脑卒中后早期运动训练促进脑功能修复的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:运动训练是一种能有效促进脑卒中后神经功能恢复的康复训练方案。动物研究已经表明,在脑卒中后中后期开始介入的运动训练可以增加动物行为功能表现,而且不会加重脑损伤。最近的临床研究结果发现,在脑卒中后早期(48小时以内)介入积极地康复治疗方案也有利于患者功能恢复,然而这种早期康复的作用却缺乏有力的实验证据,涉及的分子机制也不清楚。因此,我们通过大鼠大脑中动脉栓塞模型模拟脑卒中,在模型建立后24小时介入强度逐步增加的运动康复训练,通过多种行为学和组织学、分子生物学方法,从神经炎性反应和脑血流的角度研究了脑卒中早期运动训练对脑功能修复的作用和分子机制。
     研究方法:采用SD大鼠,建立60分钟的脑缺血再灌注模型,在脑缺血后24小时介入强度逐步增加的跑台运动训练(从第一天5米/分钟到第三天的12米/分钟,并持续至实验结束),同时设置缺血对照组和假手术组。在术后第3-21天(每隔3天)分别采用神经功能缺失评分评价动物神经功能缺失症状,使用foot-fault的方法评估动物的运动协调能力,用adhesive remove的方法测试动物的感觉整合能力,利用beam balance法检测大鼠的平衡能力;术后第21-25天采用Morris水迷宫检测大鼠的空间学习和记忆能力。同时,我们还通过检测脑梗死体积、脑水肿和血脑屏障渗透性研究了早期运动训练对脑组织的保护作用,并分别采用实时定量PCR和免疫荧光的方法检测了脑缺血早期神经炎性因子的转录表达和对内源性炎性细胞的激活。最后我们还通过激光散斑脑血流成像技术评估运动训练对缺血皮层脑血流灌注量的影响。
     研究结果:
     (1)相比于缺血对照组,运动训练组的大鼠神经功能缺失症状得到明显缓解,运动协调能力也得到了更好的恢复,空间学习和记忆能力也得到了很大的提高,但是对于感觉能力和平衡能力的恢复没有显著的促进作用;
     (2)与改善行为学结果一致的是,运动训练组显著减少缺血大鼠的脑梗死体积、脑水含量和血脑屏障的破坏;
     (3)进一步研究发现,运动训练明显抑制了脑缺血早期的神经炎性因子(IL-1α, IL1-β, IL-6, iNOS, COX2, TNFα)和细胞粘附分子(ICAM-1.VCAM-1)的转录表达,抑制了脑内星形胶质细胞和小胶质细胞的过度激活;
     (4)与这些结果相一致的是,相比于缺血对照组的大鼠,脑缺血后连续14天的运动训练显著促进了缺血脑皮层的血流灌注量。
     结论:我们的结果为脑卒中早期运动训练的神经保护作用提供了有力的实验证据,这种神经保护作用的机制可能与缓解缺血早期神经炎性反应、减轻血脑屏障和脑水肿,以及促进缺血皮层脑血流灌注有关。其中涉及的具体的分子机制仍需要进一步的深入研究。
Background:Exercise is a clinically promising strategy for promoting neurological recovery in ischemic stroke patients. In animal studies, enforced delayed excises initiated after stroke appear to be able to enhance functional recovery without deteriorating ischemic brain lesions. However, recent clinical data suggest that early initiated exercise within48hour after stroke may offer beneficial effects in patients; whereas the evidence for a neuroprotective effect of early exercise in experimental stroke is scant and the underlying mechanism for early exercise-afforded neuroprotection is unknown. In the present study, we have investigated the effect of early exercise on brain damage, inflammation, the change of cerebral of brain blood flow in ischemia cortex, and neurobehavioral outcomes in a rat model of transient focal cerebral ischemia.
     Methods:Stroke was induced in adult male Sprague-Dawley rats by middle cerebral artery occlusion for60min, and the animals were then randomly assigned to early exercise or non-excise groups. Beginning at24hour after ischemia, exercise was induced by enforced treadmill training on a daily basis for a maximum of14days. The daily excises gradually reached the full amount (12meters/min for30min) at the3rd day. For outcome assessments, neurological scores and sensorimotor deficits (foot fault test and adhesive remove test) were determined at3-21days after ischemia, and the ability of feeling and balance were assessed by adhesive remove and beam balance at same time point, while spatial learning and memory were measured by Morris water maze at21-25days after ischemia. In additional rats, infarct volume, brain edema (wet and dry weight), and blood brain barrier integrity (Evans blue extravasations) were assessed at7th days after ischemia. The expression of pro-inflammatory cytokines (mRNAs) and cell adhesion proteins (ICAM and VCAM) was measured at3rd,5th and7th days after ischemia using real-time PCR, and the reactive astrocytes and microglia cells were determined by immunofluorescence staining. In order to detect the change of cerebral of brain blood flow in ischemia cortex after continued treadmill training of two weeks, the laser speckle flowmetry was used.
     Results:(1) Compared to non-excise stroke animals, animals received early exercise exhibited significantly improved neurological scores and performed significantly better in the foot fault tests (p<0.05vs. non-excise controls,), but not in the adhesive removal tests and beam balance tests. Animals under early exercise also showed significantly improved study and working memory in Morris water maze compared to non-excise animals (p<0.05).(2) In consistent with the early improvement of functional outcomes, animals under early exercise had significantly reduced infarct volume, brain water content, and blood brain barrier damage at7th days after ischemia compared to non-excise animals (p<0.05).(3) Moreover, the neuroprotection afforded by early exercise was associated with significantly reduced expression of proinflammatory cytokines (IL-lα, IL1-β, IL-6, iNOS, COX2, and TNFα) and cell adhesion molecules at3,5and7days after ischemia (p<0.05vs. non-excise controls), respectively.mean time, early exercise inhibited the activation of astrocytes and microglia cells at3and7days after ischemia.(4)Consisted with these, early exercise significantly improved the CBF in ischemic region compared with the non-exercise group.
     Conclusion:Our results provide novel evidence that early initiated exercise confers marked neuroprotection against focal ischemic brain injury in rats. This neuroprotection by early exercise is associated with the attenuation of pro-inflammatory reactions, brain edema, and blood brain barrier damage, and improved cerebral blood flow in the ischemia cortex after ischemia and reperfusion. Further work is required to elucidate the precise underlying mechanisms.
引文
[1]C. Wang, J. Li, X. Zhao et al. Stroke care development in Mainland China:past, present and future[J]. Int J Stroke,2008,3 (4):288-289
    [2]D. Lloyd-Jones, R. Adams, M. Carnethonet al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [J]. Circulation,2009,119 (3) 480-486
    [3]S. K. Saxena, T. P. Ng, G. Kohet al. Is improvement in impaired cognition and depressive symptoms in post-stroke patients associated with recovery in activities of daily living?[J]. Acta Neurol Scand,2007,115 (5):339-346
    [4]S. Zinn, H. B. Bosworth, H. M. Hoeniget al. Executive function deficits in acute stroke[J]. Arch Phys Med Rehabil,2007,88 (2):173-180
    [5]V. E. O'Collins, M. R. Macleod, G. A. Donnanet al.1,026 experimental treatments in acute stroke[J]. Ann Neurol,2006,59 (3):467-477
    [6]E. H. Lo, J. P. Broderick, M. A. Moskowitz. tPA and proteolysis in the neurovascular unit[J]. Stroke,2004,35 (2):354-356
    [7]M. I. Weintraub. Thrombolysis (tissue plasminogen activator) in stroke:a medicolegal quagmire[J]. Stroke,2006,37 (7):1917-1922
    [8]S. Fukuda, C. A. Fini, T. Mabuchiet al. Focal cerebral ischemia induces active proteases that degrade microvascular matrix[J]. Stroke,2004,35 (4):998-1004
    [9]J. Huang, U. M. Upadhyay, R. J. Tamargo. Inflammation in stroke and focal cerebral ischemia[J]. Surgical neurology,2006,66 (3):232-245
    [10]X. F. Jiang, S. Namura, I. Nagata. Matrix metalloproteinase inhibitor KB-R7785 attenuates brain damage resulting from permanent focal cerebral ischemia in mice[J]. Neuroscience letters,2001,305 (1):41-44
    [11]H. Beck, K. H. Plate. Angiogenesis after cerebral ischemia[J]. Acta Neuropathol,2009,117 (5):481-496
    [12]X. Guo, L. Liu, M. Zhanget al. Correlation of CD34+cells with tissue angiogenesis after traumatic brain injury in a rat model[J]. J Neurotrauma,2009,26 (8):1337-1344
    [13]Y. Sun, K. Jin, L. Xieet al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.[J]. J Clin Invest,2003,111 (12) 1843-1851
    [14]M. Slevin, P. Kumar, J. Gaffneyet al. Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential[J]. Clin Sci (Lond),2006,111 (3):171-183
    [15]J. Krupinski, P. Stroemer, M. Slevinet al. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia[J]. Neuroreport, 2003,14 (8):1171-1176
    [16]K. Arai, G. Jin, D. Navaratnaet al. Brain angiogenesis in developmental and pathological processes:neurovascular injury and angiogenic recovery after stroke[J]. FEBS J,2009,276 (17):4644-4652
    [17]Q. Jiang, Z. G. Zhang, G. L. Dinget al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI[J]. Neuroimage,2005,28 (3):698-707
    [18]J. Krupinski, J. Kaluza, P. Kumaret al. Role of angiogenesis in patients with cerebral ischemic stroke[J]. Stroke,1994,25 (9):1794-1798
    [19]L. Wei, J. P. Erinjeri, C. M. Rovainenet al. Collateral growth and angiogenesis around cortical stroke[J]. Stroke,2001,32 (9):2179-2184
    [20]T. Liu-Ambrose, J. J. Eng, L. A. Boydet al. Promotion of the mind through exercise (PROMoTE):a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment.[J]. BMC Neurol, 2010,10:14
    [21]M. D. Chen, J. H. Rimmer. Effects of exercise on quality of life in stroke survivors:a meta-analysis[J]. Stroke,2011,42 (3):832-837
    [22]Hung-Chih Chang, Yea-Ru Yang, Shyi-Gang P. Wanget al. Effects of treadmill training on motor performance and extracellular glutamate level in striatum in rats with or without transient middle cerebral artery occlusion[J]. Behavioural Brain Research,2009,299 (1):37-40
    [23]T. A. Jones, R. P. Allred, D. L. Adkinset al. Remodeling the brain with behavioral experience after stroke.[J]. Stroke,2009,40 (3 Suppl):S136-S138
    [24]M. Ploughman, V. Windle, C. L. MacLellanet al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats[J]. Stroke, 2009,40 (4):1490-1495
    [25]S. S. Vaynman, Z. Ying, D. Yinet al. Exercise differentially regulates synaptic proteins associated to the function of BDNF[J]. Brain Res,2006,1070 (1):124-130
    [26]C. X. Luo, J. Jiang, Q. G. Zhouet al. Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke[J]. J Neurosci Res,2007,85 (8):1637-1646
    [27]D. J. Green, A. Spence, J. R. Halliwillet al. Exercise and vascular adaptation in asymptomatic humans[J]. Exp Physiol,2011,96 (2):57-70
    [28]I. J. Rhyu, J. A. Bytheway, S. J. Kohleret al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys[J]. Neuroscience,2010,167 (4)-.1239-1248
    [29]K. Gertz, J. Priller, G. Kronenberget al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow[J]. Circ Res,2006,99 (10):1132-1140
    [30]Q. Zheng, D. Zhu, Y. Baiet al. Exercise improves recovery after ischemic brain injury by inducing the expression of angiopoietin-1 and Tie-2 in rats[J]. Tohoku J Exp Med,2011,224 (3):221-228
    [31]Y. R. Yang, R. Y. Wang, P. S. Wang. Early and late treadmill training after focal brain ischemia in rats[J]. Neurosci Lett,2003,339 (2):91-94
    [32]J. Bernhardt, H. Dewey, A. Thriftet al. A very early rehabilitation trial for stroke (AVERT):phase Ⅱ safety and feasibility [J]. Stroke,2008,39 (2):390-396
    [33]Bernhardt J. Very early mobilization following acute stroke:Controversies, the unknowns, and away forward[M],2008:88-98
    [34]E. Z. Longa, P. R. Weinstein, S. Carlson and R.Cummins:Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20:84-91
    [35]郑庆平,胡永善,白玉龙,孙莉敏,朱大年,崔晓,贾杰,局灶性脑缺血大鼠康复训练干预时间的研究[J].复旦学报(医学版),2007,34(6):895-898
    [36]徐丽丽,白玉龙,胡永善,吴毅,崔晓,朱大年.运动训练改善脑缺血大鼠脑梗死体积与神经行为能力的实验研究[J].中国康复医学杂志,2008,23(2):100-102.
    [37]D. C. Rogers, C. A. Campbell, J. L. Strettonet al. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat[J]. Stroke,1997,28 (10):2060-2065,2066
    [38]G. A. Metz, I. Q, Whishaw. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test:a new task to evaluate fore-and hindlimb stepping, placing, and co-ordination[J]. J Neurosci Methods,2002,115 (2):169-179
    [39]C. V. Vorhees, M. T. Williams. Morris water maze:procedures for assessing spatial and related forms of learning and memory[J]. Nat Protoc,2006,1(2):848-858
    [40]M. E. Sughrue, J. Mocco, R. J. Komotaret al. An improved test of neurological dysfunction following transient focal cerebral ischemia in rats[J]. J Neurosci Methods, 2006,151 (2):83-89
    [41]G. L. Clifton, J. Y. Jiang, B. G. Lyethet al. Marked protection by moderate hypothermia after experimental traumatic brain injury [J]. J Cereb Blood Flow Metab, 1991,11 (1):114-121
    [42]R. Bonner, R. Nossal. Model for laser Doppler measurements of blood flow in tissue[J]. Appl Opt,1981,20 (12):2097-2107
    [43]A. K. Dunn, H. Bolay, M. A. Moskowitzet al. Dynamic imaging of cerebral blood flow using laser speckle[J]. J Cereb Blood Flow Metab,2001,21 (3):195-201
    [44]T. N. Lin, Y. Y. He, G. Wuet al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats[J]. Stroke,1993,24 (1):117-121
    [45]C. H. Chen, T. J. Toung, A. Sapirsteinet al. Effect of duration of osmotherapy on blood-brain barrier disruption and regional cerebral edema after experimental stroke[J]. J Cereb Blood Flow Metab,2006,26 (7):951-958
    [46]Y. Liu, F. S. Silverstein, R. Skoffet al. Hypoxic-ischemic oligodendroglial injury in neonatal rat brain[J]. Pediatr Res,2002,51 (1):25-33
    [47]Qi Zhang Hongjian Pu Pengyue Zhang. Very early-initiated physical rehabilitation protects against ischemic brain injury[M].2012,(in press)
    [48]X. Hu, H. Zheng, T. Yanet al. Physical exercise induces expression of CD31 and facilitates neural function recovery in rats with focal cerebral infarction [J]. Neurol Res,2010,32 (4):397-402
    [49]D. Tanne, R. Tsabari, O. Chechiket al. Improved exercise capacity in patients after minor ischemic stroke undergoing a supervised exercise training program[J]. Isr Med Assoc J,2008,10 (2):113-116
    [50]A. M. Auriat, F. Colbourne. Delayed rehabilitation lessens brain injury and improves recovery after intracerebral hemorrhage in rats.[J]. Brain Res,2009,1251: 262-268
    [51]J. Bernhardt. Very early mobilization following acute stroke:Controversies, the unknowns, and a way forward[J]. Annals of Indian Academy of Neurology,2008,11 (5):88-98
    [52]M. Arias, L. N. Smith. Early mobilization of acute stroke patients[J]. J Clin Nurs,2007,16 (2):282-288
    [53]J. Bernhardt, M. N. Thuy, J. M. Collieret al. Very Early Versus Delayed Mobilization After Stroke[J]. Stroke,2009
    [54]E. Dietrichs, Brain plasticity after stroke--implications for post-stroke rehabilitation[J]. Tidsskr Nor Laegeforen,2007,127 (9):1228-1231
    [55]S. Vaynman, Z. Ying, F. Gomez-Pinilla. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J]. Eur J Neurosci,2004,20 (10):2580-2590
    [56]S. U. Lee, D. Y, Kim, S. H. Parket al. Mild to moderate early exercise promotes recovery from cerebral ischemia in rats[J]. Can J Neurol Sci,2009,36 (4):443-449
    [57]C. J. Brown, R. J. Friedkin, S. K. Inouye. Prevalence and outcomes of low mobility in hospitalized older patients[J]. J Am Geriatr Soc,2004,52 (8):1263-1270
    [58]C. Allen, P. Glasziou, Mar C. Del. Bed rest:a potentially harmful treatment needing more careful evaluation[J]. Lancet,1999,354 (9186):1229-1233
    [59]D. A. Dawson, J. M. Hallenbeck, Acute focal ischemia-induced alterations in MAP2 immunostaining:description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury[J]. J Cereb Blood Flow Metab,1996, 16 (1):170-174
    [60]A. G. Ceulemans, T. Zgavc, R. Kooijmanet al. The dual role of the neuroinflammatory response after ischemic stroke:modulatory effects of hypothermia[J]. J Neuroinfiammation,2010,7:74
    [61]A. Rosell, A. Ortega-Aznar, J. Alvarez-Sabinet al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke [J]. Stroke, 2006,37 (6):1399-1406
    [62]S. Hamacher, S. Matern, E. Roeb. [Extracellular matrix--from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases][J]. Dtsch Med Wochenschr,2004,129 (38):1976-1980
    [63]G. A. Rosenberg, E. Y. Estrada, J. E. Dencoff. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke,1998,29 (10):2189-2195
    [64]K. Kitagawa, M. Matsumoto, T. Mabuchiet al. Deficiency of intercellular adhesion molecule 1 attenuates microcirculatory disturbance and infarction size in focal cerebral ischemia[J]. J Cereb Blood Flow Metab,1998,18 (12):1336-1345
    [65]T. Pfefferkorn, G. A. Rosenberg. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion[J]. Stroke,2003,34 (8):2025-2030
    [66]T. Kondo, A. G. Reaume, T. T. Huanget al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia[J]. J Neurosci,1997,17 (11):4180-4189
    [67]Y. Gasche, M. Fujimura, Y. Morita-Fujimuraet al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice:a possible role in blood-brain barrier dysfunction[J]. J Cereb Blood Flow Metab,1999,19 (9) 1020-1028
    [68]T. Takano, N. Oberheim, M. L. Cotrinaet al. Astrocytes and ischemic injury[J]. Stroke,2009,40 (3 Suppl):S8-S12
    [69]G. Vangeison, D. A. Rempe. The Janus-faced effects of hypoxia on astrocyte function[J]. Neuroscientist,2009,15 (6):579-588
    [70]I. Aksu, A. Topcu, U. M. Camsariet al. Effect of acute and chronic exercise on oxidant-antioxidant equilibrium in rat hippocampus, prefrontal cortex and striatum[J]. Neurosci Lett,2009,452 (3):281-285
    [71]P. E. Batchelor, M, J. Porritt, P. Martinelloet al. Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting Toward but Not beyond the Wound Edge[J]. Mol Cell Neurosci,2002,21 (3):436-453
    [72]K. Nakajima, Y. Tohyama, S. Kohsakaet al. Ability of rat microglia to uptake extracellular glutamate[J]. Neurosci Lett,2001,307 (3):171-174
    [73]T. M. Tikka, J. E. Koistinaho. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia[J]. J Immunol,2001,166 (12):7527-7533
    [74]F. C. Barone, G. Z. Feuerstein. Inflammatory mediators and stroke:new opportunities for novel therapeutics [J]. J Cereb Blood Flow Metab,1999,19 (8) 819-834
    [75]Q. Wang, X. N. Tang, M. A. Yenari. The inflammatory response in stroke[J]. J Neuroimmunol,2007,184 (1-2):53-68
    [76]S. M. Lucas, N. J. Rothwell, R. M. Gibson. The role of inflammation in CNS injury and disease.[J]. Br J Pharmacol,2006,147 Suppl 1:S232-S240
    [77]J. Correale, A. Villa. The neuroprotective role of inflammation in nervous system injuries[J]. JNeurol,2004,251 (11):1304-1316
    [78]M. Minami, T. Katayama, M. Satoh. Brain cytokines and chemokines:roles in ischemic injury and pain[J]. J Pharmacol Sci,2006,100 (5):461-470
    [79]H. Offner, S. Subramanian, S. M. Parkeret al. Experimental stroke induces massive, rapid activation of the peripheral immune system[J]. J Cereb Blood Flow Metab,2006,26 (5):654-665
    [80]C. Iadecola, F. Zhang, R. Caseyet al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene[J]. J Neurosci,1997,17 (23):9157-9164
    [81]B. Fogal, J. A. Hewett, S. J. Hewett. Interleukin-lbeta potentiates neuronal injury in a variety of injury models involving energy deprivation[J]. J Neuroimmunol, 2005,161 (1-2):93-100
    [82]M. Guo, B. Cox, S, Mahaleet al. Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke[J]. Neuroscience,2008,151 (2):340-351
    [83]Y. H. Ding, C. N. Young, X. Luanet al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion[J]. Acta Neuropathol,2005, 109 (3):237-246
    [84]S. G. Soriano, S. A. Lipton, Y. F. Wanget al. Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury[J]. Ann Neurol,1996,39 (5):618-624
    [85]J. Montaner, A. Rovira, C. A. Molinaet al. Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke[J]. J Cereb Blood Flow Metab,2003,23 (12):1403-1407
    [86]M. Ploughman, S. Granter-Button, G. Chernenkoet al. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia[J]. Brain Res,2007,1150:207-216
    [87]K. Hayes, S. Sprague, M. Guoet al. Forced, not voluntary, exercise effectively induces neuroprotection in stroke[J]. Acta Neuropathol,2008,115 (3):289-296
    [88]F. Cechetti, A. Rhod, F. Simaoet al. Effect of treadmill exercise on cell damage in rat hippocampal slices submitted to oxygen and glucose deprivation[J]. Brain Res, 2007,1157:121-125
    [89]D. Scopel, C. Fochesatto, H. Cimarostiet al. Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation[J]. Brain Res Bull,2006,71 (1-3):155-159
    [90]M. D. Ginsberg. The new language of cerebral ischemia[J]. AJNR Am J Neuroradiol,1997,18 (8):1435-1445
    [91]J. H. Garcia, J. V. Cox, W. R. Hudgins. Ultrastructure of the microvasculature in experimental cerebral infarction [J]. Acta Neuropathol,1971,18 (4):273-285
    [92]Z. G. Zhang, L. Zhang, W. Tsanget al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2002,22 (4):379-392
    [93]R. Morgan, C. W. Kreipke, G. Robertset al. Neovascularization following traumatic brain injury:possible evidence for both angiogenesis and vasculogenesis[J]. Neurol Res,2007,29 (4):375-381
    [94]H. Teng, Z. G. Zhang, L. Wanget al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke[J]. J Cereb Blood Flow Metab,2008,28 (4):764-771
    [95]J. Imitola, K. Raddassi, K. I. Parket al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor lalpha/CXC chemokine receptor 4 pathway [J]. Proc Natl Acad Sci U S A,2004,101 (52):18117-18122
    [96]A. M. Robin, Z. G. Zhang, L. Wanget al. Stromal cell-derived factor 1 alpha mediates neural progenitor cell motility after focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2006,26 (1):125-134
    [97]P. Thored, A. Arvidsson, E. Cacciet al. Persistent production of neurons from adult brain stem cells during recovery after stroke[J]. Stem Cells,2006,24 (3) 739-747
    [98]T. Yamashita, M. Ninomiya, Acosta P. Hernandezet al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum[J]. J Neurosci,2006,26 (24):6627-6636
    [99]M. H. Laughlin, B. Roseguini. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity:differences with interval sprint training versus aerobic endurance training[J]. J Physiol Pharmacol,2008,59 Suppl 7: 71-88
    [100]J. A. Timmons, E. Jansson, H. Fischeret al. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans[J]. BMC Biol,2005,3:19
    [101]X. W. Cheng, M. Kuzuya, W. Kimet al. Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 alpha reactivation in mice of advanced age[J]. Circulation, 2010,122 (7):707-716
    [102]S. Davis, T. H. Aldrich, P. F. Joneset al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning[J]. Cell,1996,87 (7) 1161-1169
    [103]S. Patan. Vasculogenesis and angiogenesis[J]. Cancer Treat Res,2004,117: 3-32
    [104]T. N. Lin, C. K. Wang, W. M. Cheunget al. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion[J]. J Cereb Blood Flow Metab,2000,20 (2):387-395
    [105]S. D. Croll, S. J. Wiegand. Vascular growth factors in cerebral ischemia[J]. Mol Neurobiol,2001,23 (2-3):121-135
    [106]A. J. Strong, E. L. Bezzina, P. J. Andersonet al. Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies:quantitation of perfusion and detection of peri-infarct depolarisations[J]. J Cereb Blood Flow Metab,2006,26 (5):645-653
    [107]A. C. Pereira, D. E. Huddleston, A. M. Brickmanet al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus[J]. Proc Natl Acad Sci U S A, 2007,104 (13):5638-5643
    [1]C. Wang, J. Li, X. Zhaoet al. Stroke care development in Mainland China:past, present and future[J]. Int J Stroke,2008,3(4):288-289
    [2]Donald Lloyd-Jones. Heart Disease and Stroke Statistics_2009 Update:A Report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee[M],2009:e21-e181
    [3]D. J. Gladstone, S. E. Black, A. M. Hakim. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions [J]. Stroke, 2002,33 (8):2123-2136
    [4]Bogousslavsky J. Brott T. Treatment of acute ischemic stroke[M],2000: 710-722
    [5]C. A. Molina, J. L. Saver. Extending reperfusion therapy for acute ischemic stroke:emerging pharmacological, mechanical, and imaging strategies[J]. Stroke, 2005,36 (10):2311-2320
    [6]Z. Radak, T. Kaneko, S. Taharaet al. Regular exercise improves cognitive function and decreases oxidative damage in rat brain.[J]. Neurochem Int,2001,38(1): 17-23
    [7]A. M. Auriat, F. Colbourne. Delayed rehabilitation lessens brain injury and improves recovery after intracerebral hemorrhage in rats.[J]. Brain Res,2009,1251: 262-268
    [8]S. L. Budd. Mechanisms of neuronal damage in brain hypoxia/ischemia:focus on the role of mitochondrial calcium accumulation[J]. Pharmacol Ther,1998,80 (2): 203-229
    [9]R. G. Swanson R. Giffard. Ischemia-induced programmed cell death in astrocytes[M],2005:299-306
    [10]W. C. Risher, D. Ard, J. Yuanet al. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra[J]. J Neurosci,2010,30 (29):9859-9868
    [11]Hossmann Konstantin-Alexander. Pathophysiology and Therapy of Experimental Stroke[M],2006:1057-1083
    [12]K. Szydlowska, B. Kaminska, A. Baudeet al. Neuroprotective activity of selective mGlul and mGlu5 antagonists in vitro and in vivo[J]. Eur J Pharmacol,2007, 554 (1):18-29
    [13]M. Chen, T. J. Lu, X. J. Chenet al. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance[J]. Stroke,2008,39 (11):3042-3048
    [14]R. Brouns, P. P. De Deyn. The complexity of neurobiological processes in acute ischemic stroke[J]. Clin Neurol Neurosurg,2009,111 (6):483-495
    [15]S. D. Chen, D. I. Yang, T. K. Linet al. Roles of Oxidative Stress, Apoptosis, PGC-1 alpha and Mitochondrial Biogenesis in Cerebral Ischemia[J]. Int J Mol Sci, 2011,12 (10):7199-7215
    [16]. Marsala M, Vanicky I, Tokumine J, Kakinohana O, Marsala J. Blood-brain barrier changes in global and focal cerebral ischemia[M]. In:Sharma HS, Westman J, editors. Blood-spinal cord and brain barriers in health and disease. San Diego, California:Elsevier; 2004. p.385-94.
    [17]G. Y. Yang, C. Gong, Z. Qinet al. Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice[J]. Brain Res Mol Brain Res,1999,69 (1):135-143
    [18]P. H. Chan. Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke[J]. Ann N Y Acad Sci,2005,1042:203-209
    [19]A. Tuttolomondo. Citokines and inflammation markers in ischemic stroke[J]. Curr Pharm Des,2008,14 (33):3547-3548
    [20]C. L. Gibson, T. C. Coughlan, S. P. Murphy. Glial nitric oxide and ischemia[J]. Glia,2005,50 (4):417-426
    [21]S. W. Barger, M. E. Goodwin, M. M. Porteret al. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation[J]. J Neurochem,2007,101 (5):1205-1213
    [22]S. T. Dheen, C. Kaur, E. A. Ling. Microglial activation and its implications in the brain diseases[J]. Curr Med Chem,2007,14 (11):1189-1197
    [23]B. Fogal, J. A. Hewett, S. J. Hewett. Interleukin-lbeta potentiates neuronal injury in a variety of injury models involving energy deprivation [J]. J Neuroimmunol, 2005,161 (1-2):93-100
    [24]C. Iadecola, F. Zhang, R. Caseyet al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene[J]. J Neurosci,1997,17 (23):9157-9164
    [25]K. A. Hewlett, D. Corbett. Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia[J]. Neuroscience,2006,141 (1):27-33
    [26]Xiuxin Liu, Anna J. Bolteus, Daniel M. Balkinet al. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes[J]. Glia,2006,54 (5):394-410
    [27]G. A. Rosenberg, E. Y. Estrada, J. E. Dencoff. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain[J]. Stroke,1998,29 (10):2189-2195
    [28]K. Niizuma, H. Endo, P. H. Chan. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival[J]. J Neurochem, 2009,109 Suppl 1:133-138
    [29]A. G. Yakovlev, A. I. Faden. Mechanisms of neural cell death:implications for development of neuroprotective treatment strategies[J]. NeuroRx,2004,1 (1):5-16
    [30]J. Ma, M. Endres, M. A. Moskowitz. Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice[J]. Br J Pharmacol,1998,124 (4):756-762
    [31]H. Zhao, M. A. Yenari, D. Chenget al. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity[J]. J Neurochem,2003,85 (4) 1026-1036
    [32]A. Saito, C. M. Maier, P. Narasimhanet al. Oxidative stress and neuronal death/survival signaling in cerebral ischemia[J]. Mol Neurobiol,2005,31 (1-3) 105-116
    [33]Clark RS Henshall DC Liou AK. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy, a review on the stress-activated signaling pathways and apoptotic pathways [M],2003:103-142
    [34]C. Costa, G. Leone, E. Saulleet al. Coactivation of GABA(A) and GABA(B) receptor results in neuroprotection during in vitro ischemia[J]. Stroke,2004,35 (2) 596-600
    [35]X. H. Xu, X. X. Zheng, Q. Zhouet al. Inhibition of excitatory amino acid efflux contributes to protective effects of puerarin against cerebral ischemia in rats[J]. Biomed Environ Sci,2007,20 (4):336-342
    [36]J. Jia, Y. S. Hu, Y. Wuet al. Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia[J]. Life Sci,2009,84 (15-16):505-511
    [37]F. Zhang, J. Jia, Y. Wuet al. The effect of treadmill training pre-exercise on glutamate receptor expression in rats after cerebral ischemia[J]. Int J Mol Sci,2010, 11 (7):2658-2669
    [38]J. Lehotsky, J. Burda, V. Danielisovaet al. Ischemic tolerance:the mechanisms of neuroprotective strategy [J]. Anat Rec (Hoboken),2009,292 (12):2002-2012
    [39]M. B. Tropak, H. Shi, J. Liet al. Potent neuroprotection induced by remote preconditioning in a rat model of neonatal cerebral hypoxic-ischemic injury[J]. J Thorac Cardiovasc Surg,2011,142 (1):233-235
    [40]Y. H. Ding, C. N. Young, X. Luanet al. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion[J]. Acta Neuropathol,2005, 109 (3):237-246
    [41]Y. H. Ding, M. Mrizek, Q. Laiet al. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation:an in vivo and in vitro study[J]. Curr Neurovasc Res,2006,3(4):263-271
    [42]A. Curry, M. Guo, R. Patelet al. Exercise pre-conditioning reduces brain inflammation in stroke via tumor necrosis factor-alpha, extracellular signal-regulated kinase 1/2 and matrix metalloproteinase-9 activity[J]. Neurol Res,2010,32 (7) 756-762
    [43]F. Zhang, Y. Wu, J. Jiaet al. Pre-ischemic treadmill training induces tolerance to brain ischemia:involvement of glutamate and ERK1/2[J]. Molecules,2010,15 (8) 5246-5257
    [44]Pengyue Zhang, Qi Zhang Hongjian Pu. Very early-initiated physical rehabilitation protects against ischemic brain injury [J].frontiers in bioscience.2012, E4:2476-2489.
    [45]R. J. Nudo, B. M. Wise, F. SiFuenteset al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct [J]. Science,1996,272 (5269):1791-1794
    [46]S. Barbay, E. J. Plautz, K. M. Frielet al. Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys [J]. Exp Brain Res,2006,169 (1):106-116
    [47]M. A. Castro-Alamancos, J. Borrel. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex[J]. Neuroscience,1995,68 (3):793-805
    [48]J. M. Conner, A. A. Chiba, M. H. Tuszynski. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury[J]. Neuron,2005,46 (2):173-179
    [49]D. Ramanathan, J. M. Conner, M. H. Tuszynski. A form of motor cortical plasticity that correlates with recovery of function after brain injury[J]. Proc Natl Acad Sci U S A,2006,103 (30):11370-11375
    [50]D. L. Adkins, J. Boychuk, M. S. Rempleet al. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord[J]. J Appl Physiol,2006,101 (6):1776-1782
    [51]R. LEVI-MONTALCINI, V. HAMBURGER. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo[J]. J Exp Zool,1951,116 (2):321-361
    [52]F. Hallbook, C. F. Ibanez, H. Persson. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary [J]. Neuron,1991,6 (5):845-858
    [53]M. M. Ramsey, M. M. Adams,0. J. Ariwodolaet al. Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus [J]. J Neurophysiol,2005,94 (1):247-254
    [54]S. T. Carmichael. Cellular and molecular mechanisms of neural repair after stroke:making waves[J]. Ann Neurol,2006,59 (5):735-742
    [55]S. Vaynman, Z. Ying, F. Gomez-Pinilla. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J]. Eur J Neurosci,2004,20 (10):2580-2590
    [56]Q. Zhang, G. Liu, Y. Wuet al. BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway[J]. Molecules,2011,16 (12):10146-10156
    [57]F. Gomez-Pinilla, S. Vaynman, Z. Ying. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition[J]. Eur J Neurosci,2008,28 (11):2278-2287
    [58]M. J. Chen, A. A. Russo-Neustadt. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent[J]. Hippocampus,2009,19 (10):962-972
    [59]P. E. Hughes, T. Alexi, M. Waltonet al. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosis-related genes within the central nervous system[J]. Prog Neurobiol,1999,57 (4):421-450
    [60]M. Ploughman, V. Windle, C. L. MacLellanet al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats[J]. Stroke, 2009,40 (4):1490-1495
    [61]P. Greengard, F. Valtorta, A. J. Czerniket al. Synaptic vesicle phosphoproteins and regulation of synaptic function[J]. Science,1993,259 (5096):780-785
    [62]H. Jiang, S. L. Tian, Y. Zenget al. TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation[J]. Brain Res Bull,2008,76 (1-2):124-130
    [63]I. K. Hwang, K. Y. Lee, K. Y. Yooet al. Tyrosine kinase A but not phosphacan/protein tyrosine phosphatase-zeta/beta immunoreactivity and protein level changes in neurons and astrocytes in the gerbil hippocampus proper after transient forebrain ischemia[J]. Brain Res,2005,1036 (1-2):35-41
    [64]J. Y. Chung, M. W. Kim, M. S. Banget al. The effect of exercise on trkA in the contralateral hemisphere of the ischemic rat brain[J]. Brain Res,2010,1353:187-193
    [65]E. Carro, A. Nunez, S. Busiguinaet al. Circulating insulin-like growth factor I mediates effects of exercise on the brain[J]. J Neurosci,2000,20 (8):2926-2933
    [66]F. C. Barone, G. Z. Feuerstein. Inflammatory mediators and stroke:new opportunities for novel therapeutics [J]. J Cereb Blood Flow Metab,1999,19 (8) 819-834
    [67]Q. Wang, X. N. Tang, M. A. Yenari. The inflammatory response in stroke[J]. J Neuroimmunol,2007,184 (1-2):53-68
    [68]S. M. Lucas, N. J. Rothwell, R. M. Gibson. The role of inflammation in CNS injury and disease[J]. Br J Pharmacol,2006,147 Suppl 1:S232-S240
    [69]J. Correale, A. Villa. The neuroprotective role of inflammation in nervous system injuries [J]. J Neurol,2004,251 (11):1304-1316
    [70]C. Szabo, B. Zingarelli, M. O'Connoret al. DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite[J]. Proc Natl Acad Sci U S A,1996,93 (5):1753-1758
    [71]M. Minami, T. Katayama, M. Satoh. Brain cytokines and chemokines:roles in ischemic injury and pain[J]. J Pharmacol Sci,2006,100 (5):461-470
    [72]H. Offner, S. Subramanian, S. M. Parkeret al. Experimental stroke induces massive, rapid activation of the peripheral immune system[J]. J Cereb Blood Flow Metab,2006,26 (5):654-665
    [73]T. Takano, N. Oberheim, M. L. Cotrinaet al. Astrocytes and ischemic injury[J]. Stroke,2009,40 (3 Suppl):S8-S12
    [74]A. Cheng, Y. Hou, M. P. Mattson. Mitochondria and neuroplasticity[J]. ASN Neuro,2010,2 (5):e45
    [75]J. Vina, M. C. Gomez-Cabrera, C. Borraset al. Mitochondrial biogenesis in exercise and in ageing[J]. Adv Drug Deliv Rev,2009,61 (14):1369-1374
    [76]J. Vina, M. C. Gomez-Cabrera, C. Borraset al. Mitochondrial biogenesis in exercise and in ageing[J]. Adv Drug Deliv Rev,2009,61 (14):1369-1374
    [77]Q. Zhang, Y. Wu, P. Zhanget al. Exercise induces mitochondrial biogenesis after brain ischemia in rats[J]. Neuroscience,2012
    [78]Yi Wu Hongying Sha Qi Zhang. Early exercise affects mitochondrial transcription factors after cerebral ischemia in rats[M],2012:1670-1679
    [79]S. Nakagawa, J. E. Kim, R. Leeet al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein[J]. J Neurosci,2002,22 (9):3673-3682
    [80]S. Nakagawa, J. E. Kim, R. Leeet al. Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus [J]. J Neurosci,2002,22 (22):9868-9876
    [81]Y. Yagita, K. Kitagawa, T. Ohtsukiet al. Neurogenesis by progenitor cells in the ischemic adult rat hippocampus [J]. Stroke,2001,32 (8):1890-1896
    [82]D. Y. Zhu, S. H. Liu, H. S. Sunet al. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus[J]. J Neurosci,2003,23 (1):223-229
    [83]K. Takasawa, K. Kitagawa, Y. Yagitaet al. Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats[J]. J Cereb Blood Flow Metab,2002, 22 (3)-.299-307
    [84]Y. Sun, K. Jin, L. Xieet al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia[J]. J Clin Invest,2003,111 (12) 1843-1851
    [85]D. G. Blackmore, M. G. Golmohammadi, B. Largeet al. Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice[J]. Stem Cells,2009,27 (8):2044-2052
    [86]T. S. Kannangara, M. J. Lucero, J. Gil-Mohapelet al. Running reduces stress and enhances cell genesis in aged mice[J]. Neurobiol Aging,2011,32 (12) 2279-2286
    [87]T. S. Kannangara, A. Webber, J. Gil-Mohapelet al. Stress differentially regulates the effects of voluntary exercise on cell proliferation in the dentate gyrus of mice[J]. Hippocampus,2009,19 (10):889-897
    [88]D. J. Creer, C. Romberg, L. M. Saksidaet al. Running enhances spatial pattern separation in mice[J]. Proc Natl Acad Sci U S A,2010,107 (5):2367-2372
    [89]C. X. Luo, J. Jiang, Q. G. Zhouet al. Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke [J]. J Neurosci Res,2007,85 (8):1637-1646
    [90]M. D. Brandt, A. Maass, G. Kempermannet al. Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis[J]. Eur J Neurosci,2010,32 (8):1256-1264
    [91]J. Krupinski, P. Stroemer, M. Slevinet al. Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia[J]. Neuroreport, 2003,14 (8):1171-1176
    [92]Q. Jiang, Z. G. Zhang, G. L. Dinget al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI[J]. Neuroimage,2005,28 (3):698-707
    [93]K. Arai, G. Jin, D. Navaratnaet al. Brain angiogenesis in developmental and pathological processes:neurovascular injury and angiogenic recovery after stroke[J]. FEBS J,2009,276 (17):4644-4652
    [94]J. Favier, P. Corvol. Physiological angiogenesis[J]. Therapie,2001,56 (5) 455-463
    [95]T. Hayashi, K. Deguchi, S. Nagotaniet al. Cerebral ischemia and angiogenesis[J]. Curr Neurovasc Res,2006,3 (2):119-129
    [96]J. Krupinski, J. Kaluza, P. Kumaret al. Role of angiogenesis in patients with cerebral ischemic stroke[J], Stroke,1994,25 (9):1794-1798
    [97]L. Wei, J. P. Erinjeri, C. M, Rovainenet al. Collateral growth and angiogenesis around cortical stroke[J]. Stroke,2001,32 (9):2179-2184
    [98]M. H. Laughlin, B. Roseguini. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity:differences with interval sprint training versus aerobic endurance training[J]. J Physiol Pharmacol,2008,59 Suppl 7: 71-88
    [99]T. P. Gavin, J. L. Drew, C. J. Kubiket al. Acute resistance exercise increases skeletal muscle angiogenic growth factor expression[J]. Acta Physiol (Oxf),2007, 191 (2):139-146
    [100]J. A. Timrnons, E. Jansson, H. Fischeret al. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans[J]. BMC Biol,2005,3:19
    [101]D. J. Green, A. Spence, J. R. Halliwillet al. Exercise and vascular adaptation in asymptomatic humans[J], Exp Physiol,2011,96 (2):57-70
    [102]E. Bullitt, F. N. Rahman, J. K. Smithet al. The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography[J]. AJNR Am J Neuroradiol,2009,30 (10):1857-1863
    [103]I. J. Rhyu, J. A. Bytheway, S. J. Kohleret al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys [J]. Neuroscience,2010,167 (4):1239-1248
    [104]X. W. Cheng, M. Kuzuya, W. Kimet al. Exercise Training Stimulates Ischemia-Induced Neovascularization via Phosphatidylinositol 3-Kinase/Akt-Dependent Hypoxia-Induced Factor-1 a Reactivation in Mice of Advanced Age[J]. Circulation,2010,122 (7):707-716
    [105]K. Gertz, J. Priller, G. Kronenberget al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow[J]. Circ Res,2006,99 (10):1132-1140
    [106]Q. Zheng, D. Zhu, Y. Baiet al. Exercise improves recovery after ischemic brain injury by inducing the expression of angiopoietin-1 and Tie-2 in rats[J]. Tohoku J Exp Med,2011,224 (3):221-228
    [107]S. Davis, T. H. Aldrich, P. F. Joneset al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning[J]. Cell,1996,87 (7) 1161-1169
    [108]S. Patan. Vasculogenesis and angiogenesis[J]. Cancer Treat Res,2004,117: 3-32
    [109]T. N. Lin, C. K. Wang, W. M. Cheunget al. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion[J], J Cereb Blood Flow Metab,2000,20 (2):387-395
    [110]Z. G. Zhang, L. Zhang, Q. Jianget al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J]. Circ Res,2002,90 (3):284-288
    [111]S. D. Croll, S. J. Wiegand. Vascular growth factors in cerebral ischemia[J]. Mol Neurobiol,2001,23 (2-3):121-135
    [112]H. Beck, T. Acker, C. Wiessneret al. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat[J]. Am J Pathol,2000,157 (5):1473-1483
    [113]X. Zhao, J. Aronowski, S. J. Liuet al. Wheel-running modestly promotes functional recovery after a unilateral cortical lesion in rats[J]. Behav Neurol,2005,16 (1):41-49
    [114]L. Ada, C. M. Dean, J. M. Hallet al. A treadmill and overground walking program improves walking in persons residing in the community after stroke:a placebo-controlled, randomized trial [J]. Arch Phys Med Rehabil,2003,84 (10) 1486-1491
    [115]M. Ploughman, Z. Attwood, N. Whiteet al. Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia[J]. Eur J Neurosci,2007,25 (11):3453-3460
    [116]A. W. Dromerick, D. F. Edwards, M. Hahn. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?[J]. Stroke,2000,31 (12):2984-2988
    [117]Z. Ke, S. P. Yip, L. Liet al. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery:a rat brain ischemia model[J]. PLoS One,2011,6 (2):e16643
    [118]R. M. Arida, C. A. Scorza, Silva AV Daet al. Differential effects of spontaneous versus forced exercise in rats on the staining of parvalbumin-positive neurons in the hippocampal formation[J]. Neurosci Lett,2004,364 (3):135-138
    [119]A. Collins, L. E. Hill, Y. Chandramohanet al. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus [J]. PLoS One,2009,4 (1):e4330
    [120]J. L. Leasure, M. Jones. Forced and voluntary exercise differentially affect brain and behavior[J].Neuroscience,2008,156 (3):456-465
    [121]Katherine Hayes. Forced, not voluntary, exercise effectively induces neuroprotection in stroke[M],2008:289-296
    [122]A. M. Huang, C. J. Jen, H. F. Chenet al. Compulsive exercise acutely upregulates rat hippocampal brain-derived neurotrophic factor[J]. J Neural Transm, 2006,113 (7):803-811
    [123]M. Ploughman, S. Granter-Button, G. Chernenkoet al. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia[J]. Brain Res,2007,1150:207-216
    [124]S. T. Bland, T. Schallert, R. Stronget al. Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats:functional and anatomic outcome[J]. Stroke,2000,31 (5):1144-1152
    [125]J. L. Humm, D. A. Kozlowski, D. C. Jameset al. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period[J]. Brain Res,1998, 783 (2):286-292
    [126]S. Barbay, E. J. Plautz, K. M. Frielet al. Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys[J]. Exp Brain Res,2006,169 (1):106-116
    [127]H. C. Chang, Y. R. Yang, S. G. Wanget al. Effects of treadmill training on motor performance and extracellular glutamate level in striatum in rats with or without transient middle cerebral artery occlusion[J], Behav Brain Res,2009,205(2): 450-455
    [128]Y. R. Yang, R. Y. Wang, P. S. Wang. Early and late treadmill training after focal brain ischemia in rats[J]. Neurosci Lett,2003,339 (2):91-94
    [129]J. Biernaskie, G. Chernenko, D. Corbett. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury[J]. J Neurosci,2004,24 (5) 1245-1254
    [130]H. Soya, T. Nakamura, C. C. Deocariset al. BDNF induction with mild exercise in the rat hippocampus [J]. Biochem Biophys Res Commun,2007,358 (4):961-967
    [131]D. Scopel, C. Fochesatto, H. Cimarostiet al. Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation[J]. Brain Res Bull,2006,71 (1-3):155-159
    [132]S. U. Lee, D. Y. Kim, S. H. Parket al. Mild to moderate early exercise promotes recovery from cerebral ischemia in rats[J]. Can J Neurol Sci,2009,36 (4):443-449
    [133]R. P. Allred, T. A. Jones. Experience--a double edged sword for restorative neural plasticity after brain damage[J]. Future Neurol,2008,3(2):189-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700