纳米材料的水热法制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从碳纳米管发现以来,低维纳米结构材料得到了广泛关注,提出了很多新的研究方向,包括纳米材料制备方法、纳米器件、纳米生物学和纳米催化等。纳米材料的制备中最重要的就是如何精确控制纳米材料的尺寸、维数、成份和结构。
     本论文主要是探索无机纳米材料的水热合成新方法、新路线,优化其合成条件,探索其反应机理,研究其应用。利用各种手段,对样品的形貌、成份、结构和性能进行了测试和分析,得到了以下主要结果:
     1. Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)纳米卷
     利用PVA辅助水热法制备了结晶良好的Pb(Zr_(0.52)Ti_(0.48))O_3(PZT)纳米卷,提出了纳米卷的卷曲生长机制。
     2.NiS纳米花与纳米棒的制备
     利用水热法在200℃制备了晶化良好的棒状和花状NiS纳米结构。研究了反应时间和反应温度对其形貌的影响,提出了两步分裂生长机制。
     3.枝状CdS的制备及其光致发光研究
     利用3CdS04·8H_2O和SC(NH_2)_2作为原材料,水热法制备了树枝状CdS。观察到样品在485、561和617 nm处有三个可见发光峰,在750 nm处有一个红外发光峰。研究了其可能的发光机制。
     4.纺锤状Co掺杂ZnO的制备
     采用低温水溶液方法制备了Co掺杂量为2-5 at.%的纺锤状ZnO粉末,观察到样品为六角纤锌矿结构,没有其他任何杂质相存在。发现Co~(2+)替代了ZnO晶格内的Zn位置,没有Co金属和其他Co氧化物存在。样品具有良好的室温铁磁性,指出磁性起源可能与样品内的氧缺陷有关。
     5.枝状α-Fe_2O_3的制备
     水热法制备了枝状α-Fe_2O_3,其主干长度为1-4:5μm。发现样品具有良好的室温铁磁性,来自于样品的形状各向异性。在0.1、0.2、和1 mA/cm~2的放电电流密度下,树枝状α-Fe_2O_3锂离子电池的首次放电容量分别为1560,1095和670mA h/g,均高于目前商用的石墨碳。但是,其循环寿命比较短,需要进一步改进。
     6.束状CuO的制备
     低温120℃水热法制备了束状CuO,提出了束状形貌的生长过程。把样品作为锂电池负极,电池的首次放电容量为965 mAh/g,循环41次后,样品的放电容量仍高达580 mAh/g。发现样品具优良的电化学活性,可以用来制备高功率的二次电池。
Since the discovery of the C nanotubes, low-dimensional nanostructures of materials have received great research attention because of their unique photochemistry, photophysical and electron-transport properties different from those of bulky materials. On the basis of well-defined low-dimension nanostructures, many new and promising fields have been established, including nanofabrication, nanodevices, nanobiology and nanocatalysis, etc. Among of the challenges in this field, the main one is how to precisely control the sizes, dimensionalities, compositions, and crystal structures of materials in nanoscale.
     This paper mainly introduces the way of fabrication and characterization of the low-dimension of nanomaterials. The structure, morphology and character of the nanomaterials were characterized. And the nanomaterials as the lithium-ion battery anode were studied. The important results are as follows:
     1. Fabrication of Pb(Zr_(0.52)Ti_(0.48))O_3 (PZT) nanorolls
     Well-crystalline Pb(Zr_(0.52)Ti_(0.43))O_3 nanorolls were synthesized by hydrothermal and PVA-assistant hydrothermal methods. The "rolling mechanism" for the formation of PZT nanorolls was discussed.
     2. Fabrication of rod- and flower-like NiS
     Well-crystalline flower- and rod-like NiS nanostructures were synthesized by an organic-free hydrothermal process at a low temperature of 200℃. The effects of temperature and reaction time on the morphology were investigated. The two-step flake-cracking mechanism for the formation of flower- and rod-like NiS nanostructures was discussed.
     3. Fabrication of CdS dendrites
     Large-scale hierarchical CdS dendrites were synthesized by a simple hydrothermal method using 3CdSO_4·8H_2O and SC(NH_2)_2 as the original reactant. The room-temperature PL reveals that the as-prepared CdS products have visible emission of about 485, 561 and 617 nm, and an infrared red (IR) emission centered at 750 nm. The possible photoluminescence mechanisms are proposed.
     4. Spindle-like ZnO
     Spindle-like ZnO doped with 2-5 at.% cobalt powders were prepared by a low temperature aqueous solution method. The structural and magnetic properties of the products were investigated. The obtained products were identified to be of hexagonal wurtzite structure without any impurity phase. Also, the Co was incorporated in the ZnO lattice as Co~(2+) and substituted for the Zn site with no evidence of metallic Co. Ferromagnetic behavior was clearly observed at room temperature for the Co-doped samples. Photoluminescence intensity due to the vacancies varies with the Co concentration, and the ferromagnetism moment increases with the increment of oxygen vacancies.
     5. Fabrication ofα-Fe_2O_3 dendrites
     Hematiteα-Fe_2O_3 dendrites with lengths of 1-4.5μm along the trunk were synthesized by a low-temperature hydrothermal method. The morphology and the crystal structure of the final products were characterized. The magnetic evaluations showed that the as-preparedα-Fe_2O_3 dendrites have excellent ferromagnetic characteristics. The electrochemical performance as anode material for lithium-ion batteries was further evaluated by charge-discharge measurement. It was demonstrated that the material could provide an initial capacity of 1560, 1095 and 670 mA h/g at a current density of 0.1, 0.2, and 1 mA/cm~2, respectively. However, the cycle life is very poor, how to improve it is very important.
     6. Fabrication of sheaf-like CuO
     Sheaf-like CuO nanostructures have been synthesized by a simple hydrothermal process conducted at 120℃for 24 h. The growth process of the sheaf-like nanostructures was clarified. The electrochemical performance as anode material for lithium-ion batteries was further evaluated by charge-discharge measurements. It was found that the sheaf-like CuO electrode can exhibit a high initial discharge capacity of 965 mAh/g. After 41 cycles, the electrode can deliver a capacity of 580 mAh/g. And a high rate capability was also obtained.
引文
[1] I. John, Brauman, Science, 254(1991)1277.
    [2] 张立德,牟季美著,纳米材料和纳米结构,科学出版社,2002年.
    [3] 张立德:纳米材料2000.
    [4] 赵于文,现代化工,5(1991)52.
    [5] L. E. Brus, J. Phys. Chem. 80 (1984) 440.
    [6] A. Kawabata, R. Kubo, J. Phys. Soc. Jpn, 38 (1977) 2.
    [7] P. Ball, L. Garwin, Nature, 355 (1992) 761.
    [8] R. E. Cavicchi, R. H. Silsbee, Phys. Rev. Lett. 52 (1984) 1453.
    [9] W. P. Halperin, Rev. of Modern Phys. 58 (1986) 532.
    [10] B. Barbara, W. Wernsdorfer, Curr. Opin. Solid. State. Mater. Sci. 2 (1997) 220.
    [11] S. C. Tsang, Y. K. Chen, P. J. Harris, Nature 372 (1994) 159.
    [12] 裘式纶,翟庆州,肖丰收,张宗涛,化学研究与应用,10(1998)331.
    [13] A. P. Davis, Nature 401 (1999) 120.
    [14] R. F. Service, Science 271 (1996) 920.
    [15] M. Anpo, T. Shima, S. Kodama, et al. J. Phys. Chem. 91 (1987) 4305.
    [16] J. J. Pietron, R. M. Stroud, D. R. Rolison, Nano Lett. 2 (2002) 545.
    [17] J. Q. Xiao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 68 (1992) 3749.
    [18] C. Macilwain, Nature 405 (2001) 730.
    [19] 唐一科,许静,韦立凡,重庆大学学报,28(2005)5.
    [20] K. Yoshida, K. Matsumoto, T. Oguchi, J. Phys. Chem. A 110 (2006) 4726.
    [21] S. S. Yun, J. K. Kim, J. S. Jung, Cryst. Growth, Des. 6 (2006) 899.
    [22] L. J. Cruz, C. Cuevas, L. M. Canedo, J. Org. Chem. 71 (2006) 3339.
    [23] M. R. Lee, D. W. Jung, D. Williams, Org. Lett. 7 (2005) 5477.
    [24] S. Meyer, R. Gorges, G. Kreisel, Thin. Solid. Films. 450 (2004) 276.
    [25] V. S. Rudnev, T. P. Yarovaya, J. Electroanal. Chem. 497 (2001) 150.
    [27] S. Iijima, Nature, 354 (1991) 56.
    [28] H. W. Zhu, B. Jiang, C. L. Xu, J. Phys. Chem. B 107 (2003) 6514.
    [29] T. Sugai, H. Yoshida, T. Shimada, Nano. Lett. 3 (2003) 769.
    [30] S. Doppiu, V. Langlais, J. Sort, Chem. Mater. 16 (2004) 5664.
    [31] H. Zhao, J. H. Kawak, Y. Wang, Energy&Fuels 20 (2006) 807.
    [32] 梁国宪,王尔德,王晓林,材料科学与工程,12(1994)47.
    [33] T. Uenura, M. Ohba, S. Kitagawa, Inorg. Chem. 43 (2004) 7339.
    [34] 王世敏,许祖勋,傅晶,纳米材料制备技术,2002.
    [35] M. Kobayashi, J, Saraie. H. Matsunami, Appl. Phys. Lett. 38 (1981) 696.
    [36] J. A. Azurdia, J. Marchal, P. Shea, Chem. Mater. 18 (2006) 731.
    [37] S. Usuba, H. Yokoi, Y. Kakudate, J. Appl. Phys. 91 (2002) 10051.
    [38] A. Ouchi, Z. Bastl, J. Bohacek, Chem. Mater. 16 (2004) 3439.
    [39] H. Zhang, M. Zou, S. Tan, J. Phys. Chem. B 109 (2005) 10653.
    [40] M. J. Yacaman, M. M. Yoshida, L. Rendon, Appl. Phys. Lett. 62 (1993) 202.
    [41] O. R. Lourie, C. R. Jones, B. M. Bartlett, et al. Chem. Mater. 12 (2000) 1808.
    [42] J. Yu, Q. Zhang, J. Ahn, et al. J. Vacuum. Sci. Tech. A 19 (2001) 671.
    [43] H. Chen, J. Lin, J. Yi, et al. Chin. Chem. Lett. 12 (2001) 1139.
    [44] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4 (1964) 89.
    [45] Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc. 123 (2001) 3165.
    [46] J. Westwater, D. P. Gosain, S. Tomiya, et al. J. Vac. Sci. Technol. B 15 (1997)554.
    [47] Y. Y. Wu, P. D. Yang, Chem. Mater. 12 (2000) 605.
    [48] C. C. Chen, C. C. Yeh, C. H. Chen, et al. J. Am. Chem. Soc. 123 (2001) 2791.
    [49] Y. Wang, G. Meng, L. Zhang, et al. Chem. Mater. 14 (2002) 1773.
    [50] Y. Wang, L. Zhang, G. Wang, J. Cryst. Growth. 234 (2002) 171.
    [51] C. Liang, L. Zhang, G. Meng, J. Non-Crys. Solids. 277 (2000) 63.
    [52] S. Qi, X. Huang, Z. Gan, et al. J. Cryst. Growth. 219 (2000) 485.
    [53] C. Tang, S. Fan, M. Chapelle, et al. Chem. Phys. Lett. 333 (2001) 12.
    [54] M. S. El-Shall, V. Abdelsayed, Y. B. Pithawalla, J. Phys. Chem. B 107 (2003)2882.
    [55] S. D. Skapin, I. Sondi, Crysy. Growth. Des. 5 (2005) 1933.
    [56] I. Sondi, E. Matijevic, Chem. Mater. 15 (2003) 1322.
    [57] K. Yamaguchi, T. Youshida, D. Lincot, J. Phys. Chem. B 107 (2003) 387.
    [58] M. Ogawa, H. Kaiho, Langmuir, 18 (2002) 4240.
    [59] D. Sen, P. Deb, S. Mazumder, Mater. Res. Bull. 35 (2000) 1243.
    [60] W. Wang, B. Gu, L. Liang, J. Phys. Chem. B 108 (2004) 14789.
    [61] W. Xu, J. H. Xu, J. Pan, Org. Lett. 8 (2006) 1737.
    [62] D. Yu, V. W. W. Yam, J. Phys. Chem. B. 109 (2005) 5497.
    [63] Q. T. Pan, J. F. Jia, K. Huang, et al. Mater. Sci. Eng. B 133 (2006) 226.
    [64] Q. T. Pan, J. F. Jia, K. Huang, et al. Mater. Lett. 61 (2007) 1210.
    [65] Q. T. Pan, K. Huang, S. B. Ni, et al. Mater. Lett. 61 (2007) 4773
    [66] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 126 (2004) 8124.
    [67] C. R. Wang, K. B. Tang, Q. Yang, et al. J. Mater. Chem. 12 (2002) 2426.
    [68] Q. Peng, Y. Dong, Y. D. Li, et al. Angew. Chem. Int. Ed. 42 (2003) 3027.
    [69] X. J. Wang, Y. Xie, Q. X. Guo, Chem. Commun. 2003 2688.
    [70] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 126 (2004) 16744.
    [71] Y. D. Li, X. L. Li, R. R. He, et al. J. Am. Chem. Soc. 124 (2002) 1411.
    [72] J. W. Wang, Y. D. Li, Adv. Mater. 15 (2003) 445.
    [73] Y. Xie, H. L. Su, B. Li, et al. Mater. Res. Bull. 35 (2003) 675.
    [74] F. Zhang, Z. H. Zhou, S. P. Yang, et al. Mater. Lett. 59 (2005) 1422.
    [75] H. A. Therese, J. X. Li, U. Kolb, et al. Solid. State. Sciences. 7 (2005) 67.
    [76] S. Gao, Y. Xie, J. Lu, et al. Inorg. Chem. 41 (2002) 1850.
    [77] H. Zhang, D. R. Yang, S. Z. Li, et al. Mater. Lett. 59 (2005) 1696.
    [78] Y. D. Li, H. W. Liao, Y. Ding, et al. Chem. Mater. 10 (1998) 2301.
    [79] B. Li, Y. Xie, J. X. Huang, et al. Adv. Mater. 11 (1999) 1456.
    [80] Y. Li, H. Liao, Y. Ding, et al. Inorg. Chem. 38 (1999) 1382.
    [81] M. H. Cao, C. W. Hu, E. B. Wang, J. Am. Chem. Soc. 125 (2003) 11196.
    [82] X. Wang, Y. D. Li, Chem. Eur. J. 9 (2003) 300.
    [83] X. Wang, Y. D. Li, Angew. Chem. Int. Ed. 41 (2002) 4790.
    [84] L. Xiong, T. He, Chem. Mater. 18 (2006) 2211.
    [85] Y. Xing, M. Li, S. A. Davis, J. Phys. Chem. B. 110 (2006) 1111.
    [86] M. M. Husein, E. Rodil, J. H. Vera, Langmuir. 22 (2006) 2264.
    [87] T. Herranz, S. Rojas, M. Ojeda, Chem. Mater. 18 (2006) 2364.
    [88] J. Shi, H. Verweij, Langmuir, 21 (2005) 5570.
    [89] B. Yoon, C. M. Wai, J. Am. Chem. Soc. 127 (2005) 17174.
    [90] A. Ishizumi, Y. Kanemitsu, Appl. Phys. Lett. 86 (2005) 253106.
    [91] Y. Wang, J. Y. Lee, B. H. Chen, J. Electrochem. Soc. 151 (2004) A563.
    [92] Y. Liu, Y. Dong, G. Wang, Appl. Phys. Lett. 82 (2003) 260.
    [93] B. Liu, G. Q. Xu, L. M. Gan, et al. J. Appl. Phys. 89 (2001) 1059.
    [94] G. J. Hu, J. Chen, D. L. An, et al. Appl. Phys. Lett. 86 (2005) 162905.
    [95] D. Sun, Y. Huang, B. Han, G. Yang, Langmuir. 22 (2006) 4793.
    [96] Y. Zhang, B.X. Lin, X. K. Sun, Z. X. Fu, Appl. Phys. Lett. 86 (2005) 131910.
    [97] C. N. Chevin, B. J. Clapsaddle, H. W. Chiu, Chem. Mater. 18 (2006) 1928.
    [98] A. M. Massari, I. J. Finkelstein, M. D. Fayer, J. Am. Chem. Soc. 128 (2006)3990.
    [99] M. J. Hudson, J. W. Peckett, P. J. F. Harris, Ind. Eng. Chem. Res. 44 (2005) 5575.
    [100] S. J. Kwon, J. G. Park, Langmuir 22 (2006) 3895.
    [101] M. B. Gonzalez, A. Wu, P. M. Vilarinho, Chem. Mater. 18 (2006) 1737.
    [102] J. Yuan, S. Zhou, :L. Wu, J. Phys. Chem. B 110 (2006) 388.
    [103] 施尔畏,夏长泰,王步国,仲维卓,无机材料学报,11(1996)193.
    [104] 马剑华,温州大学学报,2(2002)79.
    [105] 吴建松,李海民,海湖盐与化工,33(2004)22.
    [1] S.Iijima, Nature 354(1991)56.
    
    [2] K. Uchino, Ferroelectric Devices (Marce Decker, 2000, New York).
    
    [3] S. Gottschalk, H. Hahn, A. G. Balogh, W. Puff, H. Kungl and M. J. Hoffmann, J. Appl. Phys.96 (2004 ) 7464.
    
    [4] G.H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797.
    [5] C. Yao, J. Liu, S. Zhang, Z. Chen, Mat. Sci. Eng B 99 (2003) 356.
    [6] Q. Tan, D. Viehland, J. Am. Ceram. Soc. 82 (1998) 328.
    [7] G. Wen. J. F. Li, C. E. peng, Z. L. Gui, L. T. Li, Adv. Mater. 17 (2005) 1952.
    [8] Y. Wang, J. J. Santiago-Aviles, Nanotechnology 15 (2004) 32.
    [9] S. J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen, G. Z. Cao, Adv. Mater. 13(2001)1269.
    [10] Q. Pan, F. Jia, K. Huang, D. He, Mat. Sci. Eng B (accepted).
    
    [11] X. G. Peng, L. Manna, W. D. Yang, J. T. Wichham, E. Scher, A. Kadavanich, A. P. Alivisators, Nature. 404 (2000) 59.
    
    [12] Z. Y. Tang, N. A. Kotov, M. Giersig, Science. 297 (2002) 237.
    
    [13] G. Xu, Z. H. Ren, P. Y. Du, W. J. Weng, G. Shen, G. R. Han, Adv. Mater. 17 (2005) 907.
    
    [14] R. Ma, Y. Bando, T. Sasak, J. Phys. Chem. B 108 (2004) 2115.
    
    [15] O. G. Schmidt, K. Ebert, Nature 410 (2001) 168.
    
    [16] G. Burns, B. A. Scott, Phys. Rev. Lett. 25 (1970) 1191.
    
    [17] P. S. Dobal, R. S. Katiyar, J. Raman. Spectrosc. 33 (2002) 405.
    
    [18] J. Frantti, V. Lantto, Phys. Rev. B 56 (1997) 221.
    
    [19] L. E. Mcneil, M. Grimsditch, and R. H. French, J. Am. Ceram. Soc. 76 (1993) 1132.
    [20] Y. N. Hwang, S. H. Park, and K. Kim, Phys. Rev. B 59 (1999) 7285..
    [1] N. N. Greenwood, E. A. Earnshaw, Pergamon, Oxford, 1 (1990) 403.
    [2] 卞国柱,殷亚东,伏义路,等.物理化学学报,16(2000)55.
    [3] 陈德良,高濂,高等化学学报,25(2004)1407.
    [4] X. F. Qiang, Y. D. Li, Y. Xie, et al. Mater. Chem. Phys. 66 (2000) 97.
    [5] F. Gao, Q. Y. Lu, S. H. Xie, et al. Adv. Mater. 24 (2002) 1537.
    [6] Z. Y. Meng, Y. Y. Peng, W. C. Yu, et al. Mater. Chem. Phys. 74 (2002) 230.
    [7] Y. U. Jeongd, A. Nthiram, Inorg. Chem. 40 (2001) 73.
    [8] A. Ghezelbash, M. B. Sigman, and B. A. Korgel, Nano. Lett. 4 (2004) 537.
    [9] N. Chen, W. Zhang, W. Yu, Y. Qian, Mater. Lett. 55 (2002) 230.
    [10] G. Shen, D. Chen, K. Tang, C. An, Q. Yang, Y. Qian, J. Solid. State. Chem. 173(2003) 227.
    [11] D. Chen, L. Gao, J. Crystal, Growth. 262 (2004) 554.
    [12] X. Liu, Mater. Sci. Eng. B 119 (2005) 19.
    [13] Y. Hu, J. Chen, W. Chen, X. Lin, X. Li, Adv. Mater. 15 (2003) 726.
    [14] M. Poliakoff, P. T. Anastas, Nature 413 (2001) 257.
    [15] J. M. Desimone, Science 297 (2002) 799.
    [16] R. A. Cross, B. Kalra, Science 279 (2002) 803.
    [17] W. Leitner, Science 284 (1999) 1780b.
    [18] A. Olivas, J. Cruz-Reyes, M. Avalos, V. Petranovskii, S. Fuentes, Mater. Lett. 38(1999)141.
    [19] B. Zhang, X. Ye, W. Dai, W. Hou, F. Zuo, Y. Xie, Nanotechnology 17 (2006) 385.
    [1] Y. Z. Long, Z. J. Chen, W. L. Wang, F. L. Bai, A. Z. Jin, C. Z. Gu, Appl. Phys. Lett. 86(2005)153102.
    
    [2] Y. C. Li, X. H. Li, C. H. Yang, Y. F. Li, J. Mater. Chem. 13 (2003) 2641
    
    [3] X. D. Gao, X. M. Li, W. D. Yu, J. Phys. Chem. B 109 (2005) 1155.
    
    [4] Y. Xie, H. L. Su, B. Li, et al. Mater. Res. Bull. 35 (2000) 675.
    
    [5] F. Zhang, Z. H. Yang, S. P. Yang, et al. Mater. Lett. 59 (2005) 1422.
    
    [6] H. A. Therese, J. X. Li, U. Kolb, et al. Solid. State. Sciences, 7 (2005) 67.
    
    [7] S. Gao, Y. Xie, J. Lu, et al. Inorg. Chem, 41 (2002) 1850.
    
    [8] H. Zhang, D. R. Yang, S. Z. Li, et al. Mater. Lett. 59 (2005) 1696.
    
    [9] Y. D. Li, H. W. Liao, Y. Ding, et al. Chem. Mater, 10 (1998) 2301.
    
    [10] B. Li, Y. Xie, J. X. Huang, et al. Adv. Mater. 11 (1999) 1456.
    
    [11] Y. Li, H. Liao, Y. Ding, et al. Inorg. Chem, 38 (1999) 1382.
    
    [12] M. H. Cao, C. W. Hu, E. B. Wang, J. Am. Chem. Soc. 125 (2003) 11196.
    
    [13] X. Wang, Y. D. Li, Chem. Eur. J, 9 (2003) 300.
    
    [14] X. Wang, Y. D. Li, Angew. Chem. Int. Ed, 41 (2002) 4790.
    
    [15] X. D. Gao, X. M. Li, W. D. Yu, J. Phys. Chem. B, 109 (2005) 1155.
    
    [16] D. Moore, C. Ronning, C. Ma, et al. Chem. Phys. Lett. 385 (2004) 8.
    
    [17] D. B. Wang, C. X. Song, Z. S. Hu, et al. J. Phys. Chem. B, 109 (2005) 1125.
    
    [18] X. D. Gao, X. M. Li, W. D. Yu, J. Phys. Chem. B, 109 (2005) 1155.
    
    [19] Z. P. Zhang, X. Q. Shao, H. D. Yu, Chem. Mater. 17 (2005) 332.
    
    [20] Q. Y. Lu, F. Gao, S. Komarneni, J. Am. Chem. Soc, 126 (2004) 54.
    
    [21] M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu, Z. L. Wang, Angew. Chem., Int. Ed. 44 (2005) 2.
    
    [22] X. W Zheng, L. Y. Zhu, X. J. Wang, et al. J. Crsystal. Growth, 260 (2004) 255.
    
    [23] F. Gao, Q. Y. Lu, S. H. Xie, et al. Adv. Mater, 14 (2002) 1537.
    
    [24] K. Lee, W. Losert, J. Crystal. Growth, 269 (2004) 592.
    
    [25] R. He, X. F. Qian, J. Yin, et al. Chem. Phys. Lett, 369 (2003) 454.
    
    [26] Z. R. R. Tian, J. Liu, J. A. Voigt, et al. Nano. Lett, 3 (2003) 89.
    [27] S. Gorai, D. Ganguli, S. Chaudhuri, Mater. Lett, 59 (2005) 826.
    
    [28] Y. Wang, G. Z. Wang, M. Y. Yau, et al. Chem. Phys. Lett, 407 (2005) 510.
    
    [29] G. Z. Shen, C. J. Lee, Cryst. Growth. Des, 5 (2005) 1085.
    
    [30] Y. Zhou, S. H. Yu, C. Y. Wang, et al. Adv. Mater, 11 (1999) 850.
    
    [31 ] S. H. Yu, M. Antonietti, H. Colfen, et al. Nano. Lett, 3 (2003) 379.
    
    [32] X. C. Ma, F. Xu, Y. K. Liu, et al. Mater. Res. Bull, 40 (2005) 2180.
    
    [33] M. Chen, Y. Xie. J. Lu, Y. J. Xiong, S. Y. Zhang, Y. T. Qian, X. M. Liu, J. Mater. Chem. 12 (2002) 748.
    
    [34] P. V. Kamat, M. N. Dimitrijevic, R. W. Fessenden, J. Phys. Chem. 91 (1987) 396.
    
    [35] G. Q. Xu, B. Liu, S. J. Xu, C. H. Chew, S. J. Chua, L. M. Gana, J Phys. Chem. Solid. 61 (2000) 829.
    
    [36] Y. Lei, W. K. Chim, H. P. Sun. G. Wilde, Appl. Phys. Lett. 86 (2005) 103106.
    
    [37] L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc. 109 (1987) 5649.
    
    [38] W. S. Chae, J. H. Ko, I. W. Hwang, Y. R. Kim, Chem. Phys. Lett. 365 (2002) 49.
    
    [39] T. Orii, S. Kaito, K. Matsuishi, S. Onari, T, Arai, J. Phys: Condens. Matter. 14 (2002)9743.
    
    [40] J. Zhang, L. Sun, C. Liao, C. Yan, Solid. State. Commun. 124 (2002) 45.
    [1] J. F. Gregg, W. D. Allen, N. Viart, et al. J. Magn. Magn. Mater, 175 (1997) 1.
    [2] H. Ohno, Science 281 (1998) 951.
    
    [3] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Kastsumoto, Y. lye, Appl. Phys. Lett. 69 (1996) 363.
    
    [4] I. Zutic, J. Fabian, S. D. Sarma, Rev. Mod. Phys. 76 (2004) 323.
    
    [5] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 101.
    
    [6] H. J. Lee, S. Y. Jeong, C. R. Cho, C. H. Park, Appl. Phys. Lett. 81 (2002) 4020.
    
    [7] N. Khare, M. J. Kappers, M. W.ei, M. G. Blamire, J. MacManus-Driscoll, Adv. Mater. 18(2006)1449.
    
    [8] O. D. Jayakumar, I. K. Gopalakrishnan, S. K. Kulshreshtha, Adv. Mater. 18 (2006) 1857.
    
    [9] C. Song, S. N. Pan, X. J. Liu, X. W. Li, F. Zheng, W. S. Yan, B. He, F. Pan, J. Phys: Condens. Matter 19 (2007) 176229.
    
    [10] T. Fukumara, Z, Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett. 78 (2001) 958.
    
    [11] Z. Jin, T. Fukumura, M. Kawasali, K. Ando, H. Saito, T. Sekiguchi, Y. Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 78 (2001) 3824.
    
    [12] A. S. Risbud, N. A. Spaldin, Z. Q. Chen, S. Stemmer, R. Seshardri, Phys. Rev. B 68(2003)205202.
    
    [13] M. Bouloudenine, S. Colis, N. Viart, J. Kortus, A. Dinia, Appl. Phys. Lett. 87 (2005)052501.
    
    [14] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15(2003)353.
    
    [15] Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, L. Li, C. P. Chen, R. M. Wang, J. Xu, D. P. Yu, App. Phys. Lett. 83 (2003) 4020.
    
    [16] H. L. Yan, X. L. Zhang, J. B. Wang, G. J. Huang, S. L. Ding, G. C. Zhou, Y. C. Zhou, Appl. Phys. Lett. 90 (2007) 082503.
    [17] H. J. Zhou, L. M. Chen, V. Malik, C. Knies, D. M. Hofmann, K. P. Bhatti, S. Chaudhary, P. J. Klar, W. Heimbrodt, C. Klingshirn, H. Kalt, Phys. Stat. Sol. (a) 204 (2007)112.
    
    [18] B. Q. Cao, W. P. Cai, G. T. Duan, Y. Li, Q. Zhao, D. P. Yu, nanotechnology 16 (2005) 2567.
    
    [19] X. F. Wang, J. B. Xu, B. Zhang, H. G. Yu, J. Wang, X. X. Zhang, J. G. Yu, Q. Li, Adv. Mater. 18 (2006) 2476.
    
    [20] S. Deka, P. A. Joy, Solid. State. Commun. 125 (2003) 231.
    
    [21] P. Koidl, Phys. Rev. B 15 (1977) 2493.
    
    [22] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett. 78 (2001) 407.
    
    [23] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Vogit, Appl. Phys. Lett. 68(1996)403.
    
    [24] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem. Int. Ed. 42 (2003) 3031.
    
    [25] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat. Mater. 4 (2005) 173.
    
    [26] S. Ramachandran, A. Tiwart J. Narayan, Appl. Phys. Lett. 84 (2004) 5255.
    
    [27] H. S. Hsu, J. C. A. Huanga, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, J. F. Lee, S. F. Chen, L. Y. Lai, C. P. Liu, Appl. Phys. Lett. 88 (2006) 242507.
    
    [28] X. X. Liu, F. T. Lin, L. L. Sun, W. L. Cheng, X. M. Ma, W. Z. Shi, Appl. Phys. Lett. 88 (2006) 062508.
    
    [29] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79 (2001) 988.
    
    [30] K. Nielsen, S. Bauer, M. Lübbe, et al. Phys. Status. Solidus. a, 203 (2006) 3581.
    [1] P. Avouris, Acc. Chem. Res. 35 (2002) 1026.
    
    [2] S. H. Sun, C. B. Murray, D. Weller, et al. Science, 287 (2000) 1989
    
    [3] Jr. T. A. Witten, L. M. Sander, Phys. Rev. Lett. 47 (1981) 351.
    
    [4] P. Meakin, Phys. Rev. Lett. 51 (1983) 1119.
    
    [5] P. D. Yang, T. Deng, D. Y. Zhao, et al. Science, 282 (1998) 2244.
    
    [6] D. Zitoun, M. Respaud, M. C. Fromen, et al. Phys. Rev. Lett. 89 (2002) 0372031.
    
    [7] X. G. Wen, S. H. Wang, Y. Ding, et al. J. Phys. Chem. B. 109 (2005) 215.
    
    [8] E. V. Shevchenko, D. V. Talapin, H. Schnablegger, et al. J. Am. Chem. Soc. 125 (2003) 9090.
    
    [9] L. Q. Xu, W. Q. Zhang, Y. W. Ding, et al. J. Phys. Chem. B. 108 (2004) 10859.
    [10] S. J. Park, S. Kim, S. Lee, et al. J. Am. Chem. Soc. 122 (2000) 8581.
    
    [11] V. F. Puntes, K. M. Krishan, A. P. Alivisator, Science, 291 (2001) 2115.
    
    [12] V. F. Punters, D. Zanchet, C. K. Erdonmez, et al. J. Am. Chem. Soc. 124 (2002) 12874.
    
    [13] F. Dumestre, B. Chaudret, C. Amiens, et al. Angew. Chem. Int. Ed. 42 (2003) 5213.
    
    [14] F. Dumestre, B. Chaudret, C. Amiens, et al. Angew. Chem. Int. Ed. 41 (2002) 4286.
    
    [15] N. Cordente, M. Respaud, F. Senocq, et al. Nano. Lett. 1 (2001) 565.
    
    [16] J. Park, B. Koo, Y. Hwang, et al. Angew. Chem. Int. Ed. 43 (2004) 2282.
    
    [17] E. V. Shevchenko, D. V. Talapin, A. L. Rogach, et al. 124 (202) 11480.
    
    [18] H. Deng, X. L. Li, Q. Peng, et al. Angew. Chem. Int. Ed. 44 (2005) 2.
    
    [19] L. Suber, P. Imperatori, G. Ausanio, et al. J. Phys. Chem. B. 109 (2005) 7103.
    
    [20] X. G. Wen, S. H. Wang, Y. Ding, et al. J. Phys. Chem. B. 109 (2005) 215.
    
    [21] Z. Li, Q. Sun, M. Y. Gao, Angew. Chem. Int. Ed. 44 (2005) 123.
    
    [22] X. Wang, L. Gao, H. Zheng, M. Ji, T. Shen, Z. Zhang, J. Crystal Growth 269 (2004) 489-492.
    
    [23] D. Larcher, C. Masquelier, D. Bonnium, Y. Chabre, V. Masson, J. B. Leriche, J. M. Tarascon, J. Electrochem. Soc. 150 (2003) A133-139.
    [24] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. -M. Tarascon, Nature 407 (2000)496-499.
    [25] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 295 (2002) 2425-2427.
    [26] S. Y. Zeng, K. B. Tang, T. W. Li, J. Colloid. Interf. Sci. 312 (2007) 513-521.
    [27] J. Chen, L. Xu, W. Y. Li, X. L. Gou, Adv. Mater. 17 (2005) 582-586.
    [28] Y. NuLi, P. Zhng, Z. P. Guo, P. Munroe, H. K. Liu, Elctrochim. Acta. 53 (2008)4213-4218.
    [29] 夏熙,高瑞芝,电池工业,1998,04,97.
    [30] D. W. Murphy, J. Broodhead, B. C. Stell, Materials for advanced batteries,Plenum Press, 1980.
    [31] T. Nagaura, K. Tozawak, Prog. Batts. Sol. Cells, 1990, 9, 209.
    [32] J. R. Dahn, U. V. Sacken, A. H. Juzkow, J. Electrochem. Soc., 1991, 138,2207.
    [33] 毕道治,电动车电池的开发现状及展望[J],电池工业,2002,2:56.
    [34] a) M. Wang, N. B. Ming, P. Bennema, et al. Nature, 367 (1994) 438; b) M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z. L. Wang, Angew. Chem. Int. Edn. 44 (2005) 4197.
    [35] T. C. Halsey, B. Duplantier, K. Honda, Phys. Rev. Lett. 78 (1999) 1719.
    [36] X. Y. Liu, M. Wang, D. W. Li, et al. 208 (2000) 687.
    [37] S. T. Selvan, Chem. Commun, 1998 351.
    [38] X. Q. Wang, K. Naka, H. Itoh, et al. Chem. Commun, 2002 1300.
    [39] J. P. Xiao, Y. Xie, R. Tang, et al. Adv. Mater. 13 (2001) 1887.
    [40] Y. Zhou, S. H. Yu, C. Y. Wang, et al. Adv. Mater. 11 (1999) 850.
    [41] M. Wang, S. Zhong, X. B. Yin, et al. Phys. Rev. Lett. 86 (2001) 3827.
    [42] M. Wang, X. Y. Liu, C. S. Strom, et al. Phys. Rev. Lett. 80 (1998) 3089.
    [43] J. Zhu, S. Liu, O. Palchik, et al. Langmuir, 16 (2000) 6396.
    [44] Z. G. R. Tian, J. Liu, J. A. Voigt, et al. Nano. Lett. 3 (2003) 89.
    [45] A. Parfenov, I. Gryczynski, J. Malicka, et al. J. Phys. Chem. B. 107 (2003) 8829.
    [46] Q. Peng, Y. J. Dong, Z. X. Deng, et al. inorg. Chem. 41 (2002) 5249.
    [47] Th. Schedel-Niedrig, W. Weiss, R. Schl(?)gl, Phys. Rev. B 52 (1995) 17449-17460.
    
    [48] N. S. McIntyre, D. G. Zetaruk, Anal. Chem. 49 (1977) 1521-1529.
    
    [49] W. Temesghen, P. M. A. Sherwood, Anal. Bioanal. Chem. 373 (2002) 601-608.
    
    [50] T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, K. Okada, Phys. Rev. B 59 (1999) 3195-3202.
    
    [51] R. Zboril, M. Mashlan, D. Petridis, Chem. Mater. 14 (2002) 969-982.
    
    [52] R. A. Borzi, S. J. Stewart, G. Punte, R. C. Mercader, M. V. Mansilla, R. D. Zysler, E. D. Cabanillas, J. Magn. Magn. Mater. 205 (1999) 234-240.
    
    [53] H. Q. Cao, G. Z. Wang, L. Zhang, Y. Liang, S. C. Zhang, X. R. Zhang, ChemPhysChem 7 (2006) 1897-1901.
    
    [54] X. M. Liu, S. Y. Fu, H. M. Xiao, C. J. Huang, J. Solid. State. Chem. 178 (2005) 2798-2803.
    
    [55] G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, W. Z. Li, J. Power. Sources. 75 (1998) 175-179.
    
    [56] P. Novak, B. Klapste, P. Podhajecky, J. Power. Sources. 15 (1985) 101-108.
    
    [57] H. Kitaura, K. Takahashi, F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, J. Electrochem. Soc. 154 (2007) A725-729.
    
    [58] D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, J. -M. Tarason, J. Electrochem. Soc. 150 (2003) A1643-A1650.
    
    [59] D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leiche, J. -M. Tarascon, J. Electrochem. Soc. 150 (2003) A133-A139.
    [1] Sun, S.; Murry, C. B.; Weller, D.; Folks, L.; Moster, A. Science 287 (2000) 1989.
    [2] Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y; Lieber, C. M. Science 293(2001)1455.
    [3] Yu, W. D.; Vivian, W. Y. J. Am. Chem. Soc. 126 (2004) 13200.
    [4] Wang, J.; Chen, Q. W; Zeng, C.; Hou, B. Y. Adv. Mater. 16 (2004) 137.
    [5] Xiao, Z. D.; Zhang, L. D.; Wang, Z. Y; Lu, Q. F.; Tian, X. K.; Zeng, H. B. Mater.Lett. 61 (2007) 1718.
    [6] Liu, Z. P.; Li, S.; Yang, Y.; Peng, S.; Hu, Z. K.; Qian, Y T. Adv. Mater. 15 (2003)1946.
    [7] Gao, X. D.; Li, X. M.; Yu, W. D. J. Phys. Chem. B 109 (2005) 1155.
    [8] Cao, M. H.; Liu, T. F.; Gao, S.; Sun, G. B.; Wu, X. L.; Hu, C. W; Wang, Z. L.Angew. Chem. Int. Ed. 44 (2005) 2.
    [9] Kuang, D. B.; Xu, A. W; Fang, Y P.; Liu, H. Q.; Frommen, C.; Fenske, D.; Adv.Mater. 15 (2003) 1747.
    [10] Pan, Q. T.; Huang, K.; Ni, S. B.; Wang, Q.; Yang, F.; He, D. Y. Mater. Lett. 61(2007) 4773.
    [11] Zheng, X. G.; Xu, C. N.; Tomokiyo, Y.; Tanaka, E.; Yamada, H.; Soejima, Y.;Phys. Rev. Lett. 85 (2000) 5170.
    [12] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. -M. Nature 407(2000) 496.
    [13] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 295 (2002) 2425.
    [14] Chen, D.; Shen, G. Z.; Tang, K. B.; Qian, Y T. J. Cryst. Growth. 254 (2003) 225.
    [15] Vaseem, M.; Umar, A.; Kim, S. H.; Al-Hajry, A.; Hahn, Y B.; Mater. Lett. 62(2008) 1659.
    [16] Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 126 (2004) 5124.
    [17] He, Y. J. Mater. Res. Bull. 42 (2007) 190.
    [18] Zhang, H.; Li, S. Z.; Ma, X. Y.; Yang, D. R.; Mater. Res. Bull. 43 (2008) 1291.
    [19] Zhang, M.; Xu, X. D.; Zhang, M. L. Mater. Lett. 62 (2008) 385.
    [20] Wang, W.; Liu, Z.; Liu, Y.; Xu, C.; Zeng, C.; Wang, G.. Appl. Phys. A. Mater. Sci.Process.76(2003)417.
    [21] Zhang, Y. C.; Tang, J. Y.; Wang, G. L.; Zhang, M.; Hu, X. Y. J. Crystal. Growth.294 (2006)278.
    [22] Novak, P.; Klapste, B.; Podhajecky, P. J. Power. Sources. 15 (1985) 101.
    [23] Larcher, D.; Masquecier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.;Tarascona, J. M. J. Electrochem. Soc. 150 (2003) A133.
    [24] Pan, Q. M.; Jin, H. Z.; Wang, H. B.; Yin, G. P.; Electrochim. Acta. 53 (2007) 951.
    [25] Curtis, C. J.; Wang, J.; Schulz, D. C. J. Electrochem. Soc. 151 (2004) A590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700