柱前衍生化RP-HPLC法拆分盐酸洛美沙星和普萘洛尔对映体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当手性药物的对映体进入生物体内手性环境时,将作为不同的分子加以识别匹配,因此在药效学、药物动力学和毒理学方面存在对映体选择性作用。如丙氧吩的两种对映体就具有不同的药理活性,右旋丙氧吩是镇痛药,左旋丙氧吩却是止咳药,此类的例子还有很多。因此有必要对手性药物的对映体进行研究,并且单一对映体不仅使剂量减半减少副作用,还具有疗效更好、更安全等优点,所以手性药物的研究具有重要的科学价值和现实意义。近年来,单一对映体药物市场每年以20%以上的速度增长,广泛的应用前景和巨大的市场需求充分说明了手性药物研究的重要性。
     普萘洛尔和盐酸洛美沙星都是含有一个手性中心的药物,有一对对映异构体,且结构中都含有仲胺基团。普萘洛尔是临床上广泛应用的一种重要的β受体阻滞剂药物,主要用于治疗高血压、心律失常和心绞痛等疾病,具有良好的疗效。盐酸洛美沙星是第三代喹诺酮类抗菌药,具有半衰期长、广谱、高效、低毒的优点,已受到医药界的广泛重视,但是截至目前的文献报道都是关于消旋体用药的研究,因此对其消旋体进行分离以开展单一对映体的相关研究就具有重要的实际意义。因此本文对这两种仲胺类药物的体外和血浆中的手性分离分析方法分别进行了研究。
     NEIC和GITC都是异硫氰酸酯类衍生化试剂,广泛用于氨基酸、含有氨基或醇羟基药物的对映体手性拆分分析。本实验首次采用GITC为柱前衍生化试剂与LMFX反应生成一对非对映体,并用RP-HPLC法分离了这对非对映体。同时也以GITC为柱前衍生化试剂拆分了普萘洛尔对映体并对手性衍生化方法进行了考察。
     本文开展的工作有以下四个方面:
     1.建立了盐酸洛美沙星对映体柱前衍生化RP-HPLC拆分方法。以GITC为柱前衍生化试剂,与LMFX反应后生成一对非对映体,再通过RP-HPLC来进行分离分析。RP-HPLC分析色谱条件是:流动相为V(甲醇):V(3mmol·L-1四丁基溴化铵水溶液:5mmol·L-1Na2HPO4的水溶液=1:2)=25:75;流速为1 mL·min-1;检测波长为284nm。在该色谱条件下,GITC与LMFX形成一对非对映体得以基线分离,Rs达到1.52。在1.0~27.5μg·mL-1浓度范围内,LMFX-GITC非对映体的色谱峰面积与质量浓度之间线性良好,其非对映体1和2的直线回归方程分别为: A=39.021ρ+10.79(r=0.9993)和A=42.466ρ+1.5748(r=0.9996),日内、日间精密度的RSD均<3%。
     2.建立了普萘洛尔对映体柱前衍生化RP-HPLC拆分方法。以GITC为柱前衍生化试剂,在一定条件下与PL反应后生成一对非对映体,再通过RP-HPLC来进行分离分析。RP-HPLC分析色谱条件是:流动相为V(甲醇):V(20mmol·L-1KH2PO4的水溶液)=75:25;流速1 mL·min-1;检测波长220nm。在该色谱条件下, PL与GITC形成的一对非对映异构体得到很好的分离,Rs=3.03,并可以在20min内分离测定该非对映体,非常快速。在1.00~277.78μg·mL-1浓度范围内,PL-GITC非对映体的色谱峰面积与质量浓度有良好的线性关系,非对映异构体S和R的直线回归方程分别是A=42367ρ-2159.5 ( r=0.9999 )和A=57156ρ+59009(r=0.9999),日内、日间精密度的RSD均<3%。
     3.建立了普萘洛尔对映体血浆样品的分析方法。PL-GITC非对映体S和R的色谱峰面积与质量浓度有良好的线性关系,回归方程分别是A=886.43ρ-1409.2(r=0.9992)和A=3099.1ρ+2523.7(r=0.9991),日内、日间精密度的RSD均小于5%,回收率分别为98.95%和105.76%,且RSD均小于7.13%。
     4.初步研究了洛美沙星对映体在血浆中的分离分析方法,定量还需进一步对方法进行优化研究。
When the enantiomers of chiral drugs enter chiral environment of biosystem, they will be identified as different molecules. So there is enantioselective effect in pharmacodynamics, pharmacokinetics and toxicology. For instance, the two enantiomers of propoxyphene have different pharmacological activity, dextropropoxyphene is a pain-killer but levopropoxyphene is a cough remedy and there are many such examples. Therefore, it is necessary to study the enantiomer of chiral drugs and the single enantiomers have advantages of better therapeutic effect, more security, and so on because of their lower dosage to reduce side effects. So the study of chiral drugs has important scientific value and practical importance. In recent years, the growth rate of single-enantiomer drugs’market is more than 20 % per year which thoroughly illustrates that the study of chiral drugs is very important no matter for widely practical prospect or huge market demanding.
     Both propranolol and lomefloxacin hydrochloride are drugs with one chiral center. So they have two enantiomers respectively. Besides that, both of them are secondary amines of more reaction activity. Propranolol is widely used in clinic as an importantβ-blocker drug used to treat the diseases of hypertension, arrhythmia, angina. Lomefloxacin hydrochloride is the third generation of quinolones which has been extensively noticed by pharmaceutical industry for the advantages of long half-life, broad- spectrum, high efficiency and low toxicity. However, the study of these drugs is almost just on racemic drugs instead of the single enantiomer till now. Accordingly, the separation of their racemic to carry out the research of the single enantiomer would have important practical significance. So this experiment researched the chiral separation methods of these two secondary amine drugs in vitro and in plasma.
     The NEIC and GITC are isothiocyanates and widely used to analyze amino acids and amino or alcoholic hydroxyl drugs as chiral derivatization reagent. Therefore, this experiment developed a method which applied GITC as a pre-column derivatization reagent to react with LMFX, then a pair of diastereoisomers produced and separated by RP-HPLC finally. Meanwhile, this experiment also separated the enantiomers of propranolol with GITC as a pre-column derivatization reagent.
     The work developed in this dissertation can be summarized as following four aspects:
     1. A pre-column derivatization RP-HPLC method is established to separate the enantiomers of lomefloxacin hydrochloride. GITC, which is a pre-column derivatization reagent reacts with LMFX to generate a pair of diastereoisomers, and then separate these diastereoisomers by RP-HPLC. Chromatographic conditions of RP-HPLC analysis are that mobile phase is V(methanol):V(3mmol·L-1 tetrabutyl ammonium bromide aqueous solution: 5mmol·L-1 Na2HPO4 aqueous solution=1:2)=25:75, the flow rate is 1 mL·min-1 and the detection wavelength is 284nm. Under these chromatographic conditions, a baseline separation (the resolution is 1.52) of LMFX-GITC diastereoisomers was achieved. The diastereoisomers of LMFX-GITC appeared a good linearity relationship between chromatogra- phic peak area and mass concentration over the range of 1.0~27.5μg·mL-1. The linear regression equations of non-enantiomer 1 and 2 were: A= 39.021ρ+10.79(r=0.9993) and A=42.466ρ+1.5748(r=0.9996) respectively. The RSD of within-day and between-day precision were all less than 3 %.
     2. A pre-column derivatization RP-HPLC method is established to separate the enantiomers of propranolol. GITC is selected as a pre-column derivatization reagent. Let PL react with GITC to generate a pair of diastereoisomers, then separate the diastereoisomers by RP-HPLC. Chromatographic conditions of RP-HPLC analysis are as follows, mobile phase is V(methanol):V(20mmol ? L-1 KH2PO4 aqueous solution)=75:25, the flow rate is 1 mL·min-1 and the detection wavelength is 220nm. Under these chromatographic conditions, a perfect separation of diastereoisomers generated by PL and GITC was achieved and Rs=3.03. The HPLC can be completed within 20 minutes, therefore, it’s very fast. The diastereoisomers of PL-GITC appeared a good linearity relationship between chromato- graphic peak area and mass concentration over the range of 1.0~277.78μg·mL-1. The linear regression equations of diastereoisomers S and R were A=42367ρ-2159.5(r=0.9999) and A=57156ρ+59009(r=0.9999) respectively. The RSD of within-day and between-day precision were all less than 3 %.
     3. An analytical method is established to separate enantiomers of propranolol in plasma. The diastereoisomers of PL-GITC appeared a good linearity relationship within the range of 1.0~277.78μg·mL-1 between chromatographic peak area and mass concentration. The linear regression equations of non-enantiomer S and R were A=886.43ρ-1409.2(r=0.9992) and A=3099.1ρ+2523.7(r=0.9991) respectively. The RSD of within-day and between-day precision were all less than 5 %. Recoveries were 98.95 % and 105.76 % and the RSD were all less than 7.13 %.
     4. The separation and analytical methods on lomefloxacin enantiomers in plasma have been preliminary studied. The results showed that there were a lot of works left to optimize the method to accomplish the PL enantiomer analysis in vivo.
引文
[1]郑虎主编.药物化学[M].北京:民卫生出版社.1979. p206-206.
    [2]宁中军,韩延峰,潘秀芹.手性药物的药理作用类型及其制备技术研究进展[J].中国医学创新.2009, 25(6): 194-196.
    [3] Goodwin SD, Gallis HA, Chow AT, et al. Pharmacology and safety of levofloxacin in patients with human immunodeficiency virus infection [J]. Antimicrob Agents Chemother. 1994, 38(4): 799-804.
    [4]卢定强,李衍亮,凌岫全,等.手性药物拆分技术的研究进展[J].时珍国医国药.2009, 20(7): 1731-1734.
    [5] Helena Zahradnickova, Petr Husek, Petr Simek. GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column [J]. J.Sep.Sci. 2009, 32(22): 3919-3924.
    [6] Mostafa GA, Hefnawy MM, El-Majed A. Separation and determination of clenbuterol by HPLC using a vancomycin chiral stationary phase [J]. J AOAO Int. 2009, 92(3): 824-829.
    [7] Malakova J, Pavek P, Svecova I, et al. New high-performance liquid chromatography method for the determination of (R)-warfarin and (S)-warfarin using chiral separation on a glycopeptides-based stationary phase [J]. J Chromatogr B Analyt Technol Biomed Life Sci. 2009, 877(27): 3226-3230.
    [8] Ravi Bhushan, Shivani Tanwar. Reversed-phase liquid chromatographic determination of enantiomers of atenolol in rat plasma using derivatization with Marfey’s reagent [J]. Biomedical Chromatography. 2009, 23(7): 787-791.
    [9] Rosangela G.Peccinini, Valdecir F.Ximenes, Evandro J.Cesarino, et al. Stereo- selective Analysis of Carvedilol in Human Plasma and Urine using HPLC after Chiral Derivatization [J]. Biopharmaceutics & Drug Disposition. 2008, 29(5): 280-288.
    [10]冯颖智,黄小凡,曹毅敏.普萘洛尔的临床新用途[J].海峡药学.2007, 9(8): 95-96.
    [11]周良斌.普萘洛尔在精神病方面的临床应用[J].工作探讨.2009, 6(19): 193-194.
    [12] Fillet M, Bechet I, Chiap P, et al. Enantiomeric purity determination of propranolol by cyclodextrin-modified capillary electrophoresis [J]. Journal of Chromatography A. 1995, 717(1-2): 203-209.
    [13] Alex D. Chiralily-A cause for panic [J]. Chemistry in Britain. 988, 24(9): 847-848.
    [14]副岛林造,王华.洛美沙星[J].国外医药:抗生素分册.1993, 14(6): 444-446.
    [15] Zhou S, Ouang J, Baeyens WR, et al. Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-beta-cyclodextrin as chiral selector [J]. Journal of Chromatography A. 2006, 1130(2): 296-301.
    [16] Foster RT, Carr RA, Pasutto FM, et al. Stereospecific high-performance liquid chromatographic assay of lomfloxacin in human plasma [J]. Journal Pharmaceutical and Biomedical Analysis. 1995, 13(10): 1243-1248.
    [17]张哲峰,杨更亮,梁贵键,等.RP-HPLC手性流动相添加剂法拆分甲硫酸帕珠沙星对映体的研究[J].中国抗生素杂志.2004, 29(1): 19-22.
    [18] Chen B, Du Y, Li P. Investigation of enantiomeric separation of basic drugs by capillary electrophoresis using clindamycin phosphate as a novel chiral selector [J]. Electrophoresis. 2009, 30(15): 2747-2754.
    [19] Borges KB, Pupo MT, de Freitas LA,et al. Box-Behnken design for the optimization of an enantioselective method for the simultaneous analysis of propranolol and 4-hydroxypropranolol by CE [J]. Electrophoresis. 2009, 30(16): 2874-2881.
    [20] Xuan H, Haqe DS. Evaluation of a hydrazide-linked alpha1-acid glycoprotein chiral stationary phase: separation of R- and S- propranolol [J]. Journal of Separation Science. 2006, 29(10): 1412-1422.
    [21] Huang H, Jin J, Lee W. Comparative enantiomer separation of beta-blocers on polysaccharide derived chiral stationary phases using high performance liquid chromatography with acid or base additive in the mobile phases [J]. Se Pu. 2009, 27(4): 467-471.
    [22] Bhushan R, Tanwar S. Direct TLC resolution of atenolol and propranolol into their enantiomers using three different chiral selectors as impregnating reagents [J].Biomedical Chromatography. 2008, 22(9): 1028-1034.
    [23] Yang G, Zhao Y, Li M, et al. Study on chiral resolution of three beta-blockers by affinity electrokinetic chromatography [J]. Talanta. 2008, 75(1): 222-226.
    [24] MacLeod SL, Sudhir P, Wong CS. Stereoisomer analysis of wastewater-derived beta-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A. 2007, 1170(1-2): 23-33.
    [25] D’Orazio G, Aturki Z, Cristalli M, et al. Use of vancomycin chiral stationary phase for the enantiomeric resolution of basic and acidic compounds by nano-liquid chromatography [J]. Journal of Chromatography A. 2005, 1081(1): 105-113.
    [26]龙潇鸿,邱峰,徐霞,等.药物体外转运模型及普萘洛尔异构体转运动力学研究[J].重庆医科大学学报.2008, 33(9): 1038-1041.
    [27]颜小锋,周权,姚彤炜,等.普萘洛尔在人肝细胞色素P450转基因细胞中的立体选择性测定[J].浙江大学学报(医学版).2003, 32(2): 116-120.
    [28]刘晓东,谢林,钟冰,等.人血浆中盐酸洛美沙星的HPLC法测定及静脉药物动力学[J].中国药理学通报.1996, 12(1): 26-28.
    [29] Paradiso Hardy FL, Walker SE, Bowles SK. Steady-state pharmacokinetics of propranolol enantiomers in healthy male volunteers [J]. International Journal Clinical Pharmacology Therapeutics. 1998, 36(7): 370-375.
    [1]戴德银,郁杰,黄成斌.喹诺酮类抗菌药物的分类、药效及临床应用[J].成都医药.2003, 29(5):307-309.
    [2] S.Hara, K.Koga, K.Shudo. Molecular Chirality [M], Kyoto: KagaKudojin, 1993.
    [3] I.Morrissey, K.Hoshino, K.Sato, et al. Mechanism of differential activities of ofloxacin enantiomers [J]. Antimicrobial Agents and Chemotherapy. 1996, 40(8): 1775-1784.
    [4] Livemore DM, Winstanley TG, Shannon KP. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes [J]. Journal of Antimicrobial Chemotherapy. 2001, 48(1): 87-102.
    [5]副岛林造,王华.洛美沙星[J].国外医药:抗生素分册.1993, 14(6): 444-446.
    [6] Theo de Boer, Roelof Mol, Rokus A.de Zeeuw, et al. Enantioseparation of ofloxacin in urine by capillary electrokinetic chromatography using charged cyclodextrins as chiral selectors and assessment of enantioconversion [J]. Electrophoresis. 2001, 22(8): 1413-1418.
    [7] Xiaofeng Zhu, Yongsheng Ding, Bingcheng Lin, et al. Study of enantioselective interactions between chiral drugs and serum albumin by capillary electrophoresis[J]. Electrophoresis. 1999, 20(9): 1869-1877.
    [8] Shabi Abbas Zaidi, Kyoung Moon Han, Sung Soon Kim, et al. Open tubular layer of S-ofloxacin imprinted polymer fabricated in silica capillary for chiral CEC [J]. Journal of Separation Science. 2009, 32(7): 996-1001.
    [9] Shanshan Zhou, Jin Ouyang, Willy R. G.Baeyens, et al. Chiral separation of four fluoroquinolone compounds using capillary electrophoresis with hydroxypropyl-β-cyclodextrin as chiral selector [J]. Journal of Chromatography A. 2006, 1130(2): 296-301.
    [10] Lou Ann Cruz, Rex Hall. Enantiomeric purity assay of moxifloxacin hydrochloride by capillary electrophoresis [J]. Journal of Pharmaceutical and Biomedical Analysis. 2005, 38(1): 8-13.
    [11] Hongyuan Yan, Kyung Ho Row. Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography [J]. Analytica Chimica Acta. 2007, 584(1): 160-165.
    [12] Arai T, Nimura N, Kinoshita T. Investigation of enantioselective ofloxacin-albumin binding and displacement interactions using capillary affinity zone electrophoresis [J]. Biomed Chromatogr. 1995, 9(2): 68-74.
    [13]唐课文,陈国斌,易键民,等.基于手性配体交换反应立体选择性萃取分离氧氟沙星对映体[J].化学学报.2004, 62(17): 1621-1625.
    [14]彭霞辉,黄可龙,于金刚,等.乳状液膜手性萃取分离氧氟沙星外消旋体[J].中南大学学报(自然科学版). 2006, 37(3): 527-531.
    [15]王晓玲,许辉川,江坤,等.高效液相色谱手性流动相法拆分帕珠沙星对映体[J].药物分析杂志.2004,24(4): 372-374.
    [16]张哲峰,杨更亮,梁贵键,等.RP-HPLC手性流动相法拆分甲磺酸帕珠沙星对映体的研究[J].中国抗生素杂志.2004, 29(1): 19-22.
    [17] Lehr K H, Damm P. Quantification of the enantiomers of ofloxacin in biological fluids by high-performance liquid chromatography [J]. J Chromatogr. 1988, 425(2): 153-161.
    [18] Machida M, Izawa S, Hori W, et al. Pharmacokinetics of gatifloxacin, a newquinolone,and its enantiomers: II.Enantioselective method for the determination of gatifloxacin and its application to pharmacokinetic studies in animals [J]. Nihon Kagahu Ryoho Gakkai Zasshi. 1999, 47(2): 124-130.
    [19] Robert T.Foster, Robert A.Carr, Franco M.Pasutto, et al. Stereospecific high- performance chromatographic assay of lomefloxacin in human plasma [J]. Journal of Pharmaceutical and Biomedical Analysis. 1995, 13(10): 1243-1248.
    [20] Xiaojie Sun, Di Wu, Bing Shao, et al. High-Performance Liquid-Chromatographic Separation of Ofloxacin Using a Chiral Stationary Phase [J]. ANALYTICAL SCIENCES JULY. 2009, 25(7): 931-933.
    [21] Hyun M H, Han S C, Jin J S, et al. Separation of the stereoisomers of racemic fluoroquinolone antibacterial agents on a crown-ether-based chiral HPLC stationary phase [J]. Chromatographia. 2000, 52(7/8): 473-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700