基于特征点的图像配准与拼接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像拼接技术是计算机视觉、图像处理和计算机图形学的研究热点,它可以用来建立大视角的高分辨率图像,在虚拟现实领域、医学图像处理领域、遥感技术领域和军事领域中均有广泛的应用。图像拼接就是将同一场景的相互有部分重叠的一系列图片拼接成大幅的、宽视角的、与原始图像接近且失真小、没有明显缝合线的高分辨率图像。图像拼接的质量主要依赖于图像的配准精度。目前,基于特征点匹配的图像配准是一种主要针对仿射变换模型和透视变换模型的图像配准技术,它不仅能够适用于重合度较低的图像之间的配准,而且还能够应用于运动场景图像以及含有遮盖物体图像之间的配准,在实际应用中得到了广泛的使用。因此,研究基于特征点的图像配准和拼接技术具有重要的理论意义和实用价值。本文主要以特征点匹配为主线,针对目前流行的Harris特征点和SIFT(Scale Invariant Feature Transform)特征点匹配技术进行了深入系统地研究。主要研究工作及贡献如下:
     1.研究并分析了摄像机成像几何的基本原理,重点对8参数透视变换矩阵的存在条件以及8参数透视矩阵退化为6参数仿射矩阵的条件进行了论证,由此引出了图像拼接中几种常用的变换模型―相似变换、仿射变换以及透视变换,给出了每种模型的实际应用场合。
     2.针对传统的特征点匹配算法对于图像旋转变化敏感的问题,提出了一种基于特征点旋转归一化的图像配准算法(IPNR)。系统研究了Harris特征点的基本原理以及几种传统的匹配方法,包括像素差的平方和(SSD)、像素的互相关信息(CC)、归一化互相关信息(NCC)。分析比较了各种匹配方法的性能以及存在的不足之处。提出了在特征点匹配过程中将邻域窗口进行旋转归一化,有效解决了特征点匹配对于图像旋转变化敏感的问题。仿真结果表明,该算法能有效地克服传统特征点匹配算法对图像旋转变化敏感的问题,将正确匹配的概率提高30%以上,效果明显优于传统的特征点匹配算法。
     3.针对传统的特征点匹配方法对噪声敏感的问题,提出了一种基于特征点不变矩的图像配准算法(IPIM)。图像的矩特征是一种以图像分布的各阶矩来描述灰度的统计特性的方法,它对噪声和光照的变化不太敏感,并具有旋转和尺度不变性。对图像的矩特征研究发现,传统的Hu氏矩中φ_3,φ_5两个矩对于图像的旋转变化是不稳定的,因此对Hu氏矩进行了改进,并在此基础上,利用改进后的Hu氏矩作为特征点的描述符进行匹配,解决了传统特征点匹配方法对于旋转和噪声敏感的问题。仿真结果表明该算法具有较好的旋转不变性和抗噪声性能,匹配效果优于传统的算法。
     4.针对IPIM方法对图像亮度变化敏感的问题,提出了一种基于特征点伪Zernike矩的图像配准算法(IPPZM)。由于伪Zernike矩比Hu矩具有更多的矩数量以及更好的抗噪声性能,本算法选用特征点邻域窗口的伪Zernike矩作为特征点描述符。数字图像的像素离散性质使得伪Zernike矩的计算产生误差,不同阶矩的计算精确度不同。因此,为保证描述符的准确性与较低的计算复杂度,需要对伪Zernike矩进行优化选择,并对矩的选取数量加以限制。仿真结果表明该算法不仅有效解决了IPIM算法对亮度变化敏感的问题,而且在旋转不变性和抗噪声性能上比IPIM算法有了进一步的提高。
     5.针对Harris特征点对于尺度变化敏感的问题,提出了一种改进的基于SIFT特征的图像配准算法。该算法借助于SIFT特征对于旋转和尺度的不变性以及对于噪声、视角变化和光照变化等良好的鲁棒性,解决了Harris特征检测对于尺度变化敏感的问题,使得较大尺度变化下的图像配准成为可能。同时,对SIFT特征点的提取方法进行了改进,预先去除了部分较不稳定的特征点,提高了匹配的速度和正确匹配的概率。实验结果证明该算法对于旋转、尺度变化均具有不变性、对于噪声以及图像亮度变化具有较好的鲁棒性,且匹配速度比改进前提高了近1倍。
     6.针对图像拼接中累计误差对合成图像质量影响严重的问题,提出了一种基于特征点的整体优化调整方法。如果仅利用图像局部配准的结果对图像序列进行拼接,则会因为误差的累计而造成合成图像中出现重影或者图像变得模糊。该方法利用基于特征点的图像配准算法中得到的正确匹配点,对具有匹配关系所有图像的变换矩阵进行整体优化和调整,使累计误差降低。实验结果表明,该方法可以有效降低图像序列中的累计误差,提高最终合成图像的质量。
Image mosaic is an important research area of computer vision, image processing and computer graphics. It can used to construct the high-resolution image with large angle of view, and has been widely used in virtual reality, medical image processing, remote sensing and military affairs. Image mosaic is the technique to stitch a series of overlapped pictures into a bigger one, which is a super-resolution picture with wide eyeshot, nearly no distortion to the originals and no visible seam line. The quality of image mosaic mainly depends on the precision of image registration. Currently, feature point based registration is a kind of image registration technique which mainly conforms to affine transformation model and perspective transformation model. It can be used not only in the less overlapped pictures registration, but also pictures with motion scenes or even with covering parts. Therefore, it has been widely used in practical applications. As a result, it is of great theoretic and practical value to do further researches in feature point based image registration and mosaic. In this dissertation, the author mainly focuses on the research of feature point matching of the Harris feature points and the SIFT feature points. The main research work in the dissertation is as follows::
     1. The basic geometrical principles of the camera is studied, with emphasis on the existence term of the eight-parameter perspective transform matrix and the term on how to obtain six-parameter affine matrix from the eight-parameter perspective matrix. Thereafter, several commonly used transform model in image mosaic, i.e., similar transform, affine transform and perspective transform, are deduced together with the practical application situation of each model.
     2. Aiming to solve the problem that traditional feature point matching algorithms are sensitive to image rotation, a new image registration scheme is presented based on rotation normalization and feature point (IPNP). The basic principles of the Harris interest point detector is studied systematically together with several Harris feature based descriptors, including the Sum of Squared Differences (SSD), Cross Correlation (CC) and Normalized Cross Correlation (NCC). The performances of the above descriptors when applied in feature point matching are evaluated. The scope of application and the deficiency for each descriptor are also analyzed. Then an image registration algorithm is proposed based on Harris interest point and image normalization. In the feature matching process, the neighboring area of each feature point is first rotation normalized. As a result, the effect of image rotation on feature matching is solved. Experimental results show that the proposed scheme can solve the rotation sensitive problem of traditional methods and improve the probability of correct matching by 30%, which is advantageous over the traditional methods.
     3. Aiming to solve the problem that traditional feature point matching schemes are sensitive to added noise, an image registration scheme is proposed based on feature point and invariant moment (IPIM). Image moment is a kind of method to describe the statistical features of an image. It is insensitive to the changes in noise and illumination. Besides, it is invariant to image rotation and scale change. Studies on image moment features show that ? 3 and ? 5 in the Hu moment is instable when the image is rotated. Therefore, the Hu moment is improved, and the feature descriptors are generated using the improved Hu moments, which are then used for feature matching. As a result, the problem that traditional feature matching methods are sensitive to image rotation and added noise is solved. Simulation results show that the proposed scheme performs well on rotation invariance and noise insensitiveness, and the matching effect is advantageous over traditional methods.
     4. The IPIM method is sensitive to image intensity change. In order to solve the problem, a new image registration method based on interest point and pseudo-Zernike moment is presented (IPPZM). As pseudo-Zernike moment has more number of independent moments and better ability to resist noise, the proposed scheme employs the pseudo-Zernike moments of the neighboring area centering at the feature point as the feature descriptor. The discrete nature of digital image results in the computation error of pseudo-Zernike moments. As a result, different moments are computed with different accuracies. In order to guarantee the accuracy of the descriptor and low computation complexity, an optimization procedure is necessary to select the pseudo-Zernike moments and apply a limit on the number of moments. Simulation results show that the proposed scheme not only solves the illumination sensitiveness problem, but also improves in regard of rotation invariance and noise resistance.
     5. The Harris feature point is sensitive to image scale change. To overcome this problem, an improved SIFT based image registration scheme is presented. The proposed scheme solve the above problem by using the rotation and scaling invariant property of the SIFT feature points as well as its robustness to added noise, viewpoint change and illumination change, which makes it possible to achieve successful image registration when large scale change occurs. Meantime, we have improved the SIFT feature point extraction method by reducing in advance some unstable feature points, so that the matching speed and precision of correct matching are improved. Experimental results show that the proposed scheme is invariant to rotation, scale change, and it has good robustness to noise and intensity change. Besides, the matching speed is improved by about 2 times.
     6. The accumulative errors in image mosaic systems have great effect on the quality of the synthesized image. Aiming to solve the problem, an overall optimization adjusting method is proposed based on feature points. If only the local image registration results are employed to align the image sequences, the shadow or fussy effect will occur in the synthesized image due to the error accumulation. The proposed scheme optimizes and adjusts the transform matrix using the correct feature point pairs obtained from the feature point based image registration, aiming to reduce the accumulative error. Experimental results show that the proposed scheme can effectively reduce the accumulative error between the image sequences and improve the quality of the synthesized image.
引文
[1] D.Denning, M.Kirk. Eyes and Eye Evolution. http://ebiomedia.com/gall/eyes/eye1.html.
    [2] R. Benosman, S.B.Kang. Panoramic Vision. Springer-Verlag, 2001.
    [3]陈永强,王启付.虚拟环境中变形图像拼接技术研究.华中科技大学学报. Vol.29, No.1, pp.14-16, 2001.
    [4] Richard Szeliski. Video mosaics for virtual environments. Computer Graphica and Applications, IEEE, Vol.16, No.2, pp.22-30, 1996.
    [5]蔡勇,刘学慧,吴恩华.基于图像绘制的虚拟现实系统环境.软件学报. Vol.8, No.10, pp.721-728, 1997.
    [6]漆驰,郑国勤,孙家广.一个基于全景图的虚拟环境漫游系统.计算机工程与应用. Vol.37, No.15, pp.138-141, 2001.
    [7] Hui-Hua Wen, Wei-Chung Lin, Chin-Tu Chen. Knowledge-based medical image registration. Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, Vol.3, No.31, pp. 1200-1201, 1996.
    [8] JBA Maintz, MA Viergever. A survey of Medical Image Registration. Medical Image Analysis, Vol.2, pp.1-36, 1998.
    [9]于为,郁道银,邹群峰.医学超声图像的处理与拼接.中国生物医学上程学报, No.9, pp.255-260, 1997.
    [10] M.A. Audette, F.P. Ferrie, T.M. Peters. An algorithmic overview of surface registration techniques for medical imaging, Medical image Analysis, No.4, pp.201-217, 2000.
    [11] A.Roche, G.Malandain, N.Ayache. Unifying maximum likelihood approaches in medical image registration. International Journal of Imaging Systems and Technology, No.11, pp.71-80, 2000.
    [12]王小睿,吴信才.遥感多图像的自动配准方法.中国图像图形学报, Vol.2, No.10, pp.735-739, 1997.
    [13] L.M.G.Fonseca, B.S.Manjunath. Registration techniques for multisensor remotely sensed imagery. Photogrammetric Engineering and Remote Sensing, No.62, pp.1049-1056, 1996.
    [14]钮永胜,倪国强.多传感器图像自动配准技术研究.光学技术. No.1, pp.16-18, 1999.
    [15]王伟.基于特征点匹配和光流方程的图像拼接技术[硕士论文].上海复旦大学. 2006.
    [16]付厚超,陈宗海.基于垂直边缘处理的全景图像的拼接.计算机工程, Vol. 30, No.4, pp.132-134,2004.
    [17] Szeliski R, Kang S B. Direct Method for Visual Scene Reconstrction. In IEEE Workshop on Representations of Visual Scenes, (Cambridge,MA). pp.26-33, 1995.
    [18] Keller Y, Averbuch A, Israeli M. Pseudopolar-based Estimation of Large Translations, Rotations, andScalings in Images. IEEE Transaction Image Processing, Vol.14, No.1, pp.12-22, 2005.
    [19] J.S.Jimmy Li, Randawa S. Improved Video Mosaic Construction by Selecting a Suitable Subset of Video Images. Proceedings of the 27th Conference on Australasian Computer Science, pp.143-149, 2004.
    [20]屈志毅,王玉珍,钟声伟.图像拼接中特征块的选取.计算机工程, Vol.28, No.9, pp.165-166, 2002.
    [21] Toyama F, Shoji K, Miyamichi J. Image Mosaicing from a Set of Images without Configuration Information. Pattern Recognition, 17th Intemational Conference, pp.899-902, 2004.
    [22] Brown L .G . A survey of image registration techniques. ACM Computing Surveys, Vol. 24, No.4, pp.325-376, 1992.
    [23] ZitováB, Flusser J. Image registration methods: a survey. Image and Vision Computing. Vol.21, No.11, pp. 977-1000, 2003.
    [24] E. Gülch. Results of test on image matching of ISPRS WG. ISPRS Journal of Photogrammetry and Remote Sensing. No.46, pp.1-18, 1991.
    [25] R. Kumar, P. Anandan, and K. Hanna. Shape recovery from multiple views: a parallax based approach. Image Understanding Workshop. Monterey, CA, Morgan Kaufmann Publishers, 1994.
    [26] R. Bernstein. Digital Image Processing of Earth Observation Sensor Data. IBM J. Reseach and Development. No.20, pp.40-67, 1976.
    [27] G.. Q. Maguire Jr. M. E. Noz, and H. Rusinek. Software Tools to Standardize and Automate the Correlation of Images with and between Diagnostic Modalities. IEEE Computer Graphics and Applications, 1990.
    [28] P.E. Anuta. Spatial registration of multispectral and multitemporal digital imagery using Fast Fourier Transform. IEEE Transactions on Geoscience Electornics, No.8, pp.353-368, 1970.
    [29] C.Kuglin, D.Hines. The Phase Corrslation Image alignment Method. IEEE Int. Conf. on Cybernetics and Society, pp.163-165, 1975.
    [30] E.De Castro, C.Morandi. Registration of translated and rotated images using finite Fourier transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.9, No.5, pp.700-703, 1987.
    [31] B.S.Reddy, B.N.Chatterji. An FFT-Based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Processing, Vol.5, No.8, pp.1266-1271, 1996.
    [32] Q. Chen, M. Defrise, and F. Deconinck. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE Trans. Pattern Anal. Machine Intell. Vol.16, No.12, pp.1156-1168, 1994.
    [33] Y. Keller, A. Averbuch, and M. Israeli. Pseudopolar-Based estimation of large translations, rotations, and scalings in images, IEEE Trans. Image Processing. Vol.14, No.1, pp.12-22, 2005.
    [34] A. Averbuch, R.R. Coifman, D.L.Donoho, M. Elad, and M. Israeli. Accurate and Fast Discrete Polar Fourier Transform. In Proc. 37th Asilmar Conference on Signals, Systems, and Computers, Pacific Grove, CA, pp.1933-1937, 2003.
    [35] Hanzhou Liu, Baolong Guo, and Zongzhe Feng. Pesudo-log-polar Fourier Transform for Image Registration, IEEE Signal Processing Letters, Vol.13, No.1, 2006.
    [36] Peleg S, Rousso B, Rav-Acha A, Zomet A. Mosaicing on adaptive manifolds. Pattern Analysis and Machine Intelligence, IEEE Transactions, Vol.22, No.10, pp.1144-1154, 2000.
    [37]朱远平,夏利民.一种适用于图像拼接的自适应模板匹配算法.计算机工程与应用. Vol.39, No.31, pp.109-111, 2003.
    [38] Y.C. Hsieh, D.M. McKeown, F.P. Perlant. Performance evaluation of scene registation and stereo matching for cartographic feature extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence. No.14, pp.214-237, 1992.
    [39] B. Likar, F. Pernus. Automatic extraction of corresponding points for the registration of medical images. Medical Physics. No.26, pp.1678-1686, 1999.
    [40] B.S. Manjunath, C. Shekhar, R. Chellapa. A new approach to image feature detection with allplications. Pattern Recognition. No.29, pp.627-640, 1996.
    [41] S. Growe, R. Tonjes. A knowledge based approach to automatic image registration. Proceedings of the IEEE International Conference on Image Processing ICIP’97. California, pp.228-231, 1997.
    [42] C.Y. Wang, H. Sun, S. Yadas, A. Rosenfeld. Some experiments in relaxation image matching using corner features. Pattern Recognition. No.16, pp. 167-182, 1983.
    [43] S. Moss, E.R. Hancock. Multiple line-template matching with EM algorithm. Pattern Recognition Letters. No.18, pp.1283-1292, 1997.
    [44] J.B.A. Maintz, P.A. van den Elsen, M.A. Viergecer. Comparison of edge-based and ridge-based registration of CT and MR brain images. Medical ImageAnalysis. No.1, pp.151-161, 1996.
    [45] H. Li, B.S. Manjunath, S.K. Mitra. A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing. No.4, pp.320-334, 1995.
    [46] X. Dai, S. Khorram. Development of a feature-based approach to automated image registration for multitemporal and multisensor remotely sensed imagery. International Geoscience and Remote Sensing Symposium IGARSS’97. Singapore, pp.243-245, 1997.
    [47] V. Govindu, C. Shekhar, R. Chellapa. Using geometric properties for correspondence-less image alignment. Proceedings of the International Conference on Pattern Recognition ICPR’98. Australia, pp.37-41,1998.
    [48] A. Goshtasby, G.C. Stockman, C.V. Page. A region-based approach to digital image registration with subpixel accuracy. IEEE Transaction on Geoscience and Remote Sensing. No.24, pp.390-399, 1986.
    [49] M. Holm. Towards automatic rectification of satellite images using feature based matching. Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS’91. Finland, pp.2439-2442, 1991.
    [50] M. Roux. Automatic registration of SPOT images and digitized maps. Proceedings of the IEEE International Conference on Image Processing ICIP’96. Switzerland, pp.625-628, 1996.
    [51] D. Bhattacharya, S. Sinha. Invariance of stereo images via theory of complex moments. Pattern Recognition. No.30, pp.1373-1386, 1997.
    [52] X. Dai, S. Khorram. A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Transactions on Geoscience and Remote Sensing. No.37, pp.2351-2362, 1999.
    [53] J. Flusser, J. Boldys, B. Zitová. Moment forms invariant to rotation and blur in arbitrary number of dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, No.25, pp.234-246, 2003.
    [54] J. Flusser, T. Suk. Pattern recognition by affine moment invariant to rotation. Pattern Recognition, No.26, pp.167-174, 1993.
    [55] J. Sato, R. Cipolla. Image registration using multi-scale texture moment. Image and Vision Computing, No.13, pp.341-353, 1995.
    [56] J. Ton, A.K. Jain. Registering landsat images by point matching. IEEE Transactions on Geoscience and Remote Sensing. No.27, pp.642-651, 1989.
    [57] L. Kitchen, A. Rosenfeld. Gray Level Comer Detection. Pattern Recognition Letters, Vol.1, pp.95-102, 1982.
    [58] A. Rattarangsi and R.T. Chin. Scale-Based Detection of Comers of Planar Curves. IEEE Transactions on Pattern Analysis and Machine Intelligence.Vol.14, No.4, pp.430-449, 1992.
    [59] S. Ranade and A. Rosenfeld. Point Pattem Matching by Relaxation. Pattern Recognition, Vol.12, pp.269-275, 1980.
    [60] J. Ton and A.K. Jain. Registering Landsat Images by Point Matching, IEEE Transactions on Geoscience and Remote Sensing, Vol.27, pp.642-651, 1989.
    [61] G.C. Stockman, S. Kopstein and S. Benett. Matching Images to Models for Registration and Object Detection via Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.4, pp.229-241, 1982.
    [62] A. Goshtasby and G.C. Stockman. Point Pattem Matching using Convex Hull Edges. IEEE Transactions on Systems, Man, and Cybernetics. Vol.15, pp.631-637, 1985.
    [63] D.P. Huttenlocher, G.A. Klanderman and W.J. Rucklidge. Comparing Images using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.15, pp.850-863, 1993.
    [64] D.P. Huttenlocher and W.J. Rucklidge. A Multi-resolution Technique for Comparing Images using the Hausdorff Distance. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.705-706, 1993.
    [65] T. Peli. An algorithm for recognition and localization of rotated and scaled objects. Proceedings of the IEEE, No.69, pp.483-485, 1981.
    [66]赵辉.基于点特征的图像配准算法研究[硕士论文].山东大学. 2006.
    [67]马颂德,张正友,计算机视觉:计算理论与算法基础.科学出版社. 2004.
    [68] Richard Hartley and Andrew Zisserman. Mutliple View Geometry. In CVRP June 1999.
    [69]于泓,陈辉,赵辉.基于交叉垂直线的摄像机标定新算法.计算机应用. Vol.26, No.1, p163-164, p168, 2006.
    [70] Shenchang Eric Chen. QuickTime VR-An Image-Based Approach to Virtual Environment. In Proc. SIGGRAPH 95, pp.29-38, 1995.
    [71] Dublin, Ireland. Tutorial on 3D Modeling from Images. ECCV 2000, 26 June.
    [72]刘勇.基于局部灰度信息的图像匹配[硕士论文].上海复旦大学. 2000.
    [73] Faugeras, O. Three-Dimensionnal Computer Vision:A Geometric Viewpoint. MIT Press, Cambridge, MA.1993.
    [74] Lai. S H, Fang Ming. A hybrid image alignment system for fast and precise pattern localization. Real-Time Imaging, No.8, pp.23-33, 2002.
    [75] H.P. Moravec. Visual Mapping by a Robot Rover. Intemational Jpint Conference on artificial Intelligence, pp.598-600, 1979.
    [76] S.M. Smith, M. Brady. SUSAN-a new approach to low level image processing. Intemational Joumal of Computer Vision, Vol.23, No.1, pp.45-78, 1997.
    [77] C. Harris, M. Stephens. A combined corner and edge detector. Fourth AlveyVision Conference. pp.17-151, 1988.
    [78] C. Schmid, R. Mohr and C. Bauckhage. Comparing and evaluating interest points. In ICCV, 1998.
    [79] C. Schmid, R. Mohr and C. Bauckhage. Evaluating of interest point detectors. Int. Journal of Computer Vision, Vol.37, No.2, pp.151-172, 2000.
    [80] D.I. Barnea, H.F. Silverman. A class of algorithms for fast digital image registration. IEEE Transactions on Computing, No.21, pp.179-186, 1972.
    [81] Anandan, P. Measuring Visual Motion from Image Sequences. Doctoral Dissertation, Computer Science Department, University of Massachusetts, May 1987.
    [82] Z. Zhang, R. Deriche, O. Faugeras. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence Journal, 78(1-2), pp.87-119, 1995.
    [83] R. Berthilsson. Affine correlation. Proceedings of the International Conference on Pattern Recognition. ICPR’98, PP.1458-1461, 1998.
    [84] M.K. Hu, Visual Pattern Recognition by Moment Invariant, IRE Trans Information Theory, Vol.1, No.8, pp.179-187, 1962.
    [85] S.A. Dudani, et al, Aircraft Identification by Moment Invariants. IEEE Trans., Vol.C-26, No.1, pp.39-45,1977.
    [86] Pasaltis. Image Normalization by Complex Moments. IEEE Trans. PAMI, Vol.7, No.1, pp.46-55, 1985.
    [87] C.T. Zach and R.T. Poskies. Fourier Descriptors for Plane Closed Curves. IEEE Trans Comput, Vol.21, pp.269-281,1972.
    [88] A.P. Reeves, R.J. Prokop, S.E. Andrews, and F. Kuhl. Three Dimensional Shape Analysis Using Moments and Fourier Descriptors. IEEE Trans. Pattern Anal. Machine Intell., Vol.10, No.6, pp.937-943, 1988.
    [89] E. Persoon and K.S. Fu. Shape Discrimination Using Fourier Descriptors. IEEE Trans Syst Man Cybern, SMC-7, No.3, pp.388-397, 1977.
    [90] S. Maitra. Moment invariants. Proc.IEEE, pp.67~68, 1979.
    [91] YaJun Li. Reforming the theory of invariant moments for pattern recognition, Pattern Recognition, Vol.25, No.7, pp. 723-730, 1992.
    [92]章毓晋.图像处理和分析(上).清华大学出版社, pp.229~241, 1999.
    [93]容观澳.计算机图像处理.清华大学出版社, pp. 281~282, 2000.
    [94]李金宗.模式识别导论.高等教育出版社, pp.375~376, 1994.
    [95]金琪,戴汝为.矩不变矩角度矩及傅里叶描绘子,模式识别与人工智能, Vol.6, No.3, pp.181-188, 1993.
    [96] Schur I. Vorlesungen uber Invarianten theorie. Springer Berlin, 1968.
    [97] D.~Hilbert. Theory of Algebraic Invariants, Cambridge University Press,1993.
    [98] Bernd Sturmfels. Algorithms in Invariant Theory, Springer-Verlag Wien New York, 1993.
    [99] G.B. Gurevich. Foundations of the Theory of Algebraic Invariants, P. Noordhoff Ltd., 1964.
    [100] A.P. Reeves and B.S. Winner. Shape Analysis of Three Dimensional Objects Using The Method of Moments. In Proceedings of IEEE Conference on Computer Vision and Patern Recognition, pp.20-26, 1983.
    [101]廖闻剑,成瑜.三维飞机自动识别的一种有效方法.航空学报, Vol.19, No.6, pp.73 0-73 5, 1998.
    [102] Belkasi M.S.O, Shridher M, Ahmadi M. Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognition, Vol.24, No.12, pp.1117-1138, 1991.
    [103] R.Y. Wong and E.L. Hall. Scene matching with invariant moments. Comput. Graphics Image Process, Vol.8, pp.16-24, 1978.
    [104] A. Goshtasby. Template matching in rotated images, IEEE Trans. PAMI, Vol.7, pp.338-344, 1985.
    [105] J. Flusser and T. Suk. A Moment-Based Approach to Registration of Images with Affine Geometric Distortion. IEEE Transactions on GeoScience and Remote Sensing, Vol.32, No.2, pp.382-387, 1994.
    [106] R. Mukundan, K.R. Ramakrishnan. An interative solution for object pose parameters using image moments. Pattern Recognition Letters, Vol.17, pp.1279-1284, 1996.
    [107] R. Mukundan, N.K. Malik. Attitude estimation using moment invariants. Pattern Recognition Letters, Vol.14, pp.199-205, 1993.
    [108] A. Sluzek. Identification and inspection of 2-D objects using new moment-based shape descriptors. Pattern recognition Letters, Vol.16, pp.687~697, 1995.
    [109] Ock-Kyung Yoon, Dong-Min Kwak, Dong-Whee Kim, Kil-Houm Park. MR brain image segmentation using fuzzy clustering, 1999 IEEE International Fuzzy Systems Conference proceedings, Seoul Korea, pp.22-25, 1999.
    [110] L. Wang, G. Healey. Using Zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Trans. Image Process, Vol.7, pp.196~203, 1998.
    [111]颜孙震,孙即祥,王晓华,钟山.矩不变量在目标形状识别中的应用研究.国防科技大学学报, Vol.20, No.5, pp. 75-80, 1998.
    [112]杨杰, Al-Raw iMohammed,叶晨洲.一种彩色图像的二维纹理识别方法,上海交通大学学报, Vol.37, No.11, pp.1747-1750, 2003.
    [113]王红光,梁德群,田原.基于角点检测Zernike矩和神经网络的人脸特征点提取方法,西安交通大学学报, Vol.33, No.12, pp.88-91, 1999.
    [114] J. Flusser and T. Suk. Affine moment invariants: A new tool for character recognition, Pattern Recognition Letters, No.15, pp.433-436, 1994.
    [115] A.Khotanzad, YAW HUA HONG. Invariant Image Recognition by Zernike Moments, IEEE Trans. on PAMI, Vol.12, No.5, pp.489-497, 1990.
    [116]王有伟,刘捷.用Zernike矩来确定字符的旋转不变性特征.计算机工程与应用, No.12, pp.81-83, 2004.
    [117] Tomas Suk and Jan Flusser. Combined blurred and affine moment invarants and their use in pattern recognition, Pattern Recognition, No.36, pp.2895-2907, 2003.
    [118] J. Flusser and T. Suk. Degrad Image Analysis: An Invariant Approach, IEEE PAMI, Vol.20, No.6, pp.590~603, 1998.
    [119] J. Flusser and T. Suk. Recognition of blurred images by the method of moments, IEEE Image Process., No.5, pp.533~538, 1996.
    [120] Jan Flusser, T. Suk and Stanislav saic. Image features invariant with respect to blur, Pattern Recognition, March, Vol.28, No.11, pp.1723~1732, 1995.
    [121] M.I. Sezan and A.M. Tekalp. Survey of Recent Developments in Digital Image 138 Restoration, Optical Eng., No.29, pp.393-404, 1990.
    [122] D. Kundur and D. Hatzinakos. Blind Image Deconvolution, IEEE Signal Processing Magazine, Vol.13, No.3, pp.43-64, 1996.
    [123] Y. Bentoutoua, N. Taleba, M. Chikr El Mezouara, M. Talebb, L. Jettoc. An invariant approach for image registration in digital subtraction angiography. Pattern Recognition, No.35, pp.2853~2865, 2002.
    [124] Jeffery Wood. Invariant Pattern Recognition: A Review, Pattern Recognition, Vol.29, No.1, pp.1-17, 1996.
    [125] Jan Flusser. On the inverse problem of rotation moment invariants, Pattern Recognition, No.35, pp.3015~3017, 2002.
    [126]柏正尧,周级勤.离散情况下不变矩的不变性分析,云南大学学报, Vol.22, No.3, pp.185~188, 2000.
    [127]张天序,刘进.目标不变矩的稳定性研究,红外与毫米波学报, Vol.23, No.3, pp.197~200, 2004.
    [128]夏婷,周卫平,李松毅,舒华忠.一种新的Pseudo-Zernike矩的快速算法.电子学报, Vol.33, No.7, pp.1295-1298, 2005.
    [129]刘进,张天序.图像不变矩的轮廓链快速算法.华中科技大学学报(自然科学版), Vol.31, No.1, pp.67~69, 2003.
    [130] Jiang X Y, BUNKE H. Simple and fast computation of moments, Pattern Recognition, Vol.24, No.8, pp.801-806,1991.
    [131] Li B C,Shen J. Fast computation of moment invariant, Pattern recognition, No.24, pp.807-813, 1991.
    [132]杜亚娟.基于不变矩理论的自动目标识别技术研究[博士论文].西北工业大学, 2000.
    [133] S.S. Reddi. Radial and Angular Moment Invariants for Pattern Identification. IEEE Trans. Pattern Anal.Mach.Intelligence PAMI-3, pp.240-242, 1981.
    [134] A. Khotanzad et al. Zernike Moment Based Rotation Invariant Features for Pattern Recognition. SPIE Vol.1002, pp.212-219, 1988.
    [135] R.J. Prokop and A.P. Reeves. A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition, CVGIP, Vol.54, No.5, pp.438-460, 1992.
    [136] Liao S. Pawlak. On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern Anal Machine Intell, Vol.12, No.5, pp.1358-1364, 1998.
    [137] M. Teague. Image Analysis via the General Theory of Moments. J. Opt. Soc. Am. No.70, pp.920-930, 1980.
    [138] Alghoniemy M, Tewfik A.H. Geometric Invariance in Image Watermarking. IEEE Trans on Image Processing, Vol.13, No.2, pp.145-153, 2004.
    [139] Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communication of ACM, Vol.24, No.6, pp.381-395, 1981.
    [140] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, pp.525-531, 2001.
    [141] T. Lindeberg. Feature detection with automatic scale selection. IJCV, Vol.30, No.2, pp.79-116, 1998.
    [142] Y. Dufournaud, C. Schmid, and R. Horaud. Matching images with different resolutions. In CVPR, pp.612-618, 2000.
    [143] B.B Hansen and B.S. Morse. Multiscale image registration using scale trace correlation. In CVPR, pp.202-208, 1999.
    [144] Mikolajczyk, K. and Shmid, C. An affine invariant interest point detector. In European Conference on Computer Vision(ECCV), Copenhagen, Denmark, pp.128-142, 2002.
    [145] F. Schaffalitzky and A. Zisserman. Viewpoint invariant texture matching and wide baseline stereo. In Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada, pp.636-643, 2001.
    [146] D. Tell and S. Carlsson. Wide baseline point matching using affine invariants computed from intensity profiles. In ECCV, pp.814-828, 2000.
    [147] T. Tuytelaars and L.V. Gool. Content-based image retriecval based localaffinely invariant regions. In Visual99, pp.493-500, 1999.
    [148] A. Baumberg. Reliable Feature Matching Across Widely Separated Views. In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, pp.774-781, 2000.
    [149] C. Schmid and R. Mohr. Local Grayvalue Invariants for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19, No.5, pp.530-535, 1997.
    [150] J. Shi, C. Tomasi. Good Feature to Track. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.593-600, 1994.
    [151] David G Lowe. Object recognition from local scale-invariant features. In ICCV, pp.1150-1157, 1998.
    [152] David G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, Vol.60, No.2, pp.91-110, 2004.
    [153] Koenderink J.J. The structure of images. Biological Cybernetics, No.50, pp. 363-396, 1984.
    [154] Lindeberg, T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch:a method for focus-of-attention. International Journal of Computer Vision, Vol.11, No.3, pp.283-318, 1993.
    [155] Lindeberg, T. Scale-space theory:A basic tool for analyzing structures at different scales. Journal of Applied Statistics, Vol.21, No.2, pp.224-270, 1994.
    [156] Arya, S., and Mount, D.M. Approximate nearest neighbor queries in fixed dimensions. In Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’93), pp.271-280. 1993.
    [157] Beis, J. and Lowe, D.G.. Shape indexing using approximate nearest-neighbour search in highdimensional spaces. In Computer Vision and Pattern Recognition, Puerto Rico, pp.1000-1006, 1997.
    [158] Arya S., Mount D.M., Netanyahu N.S. Silverman R., and Wu, A.Y. An optimal algorihm for approximate nearest neighbor searching.Journal of the ACM, No.45, pp.891-923, 1998.
    [159] Andrew W .Moore. An introductory tutorial on kd-trees. Effiient Memory-based Learning for Robot Control:Chapter 6, PhD.Thesis. No.209, University of ambridge.1991.
    [160] F. Schaffalitzky and A. Zisserman. Multi-view Matching for Unordered Image Sets, or“How Do I Organise My Holiday Snaps?”. In Procedings of the European Conference on Coputer Vision, pp.414-431, 2002.
    [161] Richard Szeliski. Image Alignment and Stitching:A Tutoriall, Preliminary dreft. Technical Report MSR–TR-2004-92, January 26,2005.
    [162] Richard Szeliski, Shum Heung-yeung. Creating full view panoramic imageand environment maps. Proceedings of ACM SIGGRAPH’97, Los Angeles: Addison Wesley, pp.251-258,1997.
    [163] M. Brown. Multi-Image matching using invariant features. PhD.Thesis, The University of British Columbia, 2005.
    [164] W. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle Adjustment: A Modern Synthesis. In Vision Algorithms: Theory and Practice. Springer-Verlag, Greece, pp.298-373, 1999.
    [165]唐琎,古士文,蔡自兴.图像拼接误差理论的分析.小型微型计算机系统, Vol.24, No.12, pp2185-2189, 2003.
    [166] H.S. Sawhney and R. Kumar. True multi-image alignment and its application to mosaicing and lens distortion correction. IEEE Transactions on Pattern Analysis and Machine Inelligence, Vol.21, No.3, pp.235-243,1999.
    [167] Davis T. Mosaics of scenes with moving objects. Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara, pp.354-360, 1998.
    [168] H. Shum and R. Szeliski. Construction of Panoramic Mosaics with Global and Local Alignment. International Journal of Computer Vision, Vol.36, No.2, pp.101-130, 2000.
    [169] Savheney H.S., Kunnar Retal. Video brush: experience with consumer video mosaicing. IEEE 4th Workshop on Application of Computer Vision. Sarasota Florida, pp.418-423, 1998.
    [170] R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, U K, 2000.
    [171]李晖晖.多传感器图像融合算法研究[博士论文].西北工业大学. 2006.
    [172] W.J.Carper,T.M.Lillesand. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm. Eng. Remote Sensing, Vol.56, No.5, pp.459-467, 1990.
    [173] J.R. Harris. IHS Transform for the integration of radar imagery with other remotely sensed data. Photogammetric Engineering and Remote Sensing, No.12, pp.1631-1641, 1990.
    [174] Burt Adelson. A multiresolution spline with application to image mosaica. ACM Trans on Graphics, Vol.2, No.4, pp.217-236, 1983.
    [175] D. Capel and A. Zisserman. Automated mosaicing with super-resolution zoom. In Proceedings of the Interational Conference on Computer vision and Pattern Recognition, pp.885-891, 1998.
    [176] M. Brown, D. G. Lowe. Recognizing Panoramas. Proceedings of the 9th International Conference on Computer Vision (ICCV2003), pp.1218-1225, 2003.
    [177]韦群等.基于立方体全景图的虚拟场景浏览技术研究及实现.中国图像图形学报, Vol.8, No.9, pp.1061-1066, 2003.
    [178]李艳丽,向辉.稳健的球面全景图自动生成算法.计算机辅助设计与图形学学报, Vol.19, No.11, pp.1393-1398, 2007.
    [179]曹俊杰,封靖波,苏志勋.全景图像拼接算法.大连理工大学学报, Vol.43, No.s1, pp.180-182, 2003.
    [180]刘进,张天序.图像不变矩的推广.计算机学报, Vol.27, No.5, pp. 668~674, 2004.
    [181]方贤用.图像拼接技术研究[博士论文].浙江大学. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700