生物小分子及模型分子在溶液中的相互作用及质子转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子转移在众多化学反应和生命过程中发挥了重要的作用,生物分子内的质子转移造成的互变异构现象是生物体发生点突变的起因之一。众所周知,生物分子大都是在溶液尤其是水溶液中才具有特定的生理活性,因此对生物分子质子转移反应的研究不能脱离对其自身所处环境的考量,即需要了解生物分子在溶液中的相互作用。相互作用是生物分子体系中普遍存在的一类重要作用,在分子组装、分子识别及决定结构—功能—活性关系等方面有着及其重要的作用,其本身就是一个非常有趣的命题。本论文拟从简单的生化模型小分子出发,从研究其在水溶液中的弱相互作用开始进一步探讨其发生的质子转移反应,再从体系上扩展到复杂的生物碱基鸟嘌呤分子,采用分子动力学模拟、量化计算、核磁共振实验等手段对生化模型分子和生物小分子在水溶液中的相互作用和质子转移反应进行了多角度的研究。
     由于生物分子普遍含有羰基,论文首先对最简单的羰基体系丙酮的水溶液进行了研究。我们采取全原子OPLS-AA力场对该体系进行了分子动力学模拟,发现羰基侧甲基与水分子间存在着明显的C-H…O弱相互作用,并结合核磁共振波谱研究了体系中的氢键网络结构;之后引入相对氢键度η_(rel)和过量相对氢键度η~E_(rel)的概念,将NMR数据、MD结果与溶液宏观的传递性质归一化到无量纲的参数之下,并对其在全浓度范围内的变化趋势进行了研究,我们发现:由三者分别得出的η~E_(rel)随浓度变化趋势完全一致,并且都在x_A≈0.3左右出现非理想性最强的特殊点,同时溶液中强氢键与C-H…O弱相互作用的浓度依数性表明两者相互关联、互为影响。
     在丙酮水溶液相互作用研究的基础上选取了最简单的肽键模型分子甲酰胺的水溶液进行了计算研究。通过量化计算发现溶剂水分子可以在甲酰胺周围三个不同的空间位置分别与之缔合形成稳定的团簇,羰基侧的C-H…O弱相互作用不可被忽略,MD模拟也证实了该观点;全浓度溶液的模拟表明甲酰胺在稀浓度区可以促进水局部结构增强,之后,两者的交叉缔合将逐渐被甲酰胺自身的线状缔合代替。
     在明晰了甲酰胺与水分子相互作用的基础上,采用量化计算的方法研究了水分子对甲酰胺质子转移的影响,我们发现与甲酰胺形成团簇的三种水分子在质子转移过程中担任了两种截然不同的角色:缔合在质子转移路径上的水分子(W2)不仅充当质子传递的桥梁,使活化能大大降低,在热力学上也使该过程更加可行,这类水分子可称为位于“催化位”;而另外两种水分子(W1和W3)则恰好相反,不仅使反应活化能提高,反应自由能变也增大,即反应在动力学和热力学两方面都更加不利于进行,这类水分子可称为位于“保护位”。在多水合团簇中,不同性质的水分子将共同作用于中心分子。以上结论在气态和考虑了溶液连续介质影响的计算中都成立,并且在连续介质中催化位水作用增强,保护位水作用却被削弱。我们尝试从质子转移前后分子的结构改变、电荷分布以及水与甲酰胺互变异构体之间的相互作用、NBO分析等方面考察水分子出现两种功效的内在原因。之后对甲酰胺的衍生物、结构更加复杂的甘氨酰胺(N端氨基酸的模型分子)的质子转移进行了类似的研究,同样发现了不同区域的水分子对该反应发挥的催化、保护特性。在甲酰胺的催化位上,我们研究了一系列在结构上能充当氢桥的小分子,发现在它们参与催化的质子转移反应中,活化能的大小与分子自身的DPE+PA值成线性关系,据此可以推测反应达到过渡态是氢桥分子同时从甲酰胺得到质子和自身脱去质子的协同过程。
     鸟嘌呤是生命基础碱基中结构最复杂的一种,异构体数量多达36个,其中任意两个异构体之间的反应都可被视为质子转移反应,我们将这个复杂的反应网络按照质子转移发生的位置分成了7类,并分别予以研究。研究发现异构体中稳定性排序靠前的无论在单体能量还是在生成过程中正逆反应能垒对比上,都是具有优势的;质子转移进行的方向选择性和分子的骨架结构有关,具体来说是由发生质子转移部分直接相连的结构部分决定的;反应发生的能垒与质子迁移距离之间存有线性关系,长程的质子转移将需要克服较高的反应能垒,反之亦然;异构体中酮式始终比对应的烯醇式稳定,胺式基本上比对应的亚胺式稳定,这与实验结果相符。鸟嘌呤含有类似甲酰胺的结构部分,我们因此选取了生物体中最常出现的9-H-keto-Guanine研究了水分子对其质子转移反应的影响,发现了与甲酰胺可以相互印证的一些结论:W1仍阻碍质子转移的进行,保护了碱基的正常构型;W2使反应能减小,并且大幅度降低反应能垒,促进烯醇式鸟嘌呤的生成。最后,我们选取乙酰丙酮作为模型,克服了其它生物分子和模型分子烯醇式含量过少或者溶解度过低的不利因素,使用NMR实验手段验证了质子转移过程中催化位的水分子能明显加速反应的进行速率。
     本论文通过计算机模拟、量化计算和实验研究了生物小分子和模型分子在水溶液当中的相互作用并以此为基础研究了溶液水分子对中心分子质子转移反应的影响,总结了一些体系中弱相互作用和分子微观结构变化间存在的内在联系,为进一步研究生物大分子体系中的相互作用、结构性质以及基因突变等打下了一定的基础。
Proton transfer is a common and important phenomenon in chemical and biological reactions. Tautomerism of nucleic acid base, which is induced by proton transfer is considered to be one of the origins for the spontaneous point mutation in DNA. As we all know, biomolecules can only properly function in solution, especially in aqueous solution, as a result, when we investigate the proton transfer process of a biomolecule, we must not ignore the effect of the solution surroundings, and that means, we must synchronously study the interactions between the molecules in solution and take them into consideration. Weak interaction plays an essential role in the structures and properties of proteins and nucleic acids as well as in the behavior of many biological systems, and itself is quite an interesting theme for study. In the present work, MD simulation, quantum calculations, NMR experiment are combined to investigate the weak interaction as well as the proton transfer processes of the biochemical model molecules and small biomolecule systems. We will start from the simplest model molecules to the complicated nucleic acid base guanine.
     Because carbonyl exists in many biomolecules, we first study aqueous solution of acetone, the simplest molecule contains carbonyl. An all-atom acetone model and a TIP5P water model have been adopted for molecular dynamics simulation. We found a weak contact C-H…O between the methyl group next to carbonyl and water. NMR data show good agreement with the hydrogen bonding network. Twoquantitiesη_(rel) andη_(rel)~E are applied to study the nonideal association mixture. Westudy the transport properties of the system by comparing theη_(rel)~E's of strong hydrogen bond and weak contact based on transport properties, MD simulations together with NMR experimental data and find good agreement of concentration dependence, which exhibits the cooperation effect. The solution shows extreme deviation from ideal mixing in the concentration range x_A≈0.3.
     Formamide, despite its simpleness, it contains the essential features of the peptide linkage and often is used as a model. We study the aqueous solution of formamide as well as its enol form formamidic acid by quantum calculations. It is found that there are three different regions for water molecule to form cluster with the central molecule, one of the clusters contains C-H…O interaction, which is found in acetone aqueous solution, again verified in this mixture by MD simulation. By doing the calculation in the whole concentration, we found that formamide in water-rich region can strengthen the local structure of water, and cross-association between water and formamide will be taken place by the linear association of formamide itself as the concentration of formamide grows higher.
     After knowing the interaction between formamide and water molecule, we move on to the investigation on its proton transfer process. Water molecules in the vicinity of formamide can be classified into two groups according to the different effects on the proton transfer process of formamide: water in two of them (W1 and W3) can protect formamide from tautomerizing, while in the third one (W2) works oppositely. For a multi-hydrated cluster, it will be an integrated effect of all the hydrated water. Above results are obtained in gas phase as well as in SCIPCM solution model, however, comparing with the situation in gas phase, the protective effects induced by W1 and W3 become smaller, and the assistant effect becomes more obvious. We tried to explain the differentia of the two kinds of water molecule by using the structural variation and potential electronic surface change during the transition, intermolecular interaction between the water and solvent as well as NBO analysis. The same conclusion can be drawn out in the study of Glycinamide, a derivative of formamide, the simplest and appropriate model compound for N-terminal amino acids. At last, a series of small molecules, which can deliver the hydrogen bond in the proton transfer process, are put in the assistant region. Activation energy of the reaction and DPE+PA value of the assistant molecule show a linear relationship, by which we may presume that the assistant molecule get the hydrogen bond from formamide and send out its own hydrogen at the same time in forming the transition state.
     Guanine is the most sophisticated nucleic acid base. There are 36 possible tautomers, any one of which can be produced by proton transfer from another tautomer. We investigate the complex network by dividing them into seven groups. We found that the relative stability of the tautomers is reasonable both on thermodynamics and dynamics, the unstable tautomer has biggerΔE as well as higher energy barrier in the forming process; reaction direction between two transferable tautomers will be greatly influenced by the geometric property of the remaining part just next to the location where the transition happens; longer proton transfer distance is corresponding to higher activation energy, the vice versa; for transferable isomers with the same framework, keto form is more stable than the enol form, and the amino form is more stable than the imino one, the validity of this conclusion can be checked among the 36 tautomers, and agree with the experiment work. There is a segment quite like formamide in the structure of guanine, so we investigated the water's effect on the tautomerism of 9-H-keto-Guanine, we obtained accordant result: W1 can protect guanine from tautomerizing to the rare enol form, W2 can promote the tautomersim. At last, we study the tautomerization of acetylacetone by NMR, because enol form of this molecule can be actually tested in common surroundings and it does not have the solubility problem, both of which are quite annoying issues for the study of nucleic acid base.
     To sum up, computer simulation, quantum calculation and experiment are combined to investigate the biochemical model molecules and small biomolecules in solution, some rules on the interaction and the structure variation in solution are discovered. We expect it can provide a base for the future development of the research on the tautomerism of other biomolecules and related gene mutation.
引文
1 a) Bell R L, Truong T N. Direct ab initio dynamics studies of proton transfer in hydrogen-bond systems J. Chem. Phys., 1994, 101: 10442~10451. b) Stubbe J, Nocera D G, Yee C S, Chang M C Y. Radical initiation in the class Ⅰ ribonucleotide reductase: long-range proton-coupled electron transfer. Chem. Rev., 2003, 103: 2167~2202. c) Paddock M L, Rongey S H, Feher G, Okamura M Y. Pathway of proton transfer in bacterial reaction centers: replacement of glutamic acid 212 in the L subunit by glutamine inhibits quinone (secondary acceptor) turnover. Proc. Natl. Acad. Sci. U. S. A., 1989, 86: 6602~6606. d) Alexov E G, Gunner M R. Calculated protein and proton motions coupled to electron transfer: electron transfer from Q-A to Q-B in bacterial photosynthetic reaction centers. Biochemistry, 1999, 38: 8253~8270. e) Okamura M Y, Feher G. Proton transfer in reaction centers from photosynthetic bacteria. Annu. Rev. Biochem., 1992, 61: 861~896.
    2 a) Marshall D N. Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem. Rev., 1991, 91: 767~792. b) Takahashi E, Wraight C A. Proton and electron transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers: characterization of site-directed mutants of the two ionizable residues, GluL212 and AspL213, in the QB binding site. Biochemistry, 1992, 31: 855~866. c) Warshel A, Sharma P K, Kato M, Xiang Y, Liu H, Olsson M H M. Electrostatic basis for enzyme catalysis. Chem. Rev., 2006, 106: 3210~3235. d) Penning T M, Jez J M. Enzyme redesign. Chem. Rev., 2001, 101: 3027~3046.
    3 a) Mitchell P. Coupling of phosphorylation to electron and proton transfer by a chemiosmotic type 0fmechanism.Nature,1961,191:144~148.b)刘芳芳.生物模型分子质子转移机制及其辅助基团效应的理论研究:[硕士学位论文].曲阜:曲阜师范大学,2006.
    4 Hu X B, Li H R, Ding J Y, Han S J. Mutagenic mechanism of the A-T to G-C transition induced by 5-Bromouracil: An ab Initio study. Biochemistry, 2004, 43: 6361~6369.
    5 张荣.生化模型分子及生物小分子水溶液弱相互作用研究:[博士学位论文].杭州:浙江大学,2006.
    6 a) Desfrancois C, Carles S, Schermann J P. Weakly bound clusters of biological interest. Chem. Rev., 2000, 100: 3943~3962. b) Desiraju G R, Stdiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford: Oxford University Press, 1999.
    7 Senes A, Ubarretxena-Be-landia I, Engelman D M. The C~α-H…O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proc. Natl. Acad. Sci. U. S. A., 2001, 98: 9056~9061.
    8 Hobza P, Havlas Z. Blue-shifting hydrogen bonds. Chem. Rev., 2000, 100: 4253~4264.
    9 a) Lei Y, Li H R, Pan H H, Han S J. Structures and hydrogen bonding analysis of N,N-dimethylformamide and N,N-dimethylformamide-water mixtures by molecular dynamics simulations. J. Phys. Chem. A., 2003, 107: 1574~1583. b) Zhang R, Li H R, Lei Y, Han S J. Different weak C-H…O contacts in N-Methylacetamide-water system: molecular dynamics simulations and NMR experimental study. J. Phys. Chem. B., 2004, 108: 12596~12601. c)Zhang R, Li H R, Lei Y, Han S J. ~1H NMR studies on complex NMA-H_2O association system. Acta.Chimica. Sinica., 2004, 62: 667~673(in Chinese).[张荣,李浩然,雷毅,韩世钧.复杂缔合体系NMA-H_2O体系的~1H NMR研究.化学学报,2004,62:667~673].d)Zhang R,Li H R,Lei Y, Hart S J. Structures and interactions in N-methylacetamide-water mixtures studied by IR spectra and density functional theory. J. Mol. Struc., 2004, 693: 17~25.
    10 a) Da Silva C O, Mennucci B, Vreven T. Combining microsolvation and polarizable continuum studies: new insights in the rotation mechanism of amides in water. J. Phys. Chem. A., 2003, 107: 6630~6637. b) Takamuku T, Matsuo D, Tabata M, Yamaguchi T, Nishi N. Structure of aqueous mixtures of N,N-Dimethylacetamide studied by infrared spectroscopy, X-ray diffraction, and mass spectrometry. J. Phys. Chem. B., 2003, 107: 6070~6078. c) Kim N K, Lee H J, Choi K H, Yu J A, Yoon C J, Park J, Choi Y S. Substituent effect of N,N-Dialkylamides on the intermolecular hydrogen bonding with thioacetamide. J. Phys. Chem. A., 2000, 104: 5572~5578. d) Markham L M, Hudson B S. ab initio analysis of the effects of aqueous solvation on the resonance raman intensities of N-Methylacetamide. J. Phys. Chem., 1996, 100: 2731-2737.
    
    11 a) Mizuno K, Oda K, Shindo Y, Okumura A. ~(17)O- and~1H-NMR studies of the water structure in binary aqueous mixtures of halogenated organic compounds. J. Phys. Chem., 1996, 100: 10310-10315.
     b) Mizuno K, Imafuji S, Ochi T, Ohta T, Maeda S. Hydration of the C-H groups in dimethyl sulfoxide probed by NMR and IR. J. Phys. Chem. B., 2000, 104: 11001-11005.
    c)Mizuno K, Mabuchi K, Miyagawa T, Matsuda Y, Kita S, Kaida M, Shindo Y. IR study of hydrogen bonds in halogenoalcohol-water mixtures. J. Phys. Chem. A., 1997, 101: 1366-1369.
    d)Mizuno K, Imafuji S, Fujiwara T, Ohta T, Tamiya Y. Hydration of the C-H groups in 1,4-dioxane probed by NMR and IR: contribution of blue-shifting C-H…OH_2 Hydrogen Bonds. J. Phys. Chem. B., 2003, 107: 3972-3978.
    12 a) Kratochvil M, Sponer J, Hobza P. Global minimum of the adenine—thymine base pair corresponds neither to Watson-Crick nor to hoogsteen structures, molecular Dynamic/ Quenching/ AMBER and ab Initio beyond Hartree-Fock studies. J. Am. Chem. Soc., 2000, 122: 3495-3499.
    b) Sponer J, Hobza P. Interaction energies of hydrogen-bonded formamide dimer, formamidine dimer, and selected DNA base pairs obtained with large basis sets of atomic orbitals. J. Phys. Chem. A., 2000, 104: 4592-4597.
    c) Hobza P, Sponer J, Cubero E, Orozco M, Luque F J. C-H-O contacts in the adenine--uracil Watson-Crick and uracil-uracil nucleic acid base pairs: nonempirical ab Initio study with inclusion of electron correlation effects. J. Phys. Chem. B., 2000, 104:6286-6292.
    
    13 Van der Veken B J, Herrebout W A, Szostak R, Shchepkin D N, Havlas Z, Hobza P. The nature of improper, blue-shifting hydrogen bonding verified experimentally. J. Am. Chem. Soc., 2001, 123: 12290-1229.
    
    14 a) Castleman A J, Hobza P. Van der Waals molecules II: introduction. Chem. Rev., 1994, 94: 1721-1722.
    b) Brutschy B, Hobza P. Van der Waals molecules III: introduction. Chem. Rev., 2000, 100: 3861-3862.
    c) Gatica S M, Cole M W, Velegol D. Designing Van der Waals forces between nanocolloids. Nano Lett., 2005, 5: 169-173.
    15 杨频,高孝恢.性能—结构—化学键,北京:高等教育出版社,1987.
    16 Tatamitani Y, Liu B, Ogata T, Ottaviani P, Maris A, Caminati W, Alonso J L. Weak, improper, C-O…H-C hydrogen bonds in the dimethyl ether dimmer. J. Am. Chem. Soc., 2002, 124: 2739~2743.
    17 Perutz M F. The Chemical Bond. New York: Academic Press, 1992.
    18 Hobza P, Spirko V, Havlas Z, Buchhold K, Reimann B, Barth H D, Brutschy B. Anti-hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett., 1999, 299: 180~186.
    19 Janda K C, Hemminger J C, Winn J S, Novick S E, Harris S J, Klemperer W. Benzene dimer: a polar molecule. J. Chem. Phys, 1975, 63: 1419~1421.
    20 a) Steiner T. Unrolling the hydrogen bond properties of C-H…O interactions. Chem. Commun., 1997, 8: 727~734. b) Li Z R, Di W, Li Z S, Huang X R, Tao F M, Sun C C. Long range π-type hydrogen bond in the dimers (HF)_2, (H_2O)_2, and H_2O-HF. J. Phys. Chem. A., 2001, 105: 1163~1168. c) Custelcean R, Jackson J E. Dihydrogen bonding: structures, energetics, and dynamics. Chem. Rev., 2001, 101: 1963~1980.
    21 Trudeau G, Dumas J M, Dupuis P, Guerin M, Sandorfy C. Intermolecular interactions and anesthesia: infrared spectroscopic studies. Top. Curr. Chem., 1980, 93, 91. Abstrct available from Chemical Abstracts Index.
    22 Budesinsky M, Fiedler P, Arnold Z. Triformylmethane: an efficient preparation, some derivatives, and spectra. Synthesis, 1989, 11: 858~860.
    23 Boldeskul I E, Tsymbal I F, Ryltsev E V, Latajka Z, Barnes A J. Reversal of the usual v(C…H/D) spectral shift of haloforms in some hydrogen-bonded complexes. J. Mol. Struct., 1997,436-437: 167~171.
    24 Zhang Y H, Hao J K, Wang X, Zhou W, Tang T H. A theoretical study of some pseudo-π hydrogen-bonded complexes: cyclopropane-HCl and tetrahedrane. HCl. J. Mol. Struct. (THEOCHEM)., 1998, 455: 85~99.
    25 Jemmis E D, Giju K T, Sundararajan K, Sankaran K, Vidya V, Viswanathan K S, Leszczynski J. An ab initio and Matrix Isolation infrared study of the 1:1 C_2H_2-CHCl_3 ddduct. J. Mol. Struct., 1999, 510: 59~68.
    26 Hobza P, Spirko V, Selzle H L, Schlag E W. Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J. Phys. Chem. A., 1998, 102: 2501~2504.
    27 Hobza P, Havlas Z. The fluoroform…ethylene oxide complex exhibits a C-H…O anti-hydrogen bond. Chem. Phys. Lett., 1999, 303: 447~452.
    28 Cubero E, Orozco M, Luque F J. Electron density topological analysis of the C-H…O anti-hydrogen bond in the fluoroform-oxirane complex. Chem. Phys. Lett., 1999, 310: 445~450.
    29 Gu Y, Kar T, Scheiner S. Comparison of the C-H…N and C-H…O interactions involving substituted alkanes. J. Mol. Struct., 2000, 552:17~31.
    30 Kryachko E S, Zeegers-Huyskens T. Theoretical study of the CH…O interaction in fluoromethanes·H_2O and chloromethanes·H_2O complexes. J. Phys. Chem. A., 2001, 105: 7118~7125.
    31 Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Spirko V, Hobza P. Improper, blue-shifting hydrogen bond between fluorobenzene and fluoroform. J. Phys. Chem. A., 2001, 105: 5560~5566.
    32 Kovacs A, Szabo A, Nemcsok D, Hargittai I. Blue-shifting C-H…X (X=O, halogen) hydrogen bonds in the dimers of formaldehyde derivatives. J. Phys. Chem. A., 2002, 106: 5671~5678.
    33 Jemmis E D, Subramanian G, Nowek A, Gora R W, Sullivan R H, Leszczynski J. C-H…π interactions involving acetylene: an ab initio MO study. J. Mol. Struct., 2000, 556:315~320.
    34 雷毅.生物素的全合成及其结构—功能关系研究:(博士学位论文].杭州:浙江大学,2004.
    35 Green R D. Hydrogen bonding by C-H group. London: Macmillan, 1974.
    36 Guo W S, Guo F, Xu X D, Tong J, Wang Z H. Role ofC-H…π, C-H…O weak hydrogen bonds in constructing inclusion compounds of 2,6-bis(α-phenylbenzyl)-1,5-naphthalenediol. Acta Chimica. Sinica., 2005, 63: 1525~1530(in Chinese). [郭文生,郭放,吴雪冬,佟健,王忠华.化学学报,2005,63:1525~1530].
    37 Desiraju G R, Steiner T. The Weak Hydrogen Bond in Structural Chemistry and Biology. International Union of Crystallography. Oxford: Oxford University Press, 2001.
    38 Hermansson K. Blue-shifting hydrogen bonds. J. Phys. Chem. A., 2002, 106: 4695~4702.
    39 Masunov A, Dannenberg J J, Contreras R H. C-H Bond-shortening upon hydrogen bond formation: influence of an electric field. J, Phys. Chem. A., 2001, 105: 4737~4740.
    40 Gu Y, Kar T, Scheiner S. Fundamental Properties of the C-H…O Interaction: Is It a True Hydrogen Bond. J. Am. Chem. Soc., 1999, 121: 9411~9422.
    41 Scheiner S, Kar T. Red-versus blue-shifting hydrogen bonds: are there fundamental distinctions. J. Phys. Chem. A., 2002, 106: 1784~1789.
    42 Hocquet A. Intramolecular hydrogen bonding in 2-Deoxyribonucleosides: an AIM topological study of the electronic density, Phys. Chem. Chem. Phys., 2001, 3: 3192~3199.
    43 董秀丽.小分子和水分子间氢键的理论研究:[硕士学位论文].曲阜:曲阜师范大学,2006.
    44 Belot J A, Clark J, Cowan J A, Harbison G S, Kolesnikov A I, Kye Y S, Schultz A J, Silvernail C, Zhao X. The shortest symmetrical O-H…O hydrogen bond has a low-barrier double-well potential. J. Phys. Chem. B., 2004, 108: 6922~6926.
    45 Sosa G L, Peruchena N, Contreras R H, Castro E A. Topological analysis of hydrogen bonding interactions involving C-H…O bonds. J. Mol. Struct. (THEOCHEM)., 1997, 401: 77~85.
    46 Mrazkova E, Hobza P. Hydration of sulfo and methyl groups in dimethyl sulfoxide is accompanied by the formation of red-shifted hydrogen bonds and improper blue-shifted hydrogen bonds: an ab Initio quantum chemical study. J. Phys. Chem. A., 2003, 107: 1032~1039.
    47 Hobza P, Spirko V. Why is the N_1-H stretch vibration frequency of guanine shifted upon dimerization to the red and the amino N-H stretch vibration frequency to the blue. Phys. Chem. Chem. Phys., 2003, 6: 1290~1298.
    48 Hobza P. The H-index unambiguously discriminates between hydrogen bonding and improper blue-shifting hydrogen bonding. Phys. Chem. Chem. Phys., 2001, 13: 2555~2556.
    49 Cubero E, Orozco M, Hobza P, Luque F J. Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology. J. Phys. Chem. A., 1999, 103: 6394~6401.
    50 Li X, Liu L, Schlegel H B. On the physical origin of blue-shifted hydrogen bonds. J. Am. Chem. Soc., 2002, 124: 9639~9647.
    51 Alabugin I V, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc., 2003, 125: 5973~5987.
    52 封勇.键离解能和氢键蓝移的理论研究:[博士学位论文].合肥:中国科学技术大学,2004.
    53 张群.论氢键的生物学意义.安庆师院学报(自然科学版),1995,1:8~11.
    54 Pauling L, Robert B C, Branson H R. The structure of proteins: two hydrogen bonded helical configurations of the polypeptide chain. Proc. Nat. Acad. Sci., 1951, 37: 205~210.
    55 Watson J D, Crick F H C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 1953, 171: 737~738.
    56 Jeremy B, John T, Lubert S. Biochemistry. 5th ed. New York: W. H. Freeman and Company, 2002. Chap. 1. The Molecular Design of Life. In: NCBI online bookshelf.
    57 Frank H S. Eccentricities of an everyday substance: Review A Biography of Water by Philip Ball. Nature. 1999, 401: 850~851.
    58 Latimer M W, Rodebush W H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence. J. Am. Chem. Soc., 1920, 42: 1419~1433.
    59 朱震刚.水的结构与物性的分子动力学模拟研究:[硕士学位论文].合肥:中国科学院固体物理研究所,2002.
    60 a) Buck M, Karplus M. Internal and overall peptide group motion in proteins: molecular dynamics simulations for lysozyme compared with results from X-ray and NMR spectroscopy. J. Am. Chem. Soc., 1999, 121: 9645~9658. b) Wishart D S, Sykes B D, Richards F M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry, 1992, 31: 1647~1651. c) Sokolova M, Barlow S J, Bondarenko G V, Gorbaty Y E, Poliakoff M. Comparison between IR absorption and raman scattering spectra of liquid and supercritical 1-butanol. J. Phys. Chem. A., 2006, 110: 3882~3885. d) Jarmelo S, Reva 1, Carey P R, Fausto R. Infrared and raman spectroscopic characterization of the hydrogen-bonding network in L-serine crystal. Vib. Spectrosc., 2007, 43: 395~404. e) Szafran M, Katrusiak A, Dega-Szafran Z. Hydrogen bonds and electrostatic interactions in 1:1 and 2:1 complexes of homarine with mineral acids studied by NMR, FTIR, DFT and X-ray diffraction. J. Mol. Struct., 2007, 827: 56~66. f) Dillon S R, Dougherty R C. Raman studies of the solution structure of univalent electrolytes in water. J. Phys. Chem. A., 2002, 106: 7647~7650. g) Tauber M J, Stuart C M, Mathies R. A resonance raman spectra of electrons solvated in liquid alcohols. J. Am. Chem. Soc., 2004, 126: 3414~3415.
    61 a) Chang H C, Jiang J C, Tsai W C, Chen G C, Chang C Y, Lin S H. The effect of pressure on charge-enhanced C-H…O interactions in aqueous triethylamine hydrochloride probed by high pressure raman spectroscopy. Chem. Phys. Lett., 2006, 432: 100~105. b) Chang H C, Jiang J C, Chuang C W, Lin J S, Lai W W, Yang Y C, Lin S H. Hydrogen bond-like equatorial C-H…O interactions in aqueous 1,3-dioxane: a combined high-pressure infrared and raman spectroscopy study. Chem. Phys. Lett., 410: 42~48. c) Chang H C, Jiang J C, Chuang C W, Lin S H Evidence for hydrogen bond-like C-H…O interactions in aqueous 1,4-dioxane probed by high pressure. Chem. Phys. Lett., 2004, 397: 205~210. d) Lin M S, Feng C M, Kao H E, Huang Y C, Chang H C, Jiang J C, Lin S H. Hydrophobic hydration in aqueous acetic acid and formic acid solutions probed by high pressure. J. Lumin., 2002, 98: 177~182. e) Chang H C, Jiang J C, Lin S H, Weng N H, Chao M C. Evidence for C-H…O interaction of acetone and deuterium oxide probed by high-pressure. J. Chem. Phys., 2001, 115: 3215~3218.
    62 邹建平,王璐,曾润生.有机化学结构分析.北京:科学出版社,2005.124~131.
    63 Mizuno K, Miyashita Y, Shindo Y. NMR and FT-IR studies of hydrogen bonds in ethanol-water mixtures. J. Phys. Chem., 1995, 99: 3225~3228.
    64 Mizuno K, Kimura Y, Morichika H, Nishimura Y, Shimada S, Maeda S, Imafuji S, Ochi T. Hydrophobic hydration of tert-butyl alcohol probed by NMR and IR. J. Mol. Liq., 2000, 85: 139~152.
    65 Bonvin A M, Boelens R, Kaptein R. NMR analysis of protein interactions. Curr. Opin. Chem. Bio., 2005, 9: 501~508.
    66 朱明华.仪器分析,北京:高等教育出版社,1982.
    67 Marigliano A C G, Varetti E L. Self-association of formamide in carbon tetrachloride solutions: an experimental and quantum chemistry vibrational and thermodynamic study. J. Phys. Chem. A., 2002, 106: 1100~1106.
    68 Buck U, Huisken F. Infrared spectroscopy of size-selected water and methanol clusters. Chem. Rev., 2000, 100, 3863~3890.
    69 Herrebout W A, Clou K, Desseyn H O. Vibrational spectroscopy of N-methylacetamide revisited. J. Phys. Chem. A., 2001, 105: 4865~4881.
    70 Sieler G, Schweitzer-Stenner R. The amide I mode of peptides in aqueous solution involves vibrational coupling between the peptide group and water molecules of the hydration shell. J. Am. Chem. Soc., 1997, 119: 1720~1726.
    71 a) Aton B, Doukas A G., Callender R H, Becher B, Ebrey T G. Resonance raman studies of the purple membrane. Biochemistry, 1977, 16: 2995~2999. b) Gerscher S, Mylrajan M, Hildebrandt P, Baron M H, Muller R, Engelhard M. Chromophore-anion interactions in halorhodopsin form natronobacterium pharaonis probed by time-resolved resonance raman spectroscopy. Biochemistry, 1997, 36: 11012~11020.
    72 Kamogawa K, Kitagawa T. Raman difference spectroscopy of the carbon-hydrogen stretching vibrations: frequency shifts and excess quantities for acetone/water and acetonitrile/water solutions. J. Phys. Chem., 1986, 90: 1077~1081.
    73 徐征.烷基C-H蓝移与分子间相互作用关系:[博士学位论文].杭州:浙江大学,2007.
    74 a) Tassaing T. A vibrational spectroscopic study of water confined in benzene from ambient conditions up to high temperature and pressure. Vib. Spectrosc., 2000, 24: 15~28. b)马璐.C-H 频率位移的局部组成模型:[硕士学位论文].杭州:浙江大学,2004.
    75 杨小震.分子模拟与高分子材料,北京:科学出版社,2002.
    76 Wilson S. Chemistry by computer: an overview of the applications of computers in chemistry. New York: Plennum Press, 1986.
    77 a) Drozdov A N, Grossfield A, Pappu R V. Role of solvent in determining conformational preferences of alanine dipeptide in water. J. Am. Chem. Soc., 2004, 126: 2574~2581. b) Gao J, Pavelites J J, Habibollazadeh D. Simulation of liquid amides using a polarizable intermolecular potential function. J. Phys. Chem., 1996, 100: 2689~2697. c) Cordeiro J M M. C-H…O and N-H…O hydrogen bonds in liquid amides investigated by Monte Carlo simulation. Int. J. Quantum. Chem., 1997, 65: 709~717. d) Kovacs H, Laaksonen A. Molecular dynamics simulation and NMR study of water-acetonitrile mixtures. J. Am. Chem. Soc., 1991, 113: 5596~5605. e) Yang Q, Zhong C. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. J. Phys. Chem.B., 2005, 109: 11862~11864. f) Vamai P, Lavery R. Base flipping in DNA: pathways and energetics studied with molecular dynamic simulations. J. Am. Chem. Soc., 2002, 124: 7272~7273.
    78 a) Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987. b) Landau D P, Binder K. Monte Carlo Simulations in Statistical Physics. Cambridge: Cambridge University Press, 2000. c) Rapaport D C. The Art of Molecular Dynamics Simulation. Cambridge: Cambridge University Press, 1997.
    79 Lifson S, Warshel A. Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and N-alkane molecules. J. Chem. Phys., 1968, 49: 5116~5129.
    80 Allinger N L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc., 1977, 99: 8127~8134.
    81 Allinger N L, Yuh Y H, Lii J H. Molecular mechanics: the MM3 force field for hydrocarbons. 1. J. Am. Chem. Sot., 1989, 111: 8551-8566.
    82 Allinger N L, Chen K, Lii J H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem., 1996, 7: 642-668.
    83 Weiner S J, Kollman P A, Case D A, Singh U C, Ghio C, Alagona G, Profeta S, Weiner P. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc., 1984, 106: 765-784.
    
    84 Brooks B R, Bruccoleri R E, Olasfon B D, States D J, Swaminathan S, Karplus M. CHARMM: a program for macromolecular energy, minimization and dynamic s calculations. J. Comput. Chem., 1983,4: 187-217.
    
    85 Jorgensen W L, Tirado-Rives J. The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc., 1988, 110: 1657-1666.
    
    86 Halgren T A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17: 490-519.
    
    87 Halgren T A, Damm W. Polarizable force fields. Curr. Opin. Struct. Biol., 2001, 11: 236-242.
    
    88 Verlet L. Computer experiments classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 1967, 159: 98-103.
    
    89 Rahman A. Correlations in the motion of atoms in liquids argon. Phys. Rev., 1964, 136: 405-411.
    
    90 Swope W C, Berens P H. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: applications to small water clusters. J. Chem. Phys., 1982, 76: 637-649.
    
    91 Beeman D. Some multistep methods for use in molecular dynamics calculations. J. Chem. Phys., 1976,20: 130-139.
    
    92 Daan F, Berend S. Understanding molecular simulation—from algorithms to applications. 2~(nd) ed. San Diego: Academic press, 2002.
    
    93 Alder B J, Wainwright T E. Phase transition for a hard sphere system. J. Chem. Phys., 1957, 27: 1208-1209.
    
    94 Alder B J, Wainwright T E. Studies in molecular dynamics 1: general method. J. Chem. Phys., 1959, 31: 459~466.
    95 Stillinger F H, Rahman A. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 1974, 60: 1545~1557.
    96 McCammon J A, Gelin B R. Karplus M. Dynamics of folded proteins. Nature, 1977, 267: 585~590.
    97 Metropolis W, Ulam S. The Monte Carlo method. J. Amer. Stat. Ass., 1949, 44: 335~341.
    98 Metropolis N, Rosenbluth M N, Teller A H, Teller E. Equation of state calculations by fast computing machine. J. Chem. Phys., 1953, 21: 1087~1092.
    99 Michael J F, Janet E D B, Binkley J S, Schaefer Ⅲ H F. Extensive theoretical studies of the hydrogen-bonded complexes (H_2O)_2, (H_2O)_2H~+ , (HF)_2, (HF)_2H~+ , F_2H~-, and (NH_3)_2, J. Chem. Phys., 1986, 84: 2279~2289.
    100 Monari A, Bendazzoli G L, Evangelisti S, Angeli C, Amor N B, Borini S, Maynau D, Rossi E. The effect of the Basis-Set Superposition Error on the calculation of dispersion interactions: a test study on the neon dimer. J. Chem. Theory. Comput., ASAP Article, 2007
    101 林梦海.量子化学计算方法与应用,北京:科学出版社,2004.
    102 Bacic Z, Miller R E. Molecular clusters: structure and dynamics of weakly bound systems. J. Phys. Chem., 1996, 100: 12945~12959.
    103 a) Mizan T I, Savage P E, Ziff R M. Temperature dependence of hydrogen bonding in supercritical wter. J. Phys. Chem., 1996, 100: 403~408. b) Scheiner S. Theoretic Models of Chemical Bonding. Berlin: Springer-Verlag, 1991.
    104 Ma G H, Guo L J, Qian S X. Femtophysics femtochemistry and femtobiology. Physics, 2001, 30: 349~355(in Chinese,).[马国宏,郭立俊,钱士雄.飞秒物理、飞秒化学和飞秒生物学.物理,2001,30:349~355].
    105 Li G L, Yin D Z. Carbonyl stress in molecular biochemistry of aging. Life science research. 2003, 7: 116-122 (in Chinese). [李国林,印大中.生命科学研究,2003,7:116~122].
    106 a) Meot-Ner M, Scheiner S, Yu W O. Ionic hydrogen bonds in bioenergetics. 3. proton transport in membranes, modeled by ketone/water clusters. J. Am. Chem. Soc., 1998, 120: 6980-6990.
     b) Chen H, Gan W, Wu B H, Wu D, Guo Y, Wang H F. Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. acetone + water. J. Phys. Chem. B., 2005, 109: 8053-8063.
    c) Matteoli E, Lepori L. Solute-solute interactions in water. II. an analysis through the Kirkwood-Buff integrals for 14 organic solutes. J. Chem. Phys., 1984, 80: 2856-2863.
    d) Perera A, Sokoli F. Modeling nonionic aqueous solutions: The acetone-water mixture. J. Phys. Chem., 2004, 121: 11272-11282.
    e) Ferrario M, Haughney M, McDonald I R, Klein M L. Molecular-dynamics simulation of aqueous mixtures: Methanol, acetone, and ammonia. J. Chem. Phys., 1990, 93: 5156-5166.
    
    107 Zhang X K, Lewars E G, March R E, Parnis J M. Vibrational spectrum of the acetone-water complex: a Matrix Isolation FTIR and theoretical study. J. Phys. Chem., 1993, 97: 4320-4325.
    
    108 Engdahl A. A Matrix Isolation study of the inter- and intramolecular vibrations of the water-acetone complex. Chem. Phys., 1993, 178: 305-314.
    
    109 Mizuno K, Ochi T, Shindo Y. Hydrophobic hydration of acetone probed by nuclear magnetic resonance and infrared: evidence for the interaction C-H…OH_2. J. Chem. Phys., 1998, 109: 9502-9507.
    
    110 a) Max J J, Chapados C. Infrared spectroscopy of acetone-water liquid mixtures. II. molecular model. J. Chem. Phys., 2004, 120: 6625-6641.
    b) Max J J, Chapados C. Infrared spectroscopy of acetone-water liquid mixtures. I. factor analysis. J. Chem. Phys., 2003, 119: 5632-5643.
    
    111 Bushuev Y G, Davletbaeva S V. Structural properties of dilute aqueous solutions of dimethylformamide and acetone based on computer simulation. Russian. Chem. Bull., 1998, 47: 569-577.
    
    112 Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996; 118: 11225-11236.
    
    113 Mahoney M W, Jorgensen W L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys., 2000, 112: 8910-8922.
    
    114 a) Tinker: user's guide. Available from http://dasher.wustl.edu/tinker.
    b) Dudek M J, Ramnarayan K, Ponder J W. Protein structure prediction using a combination of sequence homology and global energy minimization: II. energy functions. J. Comput. Chem., 1998, 19: 548-573.
    
    115 Noda K, Ohashi M, Ishida K. Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water. J. Chem. Eng. Data., 1982, 27: 326-328.
    
    116 Brooks B R. In algorithms for molecular dynamics at constant temperature and pressure. DCRT Report: NIH, April 1988.
    
    117 Evans D J, Holian B L. The Nose-Hoover thermostat. J. Chem. Phys., 1983, 83: 4069-4074.
    
    118 Duan Y, Kumar S, Rosenberg J M, Kollman P A. Gradient SHAKE: an improved method for constrained energy minimization in macromolecular simulations. J. Comput. Chem., 1995, 16: 1351-1356.
    
    119 Luzar A, Chandler D. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys., 1993, 98, 8160-8173.
    
    120 Jorgensen W L, Madura J D. Temperature and size dependence for Monte Carlo simulations of T1P4P water. Mol. Phys., 1985, 56: 1381-1385.
    
    121 Lide D R (Ed.). CRC Handbook of Chemistry and Physics. 84~(th) ed. CRC Press, 2003-2004. Available from http://www.hbcpnetbase.com.
    
    122 Vishnyakov A, Lyubartsev A P, Laaksonen A. Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide-water mixture. J. Phys. Chem. A., 2001, 105: 1702-1710.
    
    123 Bushuev Y G, Davletbaeva S V. Structural properties of liquid acetone. Russian. Chem. Bull., 1999, 48: 25-34.
    
    124 Mclain S E, Soper A K, Luzar A. Orientational correlations in liquid acetone and dimethyl sulfoxide: a comparative study. J. Phys. Chem., 2006, 124: 074502.
    
    125 Sorenson J M, Hura G, Glaeser R M, Head-Gordon T. What can X-ray scattering tell us about the radial distribution functions of water. J. Chem. Phys., 2000, 113: 9149-9161.
    126 Soper A K. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys., 2000, 258: 121-137.
    
    127 Kirchner B, Reiher M. The secret of dimethyl sulfoxide-water mixtures. A quantum chemical study of 1DMSO-nWater Clusters. J. Am. Chem. Soc., 2002, 124: 6206-6215.
    
    128 a) Tkadlecova M, Dohnal V, Costas M. ~1H NMR and thermodynamic study of self-association and complex formation equilibria by hydrogen bonding. Methanol with chloroform or halothane. Phys. Chem. Chem. Phys., 1999, 1: 1479-1486.
    
    b) Dohnal V, Tkadlecova M. A simple relation between ~1H NMR data and mixing enthalpy for systems with complex formation by hydrogen bonding. J. Phys. Chem. B., 2002, 106: 12307-12310.
    
    129 Lei Y, Li H R, Han S J. An all-atom simulation study on intermolecular interaction of DMSO-water system. Chem. Phys. Lett., 2003, 380: 542-548.
    
    130 Nieto-Draghi C, Avalos J B, Rousseau B. Transport properties of dimethyl sulfoxide aqueous solutions. J. Chem. Phys., 2003, 119: 4782-4789.
    
    131 Goldammer E V, Hertz H G. Molecular motion and structure of aqueous mixtures with nonelectrolytes as studied by nuclear magnetic relaxation methods. J. Phys. Chem., 1970, 74:3734-3755.
    
    132 a) Elola M D, Ladanyi B M. Intermolecular polarizability dynamics of aqueous formamide liquid mixtures studied by molecular dynamics simulations. J. Chem. Phys., 2007, 126: 084504.
    b) Elola M D, Ladanyi B M. Computational study of structural and dynamical properties of formamide-water mixtures. J. Chem. Phys., 2006, 125: 184506.
    
    133 a) Liang W C, Li H R, Hu X B, Han S J. Proton transfer of formamide + nH_2O (n= 0-3): protective and assistant effect of the water molecule. J. Phys. Chem. A., 2004, 108: 10219-10224.
    b) Fu A P, Li H L, Du D M, Zhou Z Y. Theoretical study on the reaction mechanism of proton transfer in formamide. Chem. Phys. Lett., 2003, 382: 332-337.
    c) Markova N, Enchev V. Water-assisted proton transfer in formamide, thioformamide and selenoformamide. J. Mol. Struct. (THEOCHEM)., 2004, 679: 195-205.
    d) Kamitakahara A, Pranata J. Reaction pathways for proton exchange between protonated formamide and water. J. Mol. Struct. (THEOCHEM)., 1998, 429: 61-69.
    e) Li P, Bu Y X. Investigations of double proton transfer behavior between glycinamide and formamide using density functional theory. J. Phys. Chem. A., 2004, 108: 10288~10295.
    f) Sobolewski A L. ab initio study of the potential energy functions relevant for hydrogen transfer in formamide, its dimer and its complex with water. J. Photoch. Photobio. A., 1995, 89: 89-97.
    g) Bell R L, Taveras D L, Truong T N, Simons J. A direct ab Initio dynamics study of the water-assisted tautomerization of formamide. Int. J. Quantum. Chem., 1997, 63: 861-874.
    h) Lim J H, Lee E K, Kim Y. Theoretical study for solvent effect on the potential energy surface for the double proton transfer in formic acid dimer and formamidine dimer. J. Phys. Chem. A., 1997, 101: 2233-2239.
    i) Wang X C, Nichols J, Feyereisen M, Gutowski M, Boatz J, Haymet A D J, Simons J. ab initio quantum chemistry study of formamide-formamidic acid tautomerization. J. Phys. Chem., 1991, 95: 10419-10424.
    j) Kim Y, Lim S, Kim Y. The role of a short and strong hydrogen bond on the double proton transfer in the formamidine-formic acid complex: theoretical studies in the gas phase and in solution. J. Phys. Chem. A., 1999, 103: 6632-6637.
    k) Fu A P, Du D M, Zhou Z Y. Density functional theory study of the hydrogen bonding interaction of 1:1 complexes of formamide with water. J. Mol. Struct. (THEOCHEM).,2003,623:315-325.
    
    134 Ha J H, Kim Y S, Hochstrassera R M. Vibrational dynamics of N-H, C-D, and C=O modes in formamide. J. Chem. Phys., 2006,124: 064508.
    
    135 a) Tsuchida E. ab initio molecular-dynamics study of liquid formamide. J. Chem. Phys.,2004, 121: 4740-4746.
    b) Contador J C, Sanchez M L, Aguilar M A, Olivares del Valle F J. Solvent effects on the potential energy surface of the 1:1 complex of water and formamide: application of the polarizable continuum model to the study of nonadditive effects. J. Chem. Phys., 1996, 104: 5539-5546.
    c) Lua J F, Zhou Z Y, Wu Q Y, Zhao G. Density functional theory study of the hydrogen bonding interaction in formamide dimmer. J. Mol. Struct. (THEOCHEM).,2005, 724: 107-114.
    d) Du D M, Fu A P, Zhou Z Y. Density functional theory study of the hydrogen bonding interaction of 1:1 complexes of formamide with hydrogen peroxide. J. Mol. Struct. (THEOCHEM)., 2005, 731: 49-55.
    e) Chalmet S, Ruiz-Lopez M F. Molecular dynamics simulation of formamide in water using density functional theory and classical potentials. J. Chem. Phys., 1999, 111: 1117-1125.
    
    136 Blatchford M A, Raveendran P, Wallen S L. Raman spectroscopic evidence for cooperative C-H…O interactions in the acetaldehyde-CO_2 complex. J. Am. Chem. Soc., 2002, 124: 14818-14819.
    
    137 Cabaleiro-Lago E M, Otero J R. ah Initio and density functional theory study of the interaction in formamide and thioformamide dimers and trimers. J. Chem. Phys., 2002, 117: 1621-1632.
    
    138 Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction: a general technique for determining electron correlation energies. J. Chem. Phys., 1987, 87: 5968-5975.
    
    139 Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies.Some procedures with reduced errors. Mol. Phys., 1970, 19: 553-566.
    
    140 Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev., 1988, 88: 899-926.
    
    141 Guidebook of NBO 5.0. Available from http://www.chem.wisc.edu/~nbo5/index.htm.
    
    142 Foresman J B, Frisch A E. Exploring Chemistry with Electronic Structure Methods. Pittsburgh: Gaussian Inc, 1996.
    
    143 Foresman J B, Keith T A, Wiberg K B, Snoonian J, Frisch M J. Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation on ab initio reaction field calculations. J. Phys. Chem., 1996, 100: 16098-16104.
    
    144 Fogarasi G, Szalay P G. High-level electron correlation calculations on formamide and the resonance model. J. Phys. Chem. A., 1997, 101: 1400-1408.
    
    145 Mitsuo K, Kozo K. Molecular structure of formamide as studied by gas electron diffraction. Bull. Chem. Soc. Jpn., 1974, 47: 67-72.
    
    146 Wong M W, Wiberg K B, Frisch M J. Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study. J. Am. Chem. Soc., 1992, 114: 1645-1652.
    147 a) Tian S X. Quantum chemistry studies of glycine-H_2O_2 complexes. J. Phys. Chem. B., 2004, 108: 20388~20396. b) Znamenskiy V S, Green M E. Topological changes of hydrogen bonding of water with acetic acid: AIM and NBO studies. J. Phys. Chem. A., 2004, 108: 6543~6553.
    148 殷文娟.基团辅助HNX/HXNX(X=O,S)体系质子转移机理的理论研究:[硕士学位论文].曲阜:曲阜师范大学,2006.
    149 a) William L J, Carol J S. Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J. Am. Chem. Soc., 1985, 107: 569~578. b)Maxwell D S, Tirado-Rives J, Jorgensen W L. A comprehensive study of the rotational energy profiles of organic systems by ab initio MO theory, forming a basis for peptide torsional parameters. J. Comput. Chem., 1995, 16: 984~1010.
    150 Chialvo A A, Cummings P T. Microstructure of ambient and supercritical water. Direct comparison between simulation and neutron scattering experiments. J. Phys. Chem., 1996, 100: 1309~1316.
    151 Egan E P, Luff J B B. Heat of solution, heat capacity, and density of aqueous formamide solutions at 25℃. J. Chem. Eng. Data., 1966, 11: 194~196.
    152 Tanaka H, Nakanishi K, Touhara H. Computer experiments on aqueous solutions. Ⅵ. Potential energy function for tert-butyl alcohol dimer and molecular dynamics calculation of 3 mol% aqueous solution of tert-butyl alcohol. J. Chem. Phys., 1984, 81: 4065~4073.
    153 a) Tanaka H, Gubbins K E. Structure and thermodynamic properties of water-methanol mixtures: role of the water-water interaction. J. Chem. Phys., 1992, 97: 2626~2634. b) Okazaki S, Touhara H, Nakanishi K. Computer experiments of aqueous solutions. V. Monte Carlo calculation on the hydrophobic interaction in 5 mol% methanol solution. J. Chem. Phys., 1984, 81: 890~894.
    154 Borin I A, Skaf M S. Molecular association between water and dimethyl sulfoxide in solution: a molecular dynamics simulation study. J. Chem. Phys., 1999, 110: 6412~6420.
    155 Vaisman I I, Berkowitz M L. Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study. J. Am. Chem. Soc., 1991, 113: 7889~7896.
    156 a) Nielsen O F, Lund P A, Praestgaard E. Hydrogen bonding in liquid formamide. A low frequency raman study. J. Chem. Phys., 1982, 77: 3878~3883. b) Cabaleiro-Lago E M, Rios M A. Development of an intermolecular potential function for interaction in formamide clusters based on ab initio calculations. J. Chem. Phys., 1999, 110: 6782~6791.
    157 Kulkarni A D, Babu K, Gadre S R, Bartolotti L J. Exploring hydration patterns of aldehydes and amides: ab initio investigations. J. Phys. Chem. A., 2004, 108: 2492~2498.
    158 a) Kang Y K. Which functional form is appropriate for hydrogen bond of amides. J. Phys. Chem. B., 2000, 104: 8321~8326. b) Peters M, Rozas I, Alkorta I, Elguero J. DNA triplexes: a study of their hydrogen bonds. J. Phys. Chem. B., 2003, 107: 323~330.
    159 King S T. Infrared study of the NH_2 'inversion' vibration for formamide in the vapor phase and in an argon matrix. J. Phys. Chem., 1971, 75: 405~410.
    160 a) Kurland R J, Wilson J E B. Microwave spectrum, structure, dipole moment, and quadrupole coupling constants of formamide. J. Chem. Phys., 1957, 27: 585~590. b) Costain C C, Dowling J M. Microwave spectrum and molecular structure of formamide. J. Chem. Phys., 1957, 32: 158~165.
    161 Xu X L, Wang B, Xu W S. Synthesis of tripeptide L-prolyl-L-leucyl-glycinamide. Chemical Industry and Engineering Progress. 2006, 25: 951~953(in Chinese).[徐六兴,王蓓,许文松,脯氨酰L-亮氨酰-甘氨酰胺(PLG)三肽合成.2006,25:951~953].
    162 a) Qing A Q, Zheng T C, Da C F, Yuan S J. A quantum chemical study of the water-assisted mechanism in one-carbon unit transfer reaction catalyzed by glycinamide ribonucleotide transformylase. Biophys. Chem., 2004, 110: 259~266. b) Qing A Q, Jin Y Q, Yang C L, Zhang Z H, Wang M S. A quantum chemical study on the mechanism of glycinarnide ribonucleotide transformylase inhibitor: 10-Formyl-5,8,10-trideazafolic acid. Biophys. Chem., 2005, 118: 78~83.
    163 a) Milan R, Rode B M. Catalyzed peptide bond formation in the gas phase. Phys. Chem. Chem. Phys., 2001, 3: 4667~4673. b) Milan R, Rode B M. Bivalent cation binding effect on formation of the peptide bond. Chem. Phys. Lett., 2000, 316: 489-494.
    c) Uggerud E, Hvistendahl G, Rasmussen B, Kinser R D, Ridge D P. The unimolecular chemistry of protonated glycinamide and the proton affinity of glycinamide: mass spectrometric experiments and theoretical model. Chem., -Eur. J., 1996, 2: 1143-1149.
    d) Sulzbach H M, Schleyer P V R, Schaefer H F. Interrelationship between conformation and theoretical chemical shifts. Case study on glycine and glycine amide. J. Am. Chem. Soc., 1994, 116: 3967-3972.
    e) Klassen J S, Kebarle P. Collision-induced dissociation threshold energies of protonated glycine, glycinamide, and some related small peptides and peptide amino amides. J. Am. Chem. Soc., 1997, 119: 6552-6563.
    f) Michael R, Cheng V K W. On the role of polarization functions in SCF calculations of glycine and related systems with intramolecular hydrogen bonding International Journal of Quantum Chemistry, Quantum Biology Symposium. Proc. Int. Symp. Appl. Fundam. Theory Probl. Biol. Pharmacol, 1992, 15-26.
    g) Natasha G R, Houssain E A, Smith J C, Rodriquez C F, Hopkinson A C, Siu K W M. Multiple substitution of protons by sodium ions in sodiated oligoglycines. Int. J. Mass Spectrom., 2002, 219: 89-99.
    h) Li P, Bu Y X, Ai H Q. Density functional studies on conformational behaviors of glycinamide in solution. J. Phys. Chem. B., 2004, 108: 1405-1413.
    i) Li P, Bu Y X. Multiwater-assisted proton transfer study in glycinamide using density functional theory. J. Phys. Chem. B., 2004, 108: 18088-18097.
    j) Li P, Bu Y X, Ai H Q. Theoretical determinations of ionization potential and electron affinity of glycinamide using density functional theory. J. Phys. Chem. A., 2004, 108: 1200-1207.
    k) Li P, Bu Y X, Ai H Q, Cao Z. Acid-base behavior study of glycinamide using density functional theory. J. Phys. Chem. A., 2004, 108: 4069-4079.
    164 a) Li P, Bu Y X, Ai H Q, Yan S, Han K. Double proton transfer and one-electron oxidation behaviors in double H-bonded glycinamide-formamidine complex and comparison with biological base pair. J. Phys. Chem. B., 2004, 108: 16976-16982.
    165 Kryachko E S, Nguyen M T, Zeegers-Huyskens T. Theoretical study of tautomeric forms of uracil. 1. Relative order of stabilities and their relation to proton affinities and deprotonation enthalpies. J. Phys. Chem. A., 2001, 105: 1288-1295.
    166 a) Topal M D, Fresco J R. Complementary base pairing and the origin of substitution mutations. Nature, 1976, 263: 285-289.
    b) Florian J, Leszczynski J. Spontaneous DNA mutations induced by proton transfer in the guanine-cytosine base pairs: an energetic perspective. J. Am. Chem. Soc., 1996, 118: 3010-3017.
    167 Hobza P, Sponer J. Structure, energetics, and dynamics of the nucleic acid base pairs: nonempirical ab initio calculations. Chem. Rev., 1999, 99: 3247-3276.
    168 a) Ladik J, Forner W. The Beginnings of Cancer in the Cell. Berlin: Springer, 1994.
    b) Leao M B C, Longo R L, Pavao A C. A molecular orbital analysis of the DNA bases. J. Mol. Struct. (THEOCHEM)., 1999, 490: 145-153.
    
    169 Bailey E A, Iyer R S, Harris T M, Essigmann J M. A viral genome containing an unstable aflatoxin B1-N7-guanine DNA adduct situated at a unique site. Nucl. Acids. Res., 1996, 24: 2821-2828.
    
    170 Singh B, Gupta R S. Comparison of 12 anti-cancer drugs at the hypoxanthine-guanine phosphoribosyl transferase and adenine kinase loci in Chinese hamster ovary cells. Environ. Mutagen., 1983,5:871-880.
    
    171 a) Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J. Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J. Phys. Chem. A., 2006, 110: 10921-10924.
    b) Nir, E, Janzen C, Imhof P, Kleinermanns K, De Vries M S. Guanine tautomerism revealed by UV-UV and IR-UV hole burning spectroscopy. J. Chem. Phys., 2001, 115: 4604-4611.
    c)Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M. Tautomerism of the DNA base guanine and its methylated derivatives as studied by gas-phase infrared and ultraviolet spectroscopy. J. Phys. Chem. A., 2002, 106: 5088-5094.
    d) Choi M Y, Roger E M. Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J. Am. Chem. Soc., 2006, 128: 7320-7328.
    e) Gu J, Leszczynski J. Influence of the oxygen at the C8 position on the intramolecular proton transfer in C8-oxidative guanine. J. Phys. Chem. A., 1999, 103: 577-584.
    f)Szczepaniak K, Szczesniak M, Szajda W, Person W B, Leszczynski J. Infrared spectra of tautomers and rotamers of 9-methylguanine. An experimental and theoretical study. Can. J. Chem., 1991, 69: 1705-1720.
    
    172 a) Chen H, Li S. Theoretical study on the excitation energies of six tautomers of guanine: evidence for the assignment of the rare tautomers. J. Phys. Chem. A., 2006, 110: 12360-12362.
    b) Podolyan Y, Gorb L, Leszczynski J. ab initio study of the prototropic tautomerism of cytosine and guanine and their contribution to spontaneous point mutations. Int. J. Mol. Sci., 2003, 4: 410-421.
    c) Fulscher M P, Serrano-Andres L, Roos B O. A theoretical study of the electronic spectra of adenine and guanine. J. Am. Chem. Soc., 1997, 119: 6168-6176.
    d) Broo A, Holmen A. Calculations and characterization of the electronic spectra of DNA bases based on ab initio MP2 geometries of different tautomeric forms. J. Phys. Chem. A., 1997, 101: 3589-3600.
    e) Chandra A K, Nguyen M T, Uchimaru T, Zeegers-Huyskens T. Protonation and deprotonation enthalpies of guanine and adenine and implications for the structure and energy of their complexes with water. Comparison with uracil, thymine and cytosine. J. Phys. Chem. A., 1999, 103: 8853-8862.
    f) Chandra A K, Nguyen M T, Uchimaru T, Zeegers-Huyskens T. DFT study of the interaction between guanine and water. J. Mol. Struct., 2000, 555: 61-66.
    g) Gorb L, Leszczynski J. Intramolecular proton transfer in mono- and dihydrated tautomers of guanine: an ab initio post Hartree-Fock study. J. Am. Chem. Soc., 1998, 120: 5024-5032.
    h) Abo-Riziq A, Crews B, Grace L, De Vries M S. Microhydration of guanine base pairs. J. Am. Chem. Soc., 2005, 127: 2374-2375.
    
    173 Sabio M, Topiol S, Lumma Jr W C. An investigation of tautomerism in adenine and guanine. J. Phys. Chem., 1990, 94: 1366-1372.
    
    174 Ha T K, Keller H J, Gunde R, Gunthard H H. Energy increment method based on quantum chemical results: a general recipe for approximative prediction of isomerization and tautomerization energies of pyrimidine and purine nucleic acid bases and related compounds. J. Phys. Chem. A., 1999, 103: 6612-6623.
    
    175 Cadet J, Grand A, Morell C, Letelier J R, Moncada J L, Toro-Labbe A. Theoretical study of the internal rotation of the hydroxylic group of the enol form of guanine. J. Phys. Chem. A., 2003, 107:5334-5341.
    176 a) Podolyan Y, Rubin Y V, Leszczynski J. An ab Initio Post-Hartree-Fock comparative study of 5-azacytosine and cytosine and their dimers with guanine. J. Phys. Chem. A., 2000, 104: 9964~9970.
    b) Barsky D, Colvin M E. Guanine-cytosine base pairs in parallel-stranded DNA: an ab initio study of the keto-amino Wobble pair versus the enol-imino minor tautomer pair. J. Phys. Chem. A., 2000, 104: 8570-8576.
    c) Sponer J, Hobza P. Bifurcated hydrogen bonds in DNA crystal structures. An ab initio quantum chemical study. J. Am. Chem. Soc., 1994, 116: 709-714.
    d) Colominas C, Luque F J, Orozco M. Tautomerism and protonation of guanine and cytosine. implications in the formation of hydrogen-bonded complexes. J. Am. Chem. Soc., 1996, 118: 6811-6821.
    
    177 Crespo-Hernandez C E, Arce R, Ishikawa Y, Gorb L, Leszczynski J, Close D M. ab initio ionization energy thresholds of DNA and RNA bases in gas phase and in aqueous solution. J. Phys. Chem. A., 2004, 108: 6373-6377.
    
    178 Chen E C M, Herder C, Chen E S. The experimental and theoretical gas phase acidities of adenine, guanine, cytosine, uracil, thymine and halouracils. J. Mol. Struct., 2006, 798: 126-133.
    
    179 a) Podolyan Y, Gorb L, Leszczynski J. Protonation of nucleic acid bases. A comprehensive Post-Hartree-Fock study of the energetics and proton affinities. J. Phys. Chem. A., 2000, 104: 7346-7352.
    
    b) Janet E D B. Molecular orbital study of the protonation of DNA bases. J. Phys. Chem., 1983,87:367-371.
    
    180 Thewalt U, Bugg C E, Marsh R E. The crystal structure of guanine monohydrate. Acta. Cryst., 1971, B27: 2358-2363.
    
    181 Hanus M, Ryjaek F, Kabela M, Kuba T, Bogdan T V, Trygubenko S A, Hobza P. Correlated ab initio study of nucleic acid bases and their tautomers in the gas phase, in a microhydrated environment and in aqueous solution. Guanine: surprising stabilization of rare tautomers in aqueous solution. J. Am. Chem. Soc., 2003, 125: 7678-7688
    
    182 Mennucci B, Toniolo A, Tomasi J. Theoretical study of guanine from gas phase to aqueous solution: role of tautomerism and its implications in absorption and emission spectra. J. Phys. Chem. A., 2001, 105: 7126-7134.
    183 Liu F F, Qian P, Yan S H, Bu Y X. Coupling characteristics and proton transfer mechanisms of guanine-Na~+ monohydrate. J. Mol. Struct. (THEOCHEM)., 2006, 760: 209-217.
    
    184 a) Roberts C, Bandaru R, Switzer C. Theoretical and experimental study of isoguanine and isocytosine: base pairing in an expanded genetic system. J. Am. Chem. Soc., 1997, 119: 4640~4649.
    
    b) Moussatova A, Vazquez M V, Martinez A, Dolgounitcheva O, Zakrzewski V G, Ortiz J V, Pedersen D B, Simard B. Theoretical study of the structure and bonding of a metal-DNA base complex: Al-guanine. J. Phys. Chem. A., 2003, 107: 9415-9421.
    
    c) Jang Y H, Goddard W A, Noyes K T, Sowers L C, Hwang S, Chung D S. First principles calculations of the tautomers and pKa values of 8-oxoguanine: implications for mutagenicity and repair. Chem. Res. Toxicol., 2002, 15: 1023-1035.
    
    d) Meng F C, Xu W R, Liu C B. Theoretical study of incorporating 6-thioguanine into a guanine tetrad and their influence on the metal ion-guanine tetrad. Chem. Phys. Lett., 2004, 389: 421-426.
    
    e) Li B Z. Density functional theory calculations on xanthine tautomers. Chemical research and application, 2006, 18: 56-60 (in Chinese). [李宝宗.黄嘌呤及其互变异构的密度泛函理论研究.化学研究与应用,2006,1 8:56~60].
    
    185 a) Chung G S, Oh H B, Lee D. Tautomerism and isomerism of guanine-cytosine DNA base pair: ab initio and density functional theory approaches. J. Mol. Struct. (THEOCHEM)., 2005, 730: 241-249.
    
    b) Danilov V 1, Anisimov V M, Kurita N, Hovorun D. MP2 and DFT studies of the DNA rare base pairs: The molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem. Phys. Lett., 2005, 412: 285-293.
    
    c) Kelly R E A, Lee Y J, Kantorovich L N. Homopairing possibilities of the DNA bases cytosine and guanine: an ab initio DFT Study. J. Phys. Chem. B., 2005, 109: 22045-22052.
    
    186 Tian S X, Xu K Z. A density functional approach of prototropic tautomerism of guanine. Chem. Phys., 2001,264: 187-196.
    
    187 Giese B, Mcnaughton D. Density functional theoretical (DFT) and surface-enhanced Raman spectroscopic study of guanine and its alkylated derivatives. Part 2: surface-enhanced raman scattering on silver surfaces. Phys. Chem. Chem. Phys., 2002, 20: 5171-5182.
    
    188 a) Nagashima N, Kudoh S, Takayanagi M, Nakata M. UV-induced photoisomerization of acetylacetone and identification of less-stable isomers by low-temperature Matrix-Isolation infrared spectroscopy and density functional theory calculation. J. Phys. Chem. A., 2001, 105: 10832-10838.
    b) Tateki I, Fumio H, Shigeki K. Thermodynamic analysis of the solvent effect on tautomerization of acetylacetone: an ab initio approach. J. Chem. Phys., 1999, 110: 3938-3945.
    c) Bauer S H, Wilcox C F. On malonaldehyde and acetylacetone: are theory and experiment compatible. Chem. Phys. Lett., 1997, 279: 122-128.
    d) Lazaar K I, Bauer S H. Intramolecular unsymmetrical oxygen-hydrogen-oxygen (OHO) bonds. Thermochemistry. J. Phys. Chem., 1983, 87: 2411-2415.
    e) Folkendt M M, Weiss-Lopez B E, Chauvel J P, True N S. Gas-phase proton NMR studies of keto-enol tautomerism of acetylacetone, methyl acetoacetate, and ethyl acetoacetate. J. Phys. Chem., 1985, 89: 3347-3352.
    f) Pocker Y, Spyridis G T. Modulation of tautomeric equilibria by ionic clusters. Acetylacetone in solutions of lithium perchlorate-diethyl Ether. J. Am. Chem. Soc., 2002, 124: 10373-10380.
    
    189 a) Momoki K, Fukazawa Y. Bulbed capillary external referencing method for proton nuclear magnetic resonance spectroscopy. Anal. Chem., 1990, 62: 1665-1671.
    
    b) Rocha W R, De Almeida K J, Coutinho K, Canuto S. The electronic spectrum of N-methylacetamide in aqueous solution: a sequential Monte Carlo/quantum mechanical study. Chem. Phys. Lett., 2001, 345: 171-378.
    
    190 Hu X B, Li H R, Liang W C, Han S J. Explore water's protective and assistant role for uracil. A changing role of water at different temperature. Chem. Phys. Lett., 2006, 417: 320-325.
    
    191 Rulisek L, Sponer J. Outer-shell and inner-shell coordination of phosphate group to hydrated metal ions (Mg~(2+), Cu~(2+), Zn~(2+), Cd~(2+)) in the presence and absence of nucleobase. The role of nonelectrostatic effects. J. Phys. Chem. B., 2003, 107: 1913-1923.
    
    192 Barone V, Adamo C, Minichino C. Direct catalytic effect and fine modulation of solvent in the keto-enol isomerization of amides. J. Mol. Struct. (THEOCHEM)., 1995, 330: 325-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700