微波稀布阵SIAR相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合脉冲与孔径技术在米波段和地波段的成功应用,显示了其在雷达“四抗”方面的巨大优势。本文将综合脉冲与孔径技术推广到微波波段,进一步提高雷达的距离和角度分辨率,提出了一种新的微波稀布阵综合脉冲与孔径雷达(SIAR)的解决方案,它利用频率分集和空间分集来实现发射信号的正交,发射阵采用稀布子阵集,接收阵为密布子阵的形式,我们也将这类雷达称为多载频MIMO雷达。论文围绕着多载频MIMO的相关理论和微波稀布阵SIAR实现的关键技术进行研究,具体内容概括如下:
     1.建立了综合脉冲与孔径雷达的发射、接收信号模型,利用匹配滤波理论并引入阵列的孔径推导出了SIAR的多维模糊函数,并由SIAR的导向矢量得出它的距离、角度和多普勒频率是相互耦合的;利用MIMO雷达发射信号正交的特点来简化远场窄带情况下的模糊函数,推导出距离分辨率由单个发射信号的带宽以及各发射天线的频率差所包含的信号带宽共同决定。以简单均匀线阵为例,仿真分析了单基地和双基地情况下多载频线形调频(LFM)信号的多维模糊函数特点和雷达的分辨率。这些结果和结论对SIAR的参数选择和信号处理都具有一定的借鉴意义。
     2.结合MIMO雷达多发多收的特点,建立了综合脉冲与孔径雷达的阵列模型,并给出了微波SIAR阵列的一种实现方案:发射阵采用稀布子阵集,接收阵采用密布子阵的形式,并通过合理选择子阵大小和间距,使稀布阵栅瓣刚好落在子阵方向图的零点位置上。在固定子阵数目和保证阵列孔径的条件下,采用整数编码、联合选择和随机位置交叉的修正遗传算法对微波SIAR稀布阵的子阵位置进行优化,仿真结果表明该方法提高了搜索速度,能够有效的抑制栅瓣和降低旁瓣,合成阵列方向图最大峰值旁瓣电平可达到-31.1dB,满足工程需要。
     3.给出了基于数字Dechirp的信号预处理方法,并详细论述了其中的一些关键问题,如通道分离滤波器的设计、速度补偿精度分析、相参积累周期数的选取等;将步进频率成像中的IDFT相参合成法和合成带宽法应用到SIAR中,提出了两种新的脉冲综合方法:IDFT相参合成法和空域合成带宽法。IDFT相参合成法利用先粗测后精测的思想,在目标所在的波位可以合成高分辨的距离像,并具有受目标运动影响小的特点,不过对大范围距离场景进行合成时存在伪峰;接着在分析伪峰产生原因的基础上提出了一种新的脉冲综合方法——空域合成带宽法,它将空域分散发射的多载频LFM信号,先做Dechirp处理,然后再将通道分离后的各路信号顺序时移拼接合成一个大带宽的LFM信号,最后再对合成后的信号做IFFT处理以获得高分辨距离信息。仿真结果表明它实现简单,能够在不增加运算量的条件下有效地抑制伪峰,并受目标运动影响小。
     4.稀布阵SIAR接收端经过信号处理形成阵元数为Nt×Nr的等效阵列(Nt、Nr分别为发射和接收阵元数),针对其距离和角度耦合的特点提出了采用空时二维MUSIC方法来实现距离和角度的超分辨,从而提高在多目标环境中目标距离以及角度的估计精度,同时进一步扩展了超分辨算法的应用领域;推导了距离和角度估计的Cramer-Rao界(CRB),并仿真研究了估计性能与信噪比、快拍数和波达方向的关系。
     5.建立了稀布阵SIAR的幅相误差模型,针对其发射和接收阵列的幅相误差耦合到一起的特点,提出对信号预处理后等效阵列的联合幅相误差Γv进行整体估计和校正的思想,并采用了两种误差估计方法:子空间拟合(SF)法和最大似然(ML)法;推导了幅相误差估计的CRB,并仿真分析了两种方法的估计性能与信噪比、快拍数的关系以及辅助信源的定位误差对估计性能的影响,验证了幅相误差校正方法的可行性。另外通过整体估计Γv还可同时校正信号预处理时数字采样、截断、滤波等引入的幅相误差。
     6.讨论了直达波信号的信干噪比和波形特点,验证了利用直达波来求解时间和载频同步的可行性;提出了三种LFM脉冲信号时间同步信息的提取方法:二值包络检波法、扩展滑窗积累法和相关检测法,得出在直达波的信噪比较高(超过25dB)时,可以采用二值包络检波法或扩展滑窗积累法,以较小的运算量较快的时间来求解同步点,而当信噪比较低时可采用相关检测法。对数字采样引起的同步误差Δt及其影响进行了分析,并将其估计归结为局部高精度测频问题,列举分析了三种适用于同步误差提取的方法:频谱连续细化法、自相关函数法和MUSIC法,仿真比较了其性能;对收发分置可能存在的载频偏差采用直达波相参积累的方法进行求解,给出了利用直达波求解时间和载频同步的处理过程以及载频跟踪方法。
Great advantages of the Synthetic Impulse and Aperture Radar (SIAR) technique have been shown by its successful applications in meterwave band and ground wave band. In this dissertation the SIAR technique is extended to microwave band to improve the radar’s range and angle resolution and a novel microwave sparse array SIAR is proposed. In this novel radar system, which is also called Multi-Carrier-Frequency (MCF) Multiple-Input Multiple-Output (MIMO) radar, the transmit array consists of sparse subarray, the receive array consists of dense subarray and the orthogonality of the transmitted signals are realized by frequency diversity and spatial diversity. Focusing on the relevant theories of MCF MIMO radar and the key techniques to implemente microwave sparse array SIAR, this dissertation deals mainly with the following contents:
     1. The transmit signal model and receive signal model of SIAR are constructed. The multiple dimensional Ambiguity Functions (AF) of SIAR with the array aperture are derived based on the theory of matched filter and the steering vector of SIAR shows that the range, angle and doppler frequency are coupled each other. The AF’s for far-field targets and narrowband waveforms are simplified using the orthogonal characteristics between the transmit signals of MIMO radar. And it can be concluded that the range resolution are determined not only by the bandwidth of the transmit signal but also the bandwidth among the transmit antennas. Take Uniform Linear Arrays (ULA) for example, the characteristics of AF and the resolution of LFM signal using multiple carrier frequency are analyzed in the case of monostatic and bistatic radar. The range and angle resolution varies with the target’s position for the bistatic MIMO radar. These results and conclusions can be used for the reference of parameter selection and signal processing of SIAR.
     2. On the basis of array model of MIMO radar, a general array model of SIAR is constructed and a realization sheme of microwave SIAR with sparse subarray set for the transmitted array and dense subarray set for the received array is proposed, in which the grating lobes of the sparse array locate at the nulls of subarray exactly by reasonable selections of the number of subarray and the space between subarrays. Then a modified Genetic Algorithm (GA) with integral code, combined selection and double cross operation is employed to optimize subarray position of transmit antenna arrays to decrease the pattern’s sidelobe level for a fixed subarray number and a constant array aperture. The simulation results show that the modified GA converges rapidly with a maximum relative Peak Sidelobe Level (PSL) of -31.1dB, which satisfies the project well.
     3. The signal preprocessing method based on digital dechirp processing is given as well as some key problems, e.g. the design of Channel Separation Filter (CSF), the range resolution analysis, the precision analysis of velocity compensation and the decision of coherent integration number etc. Two impulse synthetic methods, which are respectively IDFT Coherent Synthesis method (short for ICS method) and Spatial Domain Synthetic Bandwidth method (short for SDSB method), are proposed in the dissertation by applying IDFT coherent synthesis method and synthetic bandwidth method of stepped frequency signals to SIAR. The ICS method, using the idea of obtaining the corse image first and subsequently the precise image, can obtain the High Range Resolution Profile (HRRP) at the angle where the target is, while the spurious peaks appear when synthesizing a large range scene. The excuse of spurious peaks is analyzed and then a novel signal processing method, SDSB method, is proposed. The multi-carrier-frequency LFM returns transmitted diversely in space are first deramped by the dechirp processing and then the individual channel signals after the channel separation are combined into an LFM signal with a larger bandwidth by time shift in sequence. Finally the IFFT processing is applied to the concatenated signal to achieve HRR. The SDSB method can be implemented easily, avoid the spurious peaks effectively without extra computation and immune to the target movement.
     4. An equivalent Nt×Nr array is formed after the signal preprocessing in sparse array SIAR, where Nt and Nr are respectively the transmit and receive antenna number, and the equivalent steering vector is the kronecker product of transmit steering vector and receive steering vector in the case of narrow band signal. The super resolution of range and angle is realized by adopting the Spatial-Temporal MUSIC (MUltiple SIgnal Classification), which is based on the coupling of range and angle and can improve the precision of range and angle estimation when there are many targets present. The Cramer-Rao Bound (CRB) of range and angle estimation are derived. Further more, the variations of estimation variance of range and angle with Signal to Noise Ratio (SNR), snap number and direction of arrival are studied and simulated.
     5. The gain and phase error model of SIAR is presented and the corresponding calibration method by estimating the combined gain and phase errorΓv of the equivalent array after the signal preprocessing is proposed based on the coupling characteristics of gain and phase error of the transmit and receive array. Two estimation methods, Subspace Fitting (SF) Method and Maximum Likelihood (ML) Method, are proposed to estimate the gain and phase error when there is an auxiliary source. The Cramer-Rao Bound(CRB) of gain and phase error estimation are derived, how the methods’performance relates to SNR and snap number, and the influence of the angle error of assistant source on the estimation performance are studied and simulated, which validate the gain and phase error calibration methods. Additionally, the entire estimation ofΓv can also calibrate the error by digital sampling, truncation and filtering etc in the process of signal preprocessing.
     6. The Signal to Interference plus Noise Ratio (SINR) and the characteristics of the direct-path wave are discussed, which shows that the direct-path wave can be used to obtain the time synchronization and carrier frequency synchronization. Three methods, which are binary envelope detection method, extended slipping window accumulation method and correlative detection method, are proposed to obtain the time synchronization of LFM pulse signal. The computational complexity and performance of the three methods are analyzed and compared. The time synchronization errorΔt which is caused by ADC sampling and its influence are analyzed. Estimation ofΔt can be summed up as high-accuracy frequency estimation in a small extent and three estimation methods, which are zoom FFT method, auto-correlation function method and MUSIC method, are introduced and their performance are compared and simulated. The carrier frequency difference, which may exist in bistatic radar, can be obtained by coherent integration of direct-path wave. Finally the flow of the time and carrier frequency synchronization and the carrier frequency tracking method are summarized.
引文
[1] Lo. Y. T. A mathematical theory of antenna arrays with randomly spaced elements[J]. IRE Trans. on Antenna and Propagation. 1964,12(5):257-268.
    [2] Trucco A. and Murino V. Stochastic optimization of linear sparse arrays[J]. IEEE Journal of Oceanic Engineering. 1999, 24(3): 291-299.
    [3]陈客松.稀布天线阵列的优化布阵研究[D].成都:电子科技大学博士论文, 2006.
    [4]束咸荣,晏焕强,郭燕昌.大型稀布相控阵天线设计及其旁瓣电平研究[J].微波学报,1996年9月,12(3):169-174.
    [5]郭燕昌,钱继曾等.相控阵和频率扫描天线原理[M].国防工业出版社,北京, 1978.
    [6] Fishler E, Haimovicht A, Blumt R, et al. MIMO radar: an idea whose time has come[C]. Proceedings of the IEEE Radar Conference. Philadelphia: IEEE, 2004: 71-78.
    [7] Haimovich A. M., Blum R. S., Cimini L. J., MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129.
    [8] Fishler E, Haimovich A, Blum R, et al. Spatial diversity in radars—Models and detection performance[J]. IEEE Trans. On Siganl Processing, Mar. 2006, (54):823-838,.
    [9] Lehmann N. H., Fishler Eran, Haimovich A. M., et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Trans. Signal Processing, May 2007 , 55(5): 2215–2225.
    [10] Lehmann N. H., Haimovich A.M., Blum R.S., et al. MIMO-radar application to moving target detection in homogenous clutter[C]. presented at Adaptive Sensor Array Processing Workshop at MIT Lincoln Laboratory, Waltham, MA, July 2006.
    [11] Lehmann N.H., Haimovich A.M., Blum R.S., and Cimini L.J. High resolution capabilities of MIMO radar[C]. in Proc. 40th Asilomar Conf. Signals, Systems and Computers, Nov. 2006: 25-30.
    [12] Rabideau Daniel, Parker Peter. Ubiquitous MIMO digital array radar[C]. Proc. 2003 37 th Asilomar Conf. Signals, Systems and Computers, Nov. 2003: 1057–1064.
    [13]夏威,何子述. APES算法在MIMO雷达参数估计中的稳健性研究[J].电子学报,2008年9月,36(9): 1804-1809.
    [14]王敦勇,袁俊泉,马晓岩等.杂波环境下MIMO雷达对起伏目标的检测性能分析[J].空军雷达学院学报,2007年12月,21(4): 259-262.
    [15]戴喜增,彭应宁,汤俊. MIMO雷达检测性能[J].清华大学学报(自然科学版),2007年,47(1): 88-91.
    [16]戴喜增,许稼,彭应宁等. FD-MIMO距离高分辨雷达及其旁瓣抑制[J].电子与信息学报,2008年9月,30(9):2033-2037.
    [17] Bliss D. W. and Forsythe K. W., Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution[C]. 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2003:54–59,.
    [18] Bekkerman I. and Tabrikian J. Spatially coded signal model for active arrays[C]. The 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada, vol. 2, March 2004: 209–212.
    [19] Li J. and Stoica P. MIMO radar– diversity means superiority[C]. The Fourteenth Annual Workshop on Adaptive Sensor Array Processing (invited), MIT Lincoln Laboratory, Lexington, MA, June 2006.
    [20] Li J., Stoica P., Xu L., and Roberts W.. On parameter identifiability of MIMO radar. IEEE Signal Processing Letters, Dec.2007, 14(12): 968-971.
    [21] Forsythe K., Bliss D., and Fawcett G.. Multiple-input multiple-output (MIMO) radar: performance issues[C]. 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, vol. 1, Nov. 2004: 310–315,.
    [22] Xu L., Li J., and Stoica P. Adaptive techniques for MIMO radar[C]. 4th IEEE Workshop on Sensor Array and Multi-channel Processing, Waltham, MA, July 2006: 258-262.
    [23] Fuhrmann D. R. and Antonio G. S. Transmit beamforming for MIMO radar systems using partial signal correlations[C]. 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, vol. 1, Nov. 2004: 295–299.
    [24] Li J., Stoica P. MIMO radar with collocated antennas:Review of some recent work[J]. IEEE Signal Processing Magazine, Sep. 2007: 106-114.
    [25] Fuhrmann D. R. and Antonio G. S. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, Jan.2008, 44(1):171-186.
    [26] Stoica P., Li J., and Xie Y. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, Aug.2007. 55(8):4151-4161.
    [27] Forsythe K. W. and Bliss D. W. Waveform correlation and optimization issues forMIMO radar[C]. 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2005 : 1306–1310.
    [28] Xu L., Li J., Stoica P., et al. Waveform optimization for MIMO radar: A Cramer-Rao bound based study[C]. 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, April 2007:917-920.
    [29] Li J., Xu L., Stoica P., Forsythe K., and Bliss D. Range compression and waveform optimization for MIMO radar: A Cramer-Rao bound based study[J]. IEEE Transactions on Signal Processing, Jan.2008, 56(1): 218-232.
    [30]王剑,戴征坚,林谦.微波综合脉冲孔径雷达技术[J].现代雷达, 2006,28(1): 9-12.
    [31]陈伯孝,杨明磊等.车载稀布阵火控雷达理论研究报告.西安电子科技大学雷达信号处理国家重点实验室内部报告,2007年7月.
    [32] J. Dorey, Y. Blanchard et F. Christophe. Le projet‘RIAS’: une approche nouvelle du radar des surveillance aerienne. Colloque International sur le Radar, Paris, april, 1984:505~510.
    [33] A. S. Luse, et al. Experimental results on RIAS digital beamforming radar. Int.Conf. on Radar, London, 1992:505-510.
    [34]张庆文,保铮.一种新型的米波雷达——综合脉冲与孔径雷达[J].现代雷达, 1995年2月, 17(1): 1-13.
    [35]张庆文,保铮,张玉洪.一种在接收端综合发射阵列波束的新方法[J].现代雷达, 1992年6月, 14(3): 41-51.
    [36]张庆文.综合脉冲与孔径雷达系统性能分析与研究[D].西安:西安电子科技大学博士学位论文, 1994.
    [37]陈伯孝. SIAR及其四维跟踪处理等技术研究[D].西安:西安电子科技大学博士学位论文, 1997.
    [38] Chen Baixiao, Zhang Shouhong, Wu Jianqi and Wang Jun. Analysis and experimental results on Sparse-array Synthetic Impulse and Aperture Radar[C]. Proc. of 2006 CIE international conf. on radar, Beijing, China, 2001:76-80.
    [39] Chen Baixiao, Liu Hongliang and Zhang Shouhong. Long-time coherent integration based on Sparse-array Synthetic Impulse and Aperture Radar. Proc. of 2006 CIE international conf. on radar, Beijing, China, 2001:1062-1066.
    [40]吴剑旗,贺瑞龙,江凯,陈伯孝.稀布阵综合脉冲孔径雷达的研究与实验[J].现代电子, 1998, 64(3):1-5.
    [41]陈伯孝,许辉,张守宏.舰载无源综合脉冲/孔径雷达及其若干关键问题[J].电子学报, 2003, 31(12): 1776-1779.
    [42]陈伯孝,孟佳美,张守宏.岸-舰多基地地波超视距雷达的发射波形及其解调[J].西安电子科技大学学报,2005,32(1):7-11.
    [43]黄红云.岸-舰双(多)基地雷达的信号处理及其同步技术[D].西安:西安电子科技大学,2006.
    [44]张红梅.岸-舰双(多)基地雷达实测数据处理及其信道化接收技术[D].西安:西安电子科技大学硕士学位论文,2007.
    [45]尚海燕.岸舰双/多基地地波超视距雷达机动目标的检测[D].西安:西安电子科技大学博士学位论文,2008年4月.
    [46]刘春波.岸-舰双基地高频地波SIAR系统相关技术研究[D].西安:西安电子科技大学博士学位论文,2008年12月.
    [47]杨明磊,陈伯孝,齐飞林,张守宏.多载频MIMO雷达的模糊函数,系统工程与电子技术, 2009年1月, 31(1): 5-9.
    [48]杨明磊,陈伯孝,张守宏,高昭昭.多载频FMCW在MIMO雷达中的应用研究,电子学报, 2008, 36(12): 2351-2356.
    [49]杨振起,张永顺,骆永军.双(多)基地雷达系统.北京:国防工业出版社.1998.
    [50]陈多芳.岸-舰双基地波超视距雷达若干问题研究[D].西安:西安电子科技大学博士学位论文,2009年3月.
    [51]陈多芳,陈伯孝,秦国栋等.双基MISO地波雷达中的距离-方位耦合及解耦研究.系统工程与电子技术,已录用.
    [52] Woodward P. Probability and Information Theory with Applications to Radar[M]. New York: Pergamon, 1957.
    [53] Woodward P. Radar ambiguity analysis Tech. Rep. RRE Technical Note No. 731, Feb. 1967.
    [54] Rihaczek A.W. Radar resolution of moving targets[J]. IEEE Trans. Inform.Theory, Jan. 1967, 13( 1): 51–56.
    [55] Rihaczek A. W. Delay-doppler ambiguity functions for wideband signals[J]. IEEE Trans. Aerosp. Electron. Syst., Jul. 1967, 3(4): 705–711,.
    [56] Speiser J. M. Wide-band ambiguity functions[J]. IEEE Trans. Inform.Theory, Jan. 1967, 13(1): 122–123,.
    [57] Urkowitz H, Hauer C. and Koval J. Generalized resolution in radar systems[C]. in Proc. IRE, Oct. 1962, Vol. 50:2093–2105.
    [58] Pasupathy S. and Venetsanopoulos A. N. Optimum active array processing structure and space-time factorability[J]. IEEE Trans. Aerosp. Electron. Syst., Nov. 1974, 10(6): 770–778.
    [59] Tsao T, Slamani M, Varshney P, Weiner D, and Schwarzlander H. Ambiguityfunction for a bistatic radar[J]. IEEE Trans. Aerosp. Electron.Syst., 1997, 33(3): 1041–1050.
    [60]戴喜增,彭应宁,汤俊. MIMO雷达检测性能[J].清华大学学报(自然科学版), 2007, 47( 1):88-91.
    [61]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达的四维模糊函数及其分辨率[J].信号处理,1998,14卷:33-37.
    [62] Antonio G S, Fuhrmann D R, and Robey F C. MIMO radar ambiguity functions[J]. IEEE Journal of Selected Topics in Signal Processing. 2007, 1(1): 167-177.
    [63]丁鹭飞,张平等.雷达系统[M].西安:西北电讯工程学院出版社,1978.
    [64]晁淑媛,陈伯孝,李彩彩. MIMO雷达研究现状综述.系统工程与电子技术已投.
    [65]韩敏刚.微波稀布阵雷达幅相误差校正技术研究[D].西安:西安电子科技大学硕士论文, 2009年1月.
    [66] Trucco A. and Murino V. Stochastic optimization of linear sparse arrays[J]. IEEE Journal of Oceanic Engineering. 1999, 24(3): 291-299.
    [67] Kumar B. P. and Branner G. R. Design of unequally spaced arrays for performance improvement[J]. IEEE trans. on Antenna and Propagation. 1999, 47(35):511-523.
    [68] Kumar B. P. and Branner G. R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry[J]. IEEE trans. on Antenna and Propagation. 2005, 53(2):621-634.
    [69]王朴中,石长生.天线原理[M].北京:清华大学出版社,1993.
    [70] Skolink M.I, Nemhauser G , Sherman J.W. Dynamic programming applied to unequally spaced arrays[J]. IEEE trans. on Antenna and Propagation, 1964, 12(1): 35-43.
    [71]韩明华,袁乃昌.基于整体退火遗传算法的不等间距天线阵的综合.系统工程与电子技术. 1999,21(2): 70-74.
    [72] Haupt R. L. Thinned arrays using genetic algorithms[J]. IEEE trans. on Antenna and Propagation, 1994,42(7):993-999.
    [73]刘源,邓维波,徐荣庆.应用遗传算法进行阵列天线综合[J].电子与信息学报,2004,26(3):400-404.
    [74]王玲玲,方大纲.运用遗传算法综合稀疏阵列[J].电子学报, 2003, 31(12): 2135-2138.
    [75]丁刚,杨剑炜.天线阵列综合中的遗传算法应用综述[J].舰船电子工程,2006,26(4):26-30.
    [76]赵光辉,陈伯孝.基于二次编码的MIMO雷达阵列稀布与天线综合[J].系统工程与电子技术. 2008年6月, 30(6): 1032-1036.
    [77]范瑜.进化计算理论及其在阵列天线方向图综合中的应用[D].上海交通大学硕士论文, 2005.
    [78]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [79]刘铮.脉冲合成高分辨雷达目标运动补偿与成像[D].西安:西安电子科技大学博士论文, 2000.
    [80] Wehner D R. High Resolution Radar (2ed) [M]. Artech House ,1995.
    [81]刘铮,刘宏伟,张守宏.步进频率信号分析[J].西安电子科技大学学报, 1999, 26 (1) : 71- 74.
    [82]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].2001年6月, 22(增):16-25.
    [83] Gill G S . Step frequency waveform design and processing for detection of moving target in clutter[A]. IEEE international Radar Conference[C]. 1996. 573- 578.
    [84]刘峥,张守宏.步进频率雷达目标的运动参数估计[J].电子学报. 2000年3月,28(3): 43-45.
    [85]刘宏伟,王俊,张守宏.运动目标环境下步进频率信号的设计与处理[J].西安电子科技大学学报. 1997年12月, 24(增): 75-81.
    [86]李眈,龙腾.步进频率雷达目标去冗余算法[J].电子学报. 2000, 28(6):60-63.
    [87]龙腾,李眈,吴琼之.频率步进雷达参数设计与目标抽取算法[J].系统工程与电子技术. 2001, 23(6):26-31.
    [88]龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理[J].电子学报. 1998, 26(12): 84-88.
    [89]张焕颖.高速运动目标ISAR成像方法研究[D].西安电子科技大学博士论文, 2007年10月.
    [90] Lord R T and Inggs M R, High range resolution radar using narrowband linear chirps offset in frequency[C], Proc. IEEE South African Symp. on Communications and Signal Processing, COMSIG’97, Grahamstown, South Africa, Sep. 1997: 9-12.
    [91]白霞,毛士艺,袁运能.时域合成带宽方法:一种0.1米分辨率SAR技术[J].电子学报. 2006, 34(3): 472-477.
    [92] Wilkinson A J, Lord R T and Inggs M R, Stepped-frequency processing by reconstruction of target reflectivity spectrum[C], Proc. of the 1998 South African Symp. on Communications and Signal Processing, COMSIG '98. Rondebosch, Sep. 1998: 101-104.
    [93]张焕颖,张守宏,邢孟道等.高速运动目标的频域合成带宽方法[J].西安交通大学学报. 2007, 41(10):1184-1187.
    [94]杨明磊,张守宏,陈伯孝,张焕颖.多载频MIMO雷达的一种新的信号处理方法.电子与信息学报, 2009年1月.
    [95] Dai Xi-zeng, Xu Jia, Peng Ying-ning. High resolution frequency MIMO radar[C]. Proc. of the IEEE Conference on Radar, Waltham, MA, USA , 2007: 693-697.
    [96] Dai Xi-zeng, Xu Jia, Ye Chun-mao, Peng Ying-ning. Low-sidelobe HRR profiling based on the FDLFM-MIMO radar. Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, Nov. 2007: 132-135.
    [97] Yang M.L., Chen B.X. and Zhang S.H. Quadrature Coherent Detector of Wideband Intermediate Frequency Signal[C]. in Proceeding of 2006 CIE International conf. on radar, Shanghai, China. Oct 2006: 191-194.
    [98]杨明磊,陈伯孝,张守宏.宽带信号的中频正交采样.现代雷达. 2007, 29(3): 49-51.
    [99]杨明磊,陈伯孝,秦国栋,张守宏.多载频MIMO雷达的空时超分辨算法[J],已投电子与信息学报.
    [100]赵光辉.基于SIAR体制的稀布阵米波雷达若干问题研究[D].西安电子科技大学博士论文, 2008年12月.
    [101]向敬成,张明友.雷达系统[M].北京:电子工业出版社,2001年5月.
    [102]陈多芳,陈伯孝,刘春波等.岸-舰双基地综合脉冲孔径雷达距离-速度分辨率分析.系统工程与电子技术, 2008, 37(1): 75-78.
    [103] Chen Duo-fang, Chen Bai-xiao, Zhang Shou-hong. Multiple-input Multiple-output radar and sparse array synthetic impulse and aperture radar. Proc. of 2006 CIE international conf. on radar, Shanghai, China, Oct. 2006: 28-31.
    [104]杨明磊,陈伯孝,张守宏.微波综合脉冲孔径雷达方向图综合研究[J].西安电子科技大学学报,2007,34(5):738-742.
    [105]苏洪涛,张守宏,保铮.空时超分辨方法在高频地波超视距雷达中的应用[J].电子学报. 2006, 34(3):437-440.
    [106]尚海燕,苏洪涛,陈伯孝等.一种综合发射波束的超分辨处理方法[J].西安电子科技大学学报,2005,32(4):599-602.
    [107] Zhao Guang-hui, Chen Bai-xiao and Zhou Shou-ping. Direction synthesis in DOA estimation for monostatic MIMO radar based on Synthetic Impulse and Aperture Radar (SIAR) and its performance analysis. Science in China Series E: Technological Sciences, June.2008,51(6):656-673.
    [108] Stoica Peter and Nehorai Arye. MUSIC, Maximum likelihood, and Cramer-Rao Bound[J]. IEEE Transaction on Acoustics Speech and Signal Processing, May.1989, 37 (5) : 720 - 741.
    [109]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达发射信号频率编码的研究[J].电子学报,1997,25(9): 64-68.
    [110]朱守平.某地波雷达发射天线设计与阵列误差校正[D].西安:西安电子科技大学硕士论文,2007.
    [111]刘春波,陈伯孝,陈多芳等.双基地高频地波SIAR通道幅相误差的自校准方法.电子与信息学报.已录用.
    [112]苏洪涛,张守宏,保铮.发射阵列互耦及幅相误差校正[J].电子与信息学报. 2006, 28(5):941-944.
    [113]陈伯孝,朱旭花,张守宏.运动平台上多基地雷达时间同步技术[J].系统工程与电子技术,2005, 27(10):1734-1737.
    [114]付银娟.岸-舰双(多)基地雷达中同步技术及精度分析[D].西安:西安电子科技大学, 2005.
    [115]朱旭花.岸-舰地波双基地雷达时间同步及数据处理[D].西安:西安电子科技大学, 2005.
    [116]李学森,付庆霞.双/多基地雷达系统同步技术[J].舰船电子对抗,2007,30(4):50-53.
    [117]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社. 2003:128-133.
    [118] Merrill I. Skolnik.雷达手册(第二版)[M].北京:电子工业出版社,2003.
    [119]高如云,陆曼如,张企民.通讯电子线路[M].西安:西安电子科技大学出版社. 128-138.
    [120]程继兴,吴乐南,张仕元.数字调幅广播系统中包络检波方法的研究[J].电子工程师,2006年6月,32(6):33-34.
    [121]何岭松,李巍华.用Morlet小波进行包络检波分析[J].振动工程学报. 2002年3月,15(1): 119-122.
    [122]余红英,张辉,王敦庆.一种新的小波包络检测快速算法及其应用[J].中北大学学报. 2007: 28(4): 310-313.
    [123]吴大正,王松林,王玉华.电路基础[M].西安:西安电子科技大学出版社. 2001年2月:106-122.
    [124]肖洪梅,吴健,陈长庚,苏心智.微弱信号检测中的相关检测技术[J].重庆大学学报(自然科学版),2004年4月.
    [125]肖洪梅.微弱激光脉冲信号的相关检测[D].成都:电子科技大学硕士学位论文. 2004年3月: 5-8.
    [126]江国舟,江超.微弱信号检测的基本原理与方法研究[J].湖北师范学院学报(自然科学版). 2001, 21(4): 45-48.
    [127]黄倩,陈惠民.一种基于相关检测的自适应门限控制算法[J].上海大学学报(自然科学版). 2002年2月,8(1): 11-14.
    [128] Povey G J, Grant P M. Simplified matched filter receiver designs for spread spectrum communications applications[J]. Electronic and Communication Engineering Journal, 1993, (4) : 59- 64.
    [129]曾兴雯,等.利用声表面波抽头延迟线实现突发通信的快速同步[J].电子学报, 1994, 22 (7) : 94- 97.
    [130]蒋毅,古天祥.基于有限域搜索的MUSIC法快速频率估计[J].仪器仪表学报. 2006年11月,27(11): 1526-1528.
    [131] Rife D C, BOORSTYN R R. Single tone parameter estimation from discrete-time observations[J ]. IEEE Trans on IT, 1974,20(5): 591-598.
    [132] Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of f requencies and levels of tones [J]. Bell. Sys. Tech. J. , 1970, 49 (2) :197—228.
    [133]齐国清,贾欣乐.插值FFT估计正弦信号频率的精度分析[J].电子学报. 2004, 32 (4) : 625-629.
    [134]齐国清.几种基于FFT的频率估计方法精度分析[J].振动工程学报. 2006年3月,19(1):86-91.
    [135]齐国清,贾欣乐.基于DFT相位的正弦波频率和初相的高精度估计方法[J].电子学报. 2001年9月,29(9): 1164-1167.
    [136]刘进明,应怀樵. FFT谱连续细化分析的富里叶变换法[J].振动工程学报. 1995年6月,8(2):162-166.
    [137] Tretter S A. Estimating the frequency of a noisy sinusoid by linear regression[J] . IEEE Trans. on IT , 1985, 31(6) : 832-835.
    [138]齐国清,吕建.基于自相关函数相位的频率估计方法方差分析[J].大连海事大学学报. 2007年11月,33(4):5-9.
    [139]张英龙,刘渝.基于频偏校正的正弦波频率估计及仿真分析[C].第21届南京地区研究生通信年会论文集.
    [140]刘银恩.高精度频率估计算法研究[D].南京理工大学硕士学位论文, 2007年.
    [141]刘渝.快速高精度正弦波频率估计综合算法[J].电子学报. 1999年6月, 27(6):126-128.
    [142]孟建.相参信号频谱的精确估计[J].系统工程与电子技术. 1999年,21(10): 67-70.
    [143] Zhang M, Zhu Z D. DOA estimation with sensor gain, phase and position perturbations. Proceedings of the IEEE National Aerospace and ElectronicsConference, NAECO 1993: 67-69.
    [144] Zhang M, Zhu Z D. Array shape calibration using sources in known locations. Proceedings of the IEEE National Aerospace and Electronics Conference, NAECO 1993:70-73.
    [145] Ng B C, Ser W. Array shape calibration using sources in known locations. Proceedings of Singapore ICCS/ISITA’92, 1992:836-840.
    [146]王布宏,王永良,陈辉等.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学E辑信息科学. 2004, 34(8):906-918.
    [147]程春悦,吕英华.基于子空间的阵列天线幅相误差校正算法[J].天线技术, 2005, 35(6): 40-41.
    [148] Weiss A J, Friedlander B. Eigenstructure methods for direction finding with sensor gain and phase uncertainties. Circuits, system and signal processing, 1990, 9(3): 271-300.
    [149] Friedlander B, Weiss A J. Performance of direction-finding systems with sensor gain and phase uncertainties. Circuits, system and signal processing, 1993, 12(1): 3-33.
    [150] Weiss A J, Freedlander B. Array shape calibration using sources in unknown locations—A maximum likelihood approach. IEEE trans. On ASSP, 1989, 37(12):1958-1966.
    [151] Hong J S. Genetic approach to bearing estimation with sensor location uncertainties. Electronics letters, 1993, 29(23): 2013-2014.
    [152] Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling. IEEE Trans. on Antennas and Propagation , 1991, 39(3): 273-284.
    [153] Hung E. A critical study of a self-calibration direction-finding method for arrays. IEEE Trans. on Signal Processing, 1994, 42(2):471-474.
    [154] Lo J T H, Marple S L. Observability conditions for multiple signal direction finding and array sensor localization. IEEE Trans. on Signal Processing, 1992 40(11):2641-2650.
    [155] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. on AP, 1986, 34(3):276-280.
    [156] Clergeot H, Tressens S, Ouamri A. Performance of high-resolution frequencies estimation methods compared to the Cramer-Rao bounds. IEEE Trans. on ASSP, 1989, 37(11):1703-1720.
    [157] Stoica P, Nehorai A. Performance comparison of subspace rotation and MUSIC methods for direction estimation. IEEE Trans. on SP, 1991, 39(2):446-453.
    [158] Barabell A J. Improving the resolution performance of eigenstructure-based direction-finding algorithms. ICASSP, 1983,336-339.
    [159] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEE Trans. on ASSP, 1989, 37(12): 1939-1949.
    [160] Lee H, Wengrovitz M. Resolution threshold of beamspace MUSIC for two closely spaced emitters. ICASSP, 1989, 2124-2127.
    [161]赵树杰,史林.数字信号处理[M].西安:西安电子科技大学出版社. 1997: 74-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700