.-I. Way, "Radio-Over-Fiber 16-QAM,100-km transmission at 5Gb/s using DSB-SC transmitter and remote heterodyne detection," Journal of Lightwave Technology, vol.26, no.6, pp 643-653, Mar 15, 2008.
    [10]Garci'a Larrode'M., Koonen A. M. J., Vegas Olmos J. J., E. J. M. Verdurmen, J. P. Turkiewicz, Dispersion tolerant radio-over-fibre transmission of 16 and 64 QAM radio signals at 40 GHz, Electr. Lett., vol.42, No.15,20, July 2006.
    [11]Yu Xianbin, Jensen Jesper Bevensee, Monroy Idelfonso Tafur, Photonic Implementation of 4-QAM/QPSK Electrical Modulation at Millimeter-Wave Frequency, Micowave photonics,2008, pp.114-116.
    [12]Guerrero Gonzalez N., Zibar D., Yu X., Tafur Monroy I., Reconfigurable digital receiver for 8PSK subcarrier multiplexed and 16QAM single carrier phase-modulated radio over fiber links, Microwave and Optical Technology Letters, vol.53, May 2011, pp.1015-1018.
    [13]R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, J. Marti, Generation of Multi-Gigabit-per-Second MQAM/MPSK-Modulated Millimeter-Wave Carriers, Employing Photonic Vector Modulator Techniques, vol.25, Nov.2007, pp.3350-3357.
    [14]Kanno Atsushi, Inagaki Keizo, Morohashi Isao, Sakamoto Takahide, et al.,40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission, Optics Express, vol.19,12, Dec.2011, pp.56-63.
    [15]J. Ma,5Gbit/s full-duplex Radio-Over-Fiber link with optical millimeter-wave generation by quadrupling the frequency of the electrical RF carrier, J. Opt. Commun. Netw., vol.3, no.2, pp.127-134, Feb,2011.
    [16]J. Ma, X. Xin, J. Yu, C. Yu, K. Wang, H. Huang, and L. Rao, Optical millimeter-wave generated by octupling the frequency of the local oscillator, J. Opt. Netw., vol.7, no.10, pp.837-845, Oct,2008.
    [17]Potsung Shih, Lin ChunTing, Huang Hansheng, Jiang Wenjr, et al., license-free band via frequency sextupling, Optical Communication,20-24,Sept.2009, pp.1-2.
    [18]Yang H., Zeng J., Zheng Y, Jung H. D., Huiszoon B., et al., Evaluation of effects of MZM nonlinearity on QAM and OFDM signals in RoF transmitter, Microwave photonincs,9, Sept.-3, Oct.2008, pp90-93.
    [19]Meng X. J., A dispersion tolerant analog optical receiver for directly modulated RF photonic links, IEEE Photon, Technol. Lett., vol.19,2007, pp.438-440.
    [20]Yu J., Jia Z., Yi L., Su Y., Chang G. K. and Wang T., Optical mm-wave generation or up-conversion using external modulators, IEEE Photon. Technol. Lett., vol.18,2006, pp.265-267.
    [21]Ma J., Yu C., Zhou Z. and Yu J., Optical mm-wave generation by using external modulator based on optical carrier suppression, Opt. Commun., vol.26,2006, pp. 851-857.
    [22]Ma J., Yu J., Yu C., Xin X., Zeng J. and Chen L., Fiber dispersion influence on transmission of the optical mm-waves generated by using LN-MZM intensity modulation, J. Light-wave. Technol., vol.25,2007, pp.3244-3256.
    [23]Stohr A., Hemzelmann R., Kaezmarek C. and Jager D., Ultra-broadband Ka to W-band 1.55 μm traveling-wave photo mixer, IEEE Elec Lett, vol.36,2000, pp. 970-972.
    [24]Wen Y. J., Liu H. F. and Novak D., Optical signal generation at mm-wave repetition rates using semiconductor lasers with pulsed sub-harmonic optical injection, IEEE J. Quantum Electron., vol.37,2001, pp.1183-1193.
    [25]Li Y., Bystrom M., Yoo D., Goldwasser S. M. and Herczfeld P. R., Coherent optical vector modulation for fiber radio using electro optic microchip lasers, IEEE Trans. Mic. Theory Tech., vol.53,2005, pp.3121-3129.
    [26]Cartledge J. C., Performance of 10 Gb/s lightwave systems based on lithium niobate Mach-Zehnder modulators with asymmetric Y-branch waveguides, IEEE Photon. Technol. Lett., vol.7,1995, pp.1090-1092.
    [27]Braun R. P., Grosskrof G, Rohde D. and Schmidt F., Optical millmetre-wave generation and transmission experiments for mobile 60GHz band communications, IEE Electron Letts, vol.32 no.7, Mar.1996, pp.626-627.
    [28]Zeng F., and Yao J., All-optical microwave mixing and bandpass filtering in a radio-over-fiber link, IEEE Photon. Technol. Lett., vol.17, no.4, Apr.2005, pp.899-901.
    [29]Guennec Y. Le, Maury G., Yao J., and Cabon B., New optical microwave up-conversion solution in radio-over-fiber networks for 60-ghzwireless applications, J. Lightw. Technol., vol.24, no.3, Mar.2006, pp.1277-1282.
    [30]N. Taguchi, S. Tanaka, T. Kimura, and Y. Atsumi, Relative-intensity-noise reduction technique for'frequency-converted radio-on-fiber system, IEEE Trans. Microwave Theory Tech., vol.54, no.2, Feb.2006, pp.945-950.
    [31]Seo Y. K., Choi C.S., Choi W. Y., All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers, IEEE Photon. Technol. Lett., vol.14, no.10, Oct.2002, pp.1448-1450.
    [32]Havstad S. A., Sahin A. B., Adamezyk O. Xie H., Y., and Willner A. E., Distance-independent microwave and millimeter-wave power fading componensation using a phase diversity configuration, IEEE Photon. Technol. Letts., vol.12, no.8, Aug.2000, pp.1052-1054.
    [33]Ramos F., and Marti J., RF response of analog optical links employing optical phase conjugation, J. Lightw. Technol., vol.19, no.6, June 2001, pp.842-846.
    [34]叶青,刘峰,瞿荣辉等,一种基于光纤光栅的毫米波副载波光纤通信方案,光学学报,2006,26(10):1464-1468.
    [35]陈林,董泽,李瑛等,采用电光调制器产生光毫米波的全双工通信光纤无线通信系统,通信学报,2007,28(9):85-90.
    [36]Yu Jianjun, Jia Zhensheng, Yi Lilin, Optical millimeter wave generation or up conversion using external modulators, IEEE Photon. Technol. Lett.,2006,18 (1):265-267.
    [37]Yu Jianjun, Jia Zhensheng, Xu Lei. et al., DWDM optical millimeter wave generation for radio over fiber using an optical phase modulator and an optical inter leaver, IEEE Photon. Technol. Lett.,2006,18 (13):1418-1420.
    [38]Jia Zhensheng, Yu Jianjun, Chang Gee 2 Kung, A full 2 duplex radio 2 over 2 fiber system based on optical carrier suppression and reuse, IEEE Photon. Technol. Lett.,2006,18 (16):1726-1728.
    [39]Chen Lin, Wen Hong, Wen Shuangchun, A radio 2 over 2 fiber system with a novel scheme for millimeter 2 wave generation and wavelength reuse for up 2 link connection, IEEE Photon. Technol. Lett.,2006,18 (19):2056-2058.
    [40]Chen Lin, Pi Yazhi, Wen Hong, et al., All optical mm 2 wave generation by using direct 2 modulation DFB laser and external modulator, Microwave and Optical Technol. Lett.,2006, (49):pp.1265-1267.
    [41]Yu Jianjun, Jia Zhensheng, Wang Ting, Centralized light wave radio over fiber system with photonic frequency quadruple for high frequency millimeter wave generation, IEEE Photon, Technol. Lett.,2007,19 (19), pp.1499-1501.
    [42]王静,马永红,基于RoF系统的光学倍频技术分析,通信技术,2010,3(43):185-187.
    [43]刘丽敏,董泽,皮雅稚等,采用外调制器产生四倍频的光载毫米波光纤无线通信系统,中国激光,2009,36(1):149-153.
    [44]陈罗湘,卢嘉,董泽等,采用两个级联外部调制器产生四倍频,光载毫米波的光纤无线通信系统,中国激光,2008,35(12)pp.1910-1913.
    [45]Lin Chun-Ting, Shih Po-Tsung, Chen Jason(Jyehong), Peng Peng-Chun, Dai Sheng-Peng, et al., Generation of Carrier Suppressed Optical mm-wave Signals using Frequency Quadrupling and no Optical Filtering, OFC/NFOEC,2008.
    [46]Lin C. T., Shih P. T., Chen J. J., Wen Q. X., Peng P. C., Sien Chi, Optical mm-wave signal generation using frequency quadrupling technique and no optical filtering, IEEE Photon, Technol. Lett., vol.20,2008, pp.1027-1029.
    [47]Lin C. T., Shih P. T., Chen J. J., Wen Q. X., Peng C. P., Sheng P. D., Sien C., Generation of carrier suppressed optical mm-wave signals using frequency quadrupling and no optical filtering, IEEE Opti. Fib. Comm.,2008, pp.1-3.
    [48]Lin C. T., Shih P. T., Chen J. J., Wen J., et al., Optical mm-wave up-conversion employing frequency quadrupling without optical filtering, IEEE Trans. Micro. Theory Technol., vol.57, no.8,2009, pp.2084-2092.
    [49]Wu Yanzhi, Tong Ye, Zhang Liang, Generation of A 16-Star/Square quadrature amplitude modulation (QAM) signal in radio over fiber system, ACP,2009, pp.1-6.
    [50]Tan Xiaoheng, Li Tengjiao, EVM simulation and analysis in digital transmitter, Journal of China Universities of Posts and Telecommunications,2009, pp.43-48.
    [51]R. A. Shafik, M. S. Rahman, and A. R. Islam, "On the extended relationships among EVM, BER and SNR as performance met-rics," in 4th Int. Conf. on Electrical and Computer Engineering ICECE 2006,19-21 Dec.,2006, pp. 401-411.
    [52]H. Louchet, K. Kuzmin, and A. Richter, "Efficient BER estima-tion for electrical QAM signal in radio-over-fiber transmission," IEEE Photon. Technol. Lett., vol.20, no.2, pp.144-146, Jan.15,2008.
    [53]D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordanet al., "26 Tbit s(?) lline-rate super-channel transmission utilizing all-optical fast Fourier transform processing,"Nat. Photon., vol.5, no.6, pp.364-371, June 2011.
    [54]Louchet H., Kuzmin K., Richter A., Efficient BER estimation for electrical QAM signal in Radio-Over-Fiber transmission, IEEE Photon Technol Lett., vol. 20, no.2, Jan.2008, pp.144-146.
    [55]Shafik R. A., Rahman M. S., Islam A. R., On the Extended Relationships Among EVM BER and SNR as Performance Metrics 4th International Conference on Electrical and Computer Engineering ICECE 2006,19-21, Dec. 2006, pp.401-411.
    [56]Ma Jianxin, Yu Jianjun, Xin Xiangjun, Yu Chongxiu, Zhang Qi, Sang Xinzhu, Zhou Min, The transmission performance degradation of the optical millimeter-wave signals by fiber chromatic dispersion opticals communications, vol.284, no 19, Sep 2011, pp.4366-4375.
    [57]Zhang Liang, Hu Xiaofeng, Cao Pan, Su Yikai, A 60-GHz RoF system in WDM-PON with reduced number of modulators and low-cost electronics, Photonics Global Conference 2010, Dec.2010, pp.1-3.
    [58]Cao Zizheng, Yu Jianjun, Zhou Hui, Wang Wenpei, Minmin, et al., WDM-RoF-PON architecture for flexible wireless and wire-line layout, Opti.Comm.Net. vol.2, Feb.2010, pp.117-121.
    [59]张亮,RoF与WDM-PON融合系统的关键技术研究,[学位论文],上海交通大学,2010.
    [60]G.-K. Chang, A. Chowdhury, Z. Jia, H. Chien, M. Huang, J. Yu, G. Ellinas, Key technologies of WDM-PON for future converged optical broadband access networks,J Opt. Commun. Netw., vol.1, no.4, pp. C35-C50, Sept.,2009.
    [61]Hsueh Yu-Ting, Huang Ming-Fang, Fan Shu-Hao, et al., Demonstration of converged bidirectional OFDM-m-QAM RoF and WDM-OFDM-PON access networks, OFC/NFOEC,6-10 March 2011, pp.1-3.
    [62]M. Milosavljevic, M. P. Thakur, P. Kourtessis, J. E. Mitchell, and J. M. Senior, Demonstration of wireless backhauling over long-reach PONs, J. Lightw. Technol., vol.30, no.5, pp.811-817, Mar.1,2012.
    [63]A. Ahmed and A. Shami, RPR-EPON-WiMAX hybrid network:a solution for access and metro networks, J. Opt. Commun. Netw., vol.4, no.3, pp.173-188, Mar.2012.
    [64]Z. Cao, J. Yu, H. Zhou, W. Wang, M. Xia, J. Wang, Q. Tang, and L. Chen, WDM-RoF-PON architecture for flexible wireless and wire-line layout, J. Opt. Commun. Netw., vol.2, no.2, pp.117-121, Feb,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700