超宽带圆片天线及其小型化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带是一种新颖的无线通信技术,它在现代无线系统中有着广泛的应用,如超宽带通信系统、超宽带雷达系统和超宽带电子侦察系统等。超宽带系统的飞速进步使得各种超宽带电子设备都朝着小型化方向发展,这就要求研制出能与之相适应的超宽带小型化天线。
     本文以一种具有超宽频带的天线类型——圆片单极天线为基础,提出了几种在阻抗带宽以及辐射特性等方面均能满足通信要求的新型超宽带小型化天线,通过理论分析、仿真设计和实验测量等手段对各类型天线进行了系统的研究。
     作为全篇的理论基础,本文首先用三个模型研究了圆片单极天线之所以能够在超宽频带范围内获得较好阻抗特性的原因。按照行波驻波模型,天线在低频端运行于驻波模式,在高频端运行于行波模式,因为行波模式的存在使得天线的带宽很宽;按照多环多谐振模型,圆片单极天线可以被认为是多环叠加或者多环互补复合而来的,多个相近谐振模式的重叠使得圆片单极天线拥有非常宽的带宽;按照渐变线模型,圆片天线与由指数渐变线、三角渐变线、Klopfenstein渐变线以及抛物线渐变线构成的天线非常类似,这些渐变线宽带阻抗匹配特性非常好,因而圆片天线本身也可以获得非常宽的阻抗带宽。
     圆片单极天线具有良好的电特性,分析结果表明其至少具有10:1以上的阻抗带宽和全向性的方向图,同时具有无失真的收发时域短脉冲信号的能力。这种天线虽然有诸多优点,但是因为其地板垂直于辐射器,天线的空间尺寸较大,因此本文提出了平板圆片单极天线,该结构大大缩小了地板的空间尺寸,并且能够通过剪切、折叠和弯角的方法进一步缩减天线的尺度。为了解决天线的风载问题,本文提出了超宽带环形单极天线,单环和多环结构都能够在保持天线基本特性不变的情况下提高天线的抗风能力,利用相似原理设计的大尺寸环状单极天线具有更广阔的实用价值。超宽带天线固然可以用一副天线覆盖超宽频带,但是不同的应用条件对天线的带宽有不同的要求,为此提出了能够将频率高端阻陷的天线形式,即波浪边缘的圆片及环形单极天线,其频率覆盖范围基本上在3.1~10.6GHz民用超宽带通信范围之内。以上设计都是为适应不同的需求,通过改变圆片天线的形状或者结构来达到天线小型化的目的,除此之外,还可以通过电阻加载改变天线的电流分布来实现天线的小型化。电阻加载圆片单极天线是在圆片单极子两侧进行电阻加载,天线末端两侧的电流被电阻吸收,从而减小了低频反射信号的幅度,拓展了天线的低端频率,实际上也就是缩小了天线的尺寸。
     电路中的渐变线理论可以引入到异型单极子天线的设计中,以获得更为良好的电特性。为此本文对圆片单极天线进行了优化设计,提出一种新型的Klopfenstein渐变单极天线。基于阻抗匹配性能最优的Klopfenstein渐变线设计的立体单极子天线,其电性能与圆片单极天线十分类似。在此基础上,分别设计了共面波导以及微带馈电的平面Klopfenstein渐变单极天线。仿真和实测结果证明,这些天线尺寸较小且性能良好,平面印刷结构可以使天线方便的与其它射频电路集成。这种利用渐变线理论直接设计天线的思路可以为实际应用提供有价值的参考。
     本文的主要目的是解决超宽带天线设计中的小型化问题,为此提出了几种天线设计的思路和方法,并制作了相应的实物,进行了实际测量,得出了必要的分析结果。所研究的超宽带小型化天线主要针对3.1~10.6GHz的民用超宽带通信频段,但不局限于此,其研究成果可以向更宽的频带推广,为相应的军事和民用需求提供参考与借鉴。
Ultra-wideband is a novel wireless communication technology. It has extensive application in modern wireless systems such as ultra-wideband communication system, ultra-wideband radar system and ultra-wideband electronic reconnaissance system. With the rapid advancement of ultra-wideband system, the ultra-wideband electronic devices develop towards miniaturization direction, which requires development of the responsive ultra-wideband miniature antenna.
     In this dissertation, several novel ultra-wideband miniature antennas are proposed on the basis of circular disc monopole. The impedance bandwidth, radiation characteristic and other aspects of the antennas can satisfy the communication requirements. All of them are studied through different means such as theoretical analysis, simulated design, and experimental measurement. As the theoretical basis of the entire dissertation, the reason why the circular disc monopole has good impedance characteristic within the ultra-wide bandwidth is researched using three models. According to the travelling wave and standing wave model, the antenna operates in a standing wave mode at lower frequencies and in a travelling wave mode at higher frequencies. The bandwidth of the antenna is broad because the existence of the travelling wave mode. According to the multiple-ring and multiple-resonant model, the circular disc monopole can be considered as the superposition or complemental composite of multiple rings. The overlap of numbers of related resonant modes makes the antenna has ultra-wide bandwidth. According to the tapered line model, the circular disc monopole antenna is similar to the antennas which are composed of the exponential, triangular, Klopfenstein, and parabolic tapered line. As the wideband impedance matching characteristic of the above tapered line is good, the circular disc monopole itself can also get very wide impedance bandwidth.
     The circular disc monopole antenna has excellent electrical characteristics. The analytic results show that it has 10:1 impedance bandwidth at least and omnidirectional radiation pattern. Meanwhile, it can be able to radiate and receive the short pulse signals without distortion. Although this antenna has many advantages, it consumes very great volume space as the ground plane is perpendicular to the radiator. In order to improve this performance, the planar circular disc monopole is proposed. The structure reduces the space size of the ground plane greatly. And what's more, the planar antenna's size can be further reduced by cutting a certain length, puckering a certain length or rotating a certain angle. In order to solve the problem of the antenna's wind load, the ultra-wideband ring-shaped monopole antenna is proposed. The single-ring and multiple-ring structures can both improve the wind resistance capability while maintaining the basic characteristics of the antennas. The large-scale ring-shaped monopole antenna is designed by using similarity theory. It has broader practical value. Though only one ultra-wideband antenna can cover ultra-wide bandwidth, different application conditions require for different antenna bandwidths. For this reason, the circular disc and ring-shaped monopole antenna with wavy-edge which can reject the higher frequency is proposed. The antenna's bandwidth covers a frequency range from 3.1 GHz to 10.6 GHz more or less, and it is just the civil ultra-wideband communication range. The antennas mentioned above are designed to satisfy different demands by changing the shape or structure of the antenna to achieve the miniaturization objective. In addition, the antenna's miniaturization can also be realized by loading with resistances. The fundamental aim of the method is to change the surface current distribution. For the resistive loaded circular disc antenna, the resistances are loaded on both sides of the circular disc. The current distributed at the end sides of the antenna is absorbed by the resistances. Then low-frequency signals' amplitude is reduced and the low-frequency is expanded, which is as a matter of fact to reduce the size of the antenna.
     The tapered line theory in circuit can be applied to the design of the special-shaped monopole antenna in order to obtain better electrical characteristics. So the circular disc monopole antenna is optimum designed and a novel Klopfenstein taper monopole antenna is proposed. The impedance matching characteristic of the Klopfenstein tapered line is the best, and the Klopfenstein taper monopole antenna is designed based on it. The antenna's electrical characteristic is similar to the circular disc monopole. On this basis, the coplanar waveguide-fed and microstripline-fed planar Klopfenstein taper monopole antennas are designed. The simulation and measurement results prove that the Klopfenstein taper monopole antennas have small size and good performance. And the planar printed antenna can be convenient integrated with other radio frequency circuits. The idea to design antenna by using of tapered line theory directly can be used in practical operations.
     The main purpose of this dissertation is to solve the problem of the ultra-wideband antenna's miniaturization. Several principles and methods are proposed, and the corresponding antennas are made and measured. Then the essential analytical results are obtained. The ultra-wideband miniature antenna proposed in this dissertation is mainly used for the civil ultra-wideband communication, and its frequency rang is 3.1~10.6GHz. But the research results can be promoted to wider band in order to provide consultation for military and civil requirements.
引文
1 J. Powell, A. Chandrakasan. Differential and Single Ended Elliptical Antennas for 3.1-10.6 GHz Ultra Wideband Communication. IEEE Antennas and Propagation Society, AP-S International Symposium, Monterey, CA, United States, 2004, 3: 2935~2938
    2 T. Huaiying, S. Qi and G. Jianming. UWB-SAR: Applicable to Highway Technology. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings, APSAR 2007, Huangshan, China, 2007: 215~217
    3张新跃,沈树群. UWB超宽带无线通信技术及其发展前景.数据通信. 2004, (2): 9~12
    4 A. H. Muqaibel. Directional UWB Channel Characterization. International Conference on Computer and Communication Engineering, ICCCE08, Kuala Lumpur, Malaysia, 2008: 621~625
    5 M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn and A. E. Fathy. Investigation of High-accuracy Indoor 3-D Positioning Using UWB Technology. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(6): 1316~1330
    6 C. C. Chong, S. K. Yong and S. S. Lee. UWB Direct Chaotic Communication Technology. IEEE Antennas and Wireless Propagation Letters. 2005, 4(1): 316~319
    7 C. C. Chong, F. Watanabe and H. Inamura. Potential of UWB Technology for the Next Generation Wireless Communications. IEEE International Symposium on Spread Spectrum Techniques and Applications, ISSSTA-06, Manaus, Brazil, 2006: 422~429
    8 P. Martigne. UWB for Low Data Rate Applications: Technology Overview and Regulatory Aspects. IEEE International Symposium on Circuits and Systems, ISCAS 2006, Kos, Greece, 2006: 2425~2428
    9 Federal Communications Commission. New Public Safety Applications and Broadband Internet Access among Uses Envisioned by FCC Authorization of Ultra-wideband technology. Feb. 14, 2002
    10 S. Bali, J. Steuer and K. Jobmann. Capacity of Ad Hoc Networks with LineTopology Based on UWB and WLAN Technologies. 7th Annual Wireless Telecommunications Symposium, WTS 2008, Ponoma, CA, United States, 2008: 17~24
    11 A. G. Yarovoy, X. Zhuge, T. G. Savelyev and L. P. Ligthart. Comparison of UWB Technologies for Human Being Detection with Radar. 2007 European Radar Conference, EURAD, Munich, Germany, 2007: 295~298
    12 A. G. arovoy, L. P. Ligthart. UWB Radars: Recent Technological Advances and Applications. IEEE National Radar Conference-Proceedings, Waltham, MA, United States, 2007: 43~48
    13 C. C. Chong, S. K. Yong. UWB Direct Chaotic Communication Technology for Low-rate WPAN Applications. IEEE Transactions on Vehicular Technology. 2008, 57(3): 1527~1536
    14徐光明,李少毅,钟雪峰.超宽带通信系统及实现.电子工程师,通信技术与设备. 2003, 29(7): 1~3
    15 H. Kamiya, M. Yamada, M. Tokuda, S. Ishigami, K. Gotoh and Y. Matsumoto. A New Method for Measureing Interference between UWB and Wireless LAN Systems. International Wireless Communications and Mobile Computing Conference, IWCMC 2008, Crete, Greece,2008: 1106~1111
    16 M. Gopikrishna, D. D. Krishna, C. K. Aanandan, P. Mohanan and K. Vasudevan. Compact Linear Tapered Slot Antenna for UWB Applications. Electronics Letters. 2008, 44(20): 1174~1176
    17 H. G. Schantz. Introduction to Ultra-wideband Antennas. IEEE Conference on Ultra Wideband Systems and Technologies, Reston, Virginia, 2003: 1~9
    18 D. C. Chang. UWB Antennas and Their Applications. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, IWAT 2008, Chiba, Japan, 2008: 14~19
    19 H. G. Schantz. A Brief History of UWB Antennas. Aerospace and Electronic Systems Magazine. 2004, 19(4): 22~26
    20 K. Y. Yazdandoost, R. Kohno. Ultra Wideband Antenna. IEEE Communications Magazine. 2004, 42(6): 29~32
    21 X. Yang, Z. Yu, Q. Shi and R. Tao. Design of Novel Ultra-wideband Antenna with Individual SRR. Electronics Letters. 2008, 44(19): 1109~1110
    22 Y. Duroc, A. Ghiotto, T. P. Vuong and S. Tedjini. Ultra-wideband Antennas:Design and Modeling. 2nd International Conference on Communications and Electronics, Hoi an, Viet Nam, 2008: 318~323
    23 D. D. Krishna, M. Gopikrishna, C. K. Aanandan, P. Mohanan and K. Vasudevan. Ultra-wideband Slot Antenna for Wireless USB Dongle Applications. Electronics Letters. 2008, 44(18): 1057~1058
    24阮成礼.超宽带天线理论与技术.哈尔滨工业大学出版社, 2006: 47~55
    25 S. Radiom, H. Aliakbarian, G. Vandenbosch and G. Gielen. Miniaturization of UWB Antennas and Its Influence on Antenna-transceiver Performance. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, IWAT 2008, Chiba, Japan, 2008: 482~485
    26 L. Lizzi, F. Viani, R. Azaro and A. Massa. Design of a Miniaturized Planar Antenna for FCC-UWB Communication Systems. Microwave and Optical Technology Letters. 2008, 50(7): 1975~1978
    27 G. P. Gao, X. X. Yang, J. S Zhang, J. X. Xiao and F. J. Wang. Double-printed Rectangular Patch Dipole Antenna for UWB Applications. Microwave and Optical Technology Letters. 2008, 50(9): 2450~2452
    28 M. D. Blech, M. M. Leibfritz and T. F. Eibert. Ultra-wideband Dielectric Rod Antenna with Biconical Dipole and Reflector. IEEE Antennas and Propagation Society, AP-S International Symposium, Honolulu, HI, United States, 2007: 2737~2740
    29 N. P. Agrawall, G. Kumar and K. P. Ray. Wide-Band Planar Monopole Antennas. IEEE Transactions on Antennas and Propagation. 1998, 46(2): 294~295
    30郭安波,陈惠民.平面单极天线的设计.无线电工程. 2005, 35(2): 26~28
    31 D. Valderas, J. Legarda, I. Gutierrez and J. I. Sancho. Design of UWB Folded-plate Monopole Antennas Based on TLM. IEEE Transactions on Antennas and Propagation. 2006, 54(6): 1676~1687
    32李绪平,史小卫,郑会利.小型化平面单极子天线研究.火控雷达技术. 2005, 34: 37~38
    33白晓锋,钟顺时,梁仙灵.叶片形超宽带单极天线.微波学报. 2006, 22(增刊): 22~24
    34 C. C. Lin, H. R. Chuang and Y. C. Kan. A 3-12 GHz UWB Planar Triangular Monopole Antenna with Ridged Ground-plane. Progress in ElectromagneticsResearch. 2008, 83: 307~321
    35 R. Zaker, C. Ghobadi and J. Nourinia. A Modified Microstrip-fed Two-step Tapered Monopole Antenna for UWB and WLAN Applications. Progress in Electromagnetics Research. 2007, 77: 137~148
    36 Z. T. Yang, L. Li and H. Z. Wang. Investigation on Ultra-wideband Printed Circular Monopole Antenna with Frequency-notched. International Conference on Microwave and Millimeter Wave Technology, ICMMT 2008, Nanjing, China, 2008: 1858~1861
    37 W. Ren, J. Y. Deng and K. S. Chen. Compact PCB Monopole Antenna for UWB Applications. Journal of Electromagnetic Waves and Applications. 2007, 21(10): 1411~1420
    38 J. Liang, L. Guo. CPW-fed Circular Disc Monopole Antenna for UWB Applications. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Singapore, 2005: 505~508
    39 J. H. Jung, W. Y. Choi and J. H. Choi. A Small Wide-band Microstrip-fed Monopole Antenna. IEEE Microwave and Wireless Component Letters. 2005, 15(10): 703~705
    40 C. Y. Huang, W. C. Hsia. Planar Elliptical Antenna for Ultra-wideband Communications. Electronics Letters. 2005, 41(6): 296~297
    41 N. Fortino, G. Kossiavas, J. Y. Dauvignac and R. Staraj. Novel Antennas for Ultra-wideband Communications. Microwave and Optical Technology Letters. 2004, 41(3): 166~169
    42 W. S. Chen, S. C. Wu and K. N. Yang. A Study of the Printed Heart Monopole Antenna for IEEE 802. 16a/UWB Applications. IEEE Antennas and Propagation Society, AP-S International Symposium, Albuquerque, New Mexico, 2006: 1685~1688
    43金骏,钟顺时.具有带阻功能的超宽带印刷天线.上海大学学报. 2007, 13(2): 1~6
    44 B. Lampe, K. Holliger. Resistively Loaded Antennas for Ground-penetrating Radar: A Modeling Approach. Geophysics. 2005, 70(3): 23~32
    45 T. P. Montoya, G. S. Smith. A Study of Pulse Radiation from Several Broad-band Loaded Monopoles. IEEE Transactions on Antennas and Propogation. 1996, 44(8): 1172~1182
    46 K. Kim, J. W. R. Scott. Design of Resistively Loaded Vee Dipole for Ultrawide-band Ground-penetrating Radar Applications. IEEE Transactions on Antennas and Propagation. 2005, 53(8): 2525~2532
    47 V.A. Mikhnev, P. Vainikainen. Ultra-wideband Tapered-slot Antenna with Non-uniform Resistive Loading. 6th International Conference on Antenna Theory and Techniques, ICATT'07, Sevastopol, Ukraine, 2007: 281~283
    48 T. T. Wu, R. W. P. King. The Cylindrical Antenna with Nonreflecting Resistive Loading. IEEE Transactions on Antennas and Propogation. 1965, 13(3): 369~373
    49 J. G. Maloney, G. S. Smith. A Study of Transient Radiation from the Wu-King Resistive Monopole-FDTD Analysis and Experimental Measurements. IEEE Transactions on Antennas and Propagation. 1993, 4l(5): 668~675
    50饶育萍,牛忠霞,王锋.加载单极子天线的宽带特性研究.无线电工程. 2004, 34(2): 37~38
    51韩增富,王均宏.并联介质加载偶极天线脉冲辐射特性的研究.物理学报. 2005, 54(2): 642~647
    52张春青,邹卫霞.并联介质加载折叠臂偶极天线的辐射特性.无线电工程. 2006, 36(8): 34~36
    53 M. Amin, R. Cahill and V. F. Fusco. Mechanically Tunable Multiband Compact Quadrifilar Helix antenna with Dual Mode Operation. IEEE Transactions on Antennas and Propagation. 2008, 56(6): 1528~1532
    54 Z. H. Wu, E. K. N. Yung. Axial Mode Elliptical Cross-section Helical Antenna. Microwave and Optical Technology Letters. 2006, 48(10): 2080~2083
    55周斌,刘其中,郭景丽.螺旋天线的快速分析及宽带化设计.电波科学学报. 2005, 20(5): 647~650
    56 L. Yang, C. W. Domier and J. N. C. Luhmann. Ka-band E-plane Beam Steering/Shaping Phased Array System Using Antipodal Elliptically-tapered Slot Antenna. International Journal of Infrared and Millimeter Waves. 2007, 28(4): 283~289
    57 G. E. Ponchak, J. L. Jordan and C. T. Chevalier. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylinder. IEEE Antennas and WirelessPropagation Letters. 2007, 6: 60~63
    58 J. J. Huang, Z. W. Xiao, Y. Yang, J. G. He and P. G. Liu. A Miniaturized Antenna for Ground Penetrating Radar. International Conference on Microwave and Millimeter Wave Technology Proceedings, ICMMT 2008, Nanjing, China, 2008: 1849~1850
    59 V. V. Scherbinin, D. S. Shatov. Enclosed Coaxial Waveguide Antenna Array For a Ground-penetrating Radar. 6th International Conference on Antenna Theory and Techniques, ICATT'07, Sevastopol, Ukraine, 2007: 357~359
    60 A. S. Turk, H. Nazli. Hyper-wide Band TEM Horn Array Design for Multi Band Ground-penetrating Impulse Radar. Microwave and Optical Technology Letters. 2008, 50(1): 76~81
    61 F. Soldovieri, G. Prisco, A. Brancaccio and G. Leone. Characterization of Ultra-wideband Bow-tie Antennas for Ground Penetrating Radar Systems. Microwave Journal. 2006, 49(8): 186~194
    62 A. Mokraoui, R. Aksas. Scattered Field Improvement of Tapered Slot Antenna Using a Parabolic-shaped Slot. Microwave and Optical Technology Letters. 2005, 44(4): 331~334
    63 T. G. Ma, S. K. Jeng. Planar Miniature Tapered-slot-fed Annular Slot Antennas for Ultrawide-band Radios. IEEE Transactions on Antennas and Propagation. 2005, 53(3): 1194~1202
    64殷晓星,王群,王春和,沈广德,张军蕊,洪伟.一种探地雷达用的渐变槽线加载天线.现代雷达. 2006, 28(11): 58~60
    65 X. Q. Sheng, K. W. Leung and E. K. N. Yung. Analysis of Waveguide-fed Dielectric Resonator Antenna Using a Hybrid Finite Element Method/Moment Method. IEE Proceedings: Microwaves, Antennas and Propagation. 2004, 151(1): 91~95
    66 A. K. Ahmed. Wide-Band Quadrangular frustum pyramid Dielectric Resonator Antenna Excited by a Coaxial Probe. IEEE Transactions on Antennas and Propagation. 2003, 51(10): 2913~2917
    67 C. Y. Huang, T. W. Chiou and K. L. Wong. Dual-polarized Dielectric Resonator Antennas. Microwave and Optical Technology Letters. 2001, 31(5): 222~223
    68 Y. X. Guo, K. M. Luk. Dual-polarized Dielectric Resonator Antennas. IEEETransactions on Antennas and Propagation. 2003, 51(5): 1120~1123
    69 G. B. Gentili, M. Morini and S. Selleri. Relevance of Coupling Effects on DRA Array Design. IEEE Transactions on Antennas and Propagation. 2003, 51(3): 399~404
    70 K. P. Esselle, T. S. Bird. A Hybrid-resonator Antenna: Experimental Results. IEEE Transactions on Antennas and Propagation. 2005, 53(2): 870~871
    71 F. R. Hsiao, J. S. Kuo, T.W. Chiou and K. L. Wong. A Very-high-permittivity Broadband Dielectric Resonator Antenna for WLAN Applications in the
    5.2GHz Band. Microwave and Optical Technology Letters. 2002, 32(6): 426~427
    72魏峰,史小卫.介质谐振天线的发展.电子科技. 2003, 23: 30~32
    73 L. Mapierre, Y. M Antar and A. Ittipiboon. Ultra Wideband Monopole/Dielectric Resonator Antenna. IEEE Microwave and Wireless Components Letters. 2005, 15(1): 7~9
    74 T. A. Denidni, Q. J. Rao and A. R. Sebak. Broadband L-shaped Dielectric Resonator Antenna. IEEE Antennas and Wireless Propagation Letters. 2005, 4: 453~454
    75 J. Dederer, S. Chartier, T. Feger, U. Spitzberg, A. Trasser and H. Schumacher. Highly Compact 3.1-10.6 GHz UWB LNA in SiGe HBT Technology. European Microwave Week 2007 Conference Proceedings, EuMW 2007-2nd European Microwave Integrated Circuits Conference, EuMIC 2007, Munich, Germany, 2007: 247~250
    76 N. Kumar, R. M. Buehrer. The Ultra Wideband WiMedia Standard. IEEE Signal Processing Magazine. 2008, 25(5): 115~119
    77邹卫霞,周正,张春青.超宽带无线通信技术.电子质量. 2004, (12): 60~62
    78 S. Yang, A. E. Fathy, S. M. El-Ghazaly and V. K. Nair. Novel Reconfigurable Multi-band Antennas for Multi-radio Platforms. IEEE Radio and Wireless Symposium, RWS 2008, Orlando, FL, United States, 2008: 723~726
    79 J. Shaker, M. Cuhaci. Multi-band, Multi-polarisation Reflector-reflectarray Antenna with Simplified Feed System and Mutually Independent Radiation Patterns. IEE Proceedings: Microwaves, Antennas and Propagation. 2005, 152(2): 97~101
    80 W. Wiesbeck, W. Sorgel, M. A. Baldauf and M. Younis. Interference of Short Range Radar with Radio Astronomy Base Stations. International Geoscience and Remote Sensing Symposium, IGARSS 2005, Seoul, South Korea, 2005: 5574~5577
    81 J. J. H. Wang. Theory of a Class of Planar Frequency-independent Omnidirectional Traveling-wave Antennas. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE2005, Beijing, China, 2005, 1: 434~437
    82 H. R. Dehdasht, H. R. Hassani and A. R. Mallahzadeh. Quad Ridged Horn Antenna for UWB Applications. Progress in Electromagnetics Research. 2008, 79: 23~38
    83 K. Chung, S. Pyun and J. Choi. Design of an Ultrawide-band TEM Horn Antenna with a Microstrip-type Balun. IEEE Transactions on Antennas and Propagation. 2005, 53(10): 3410~3413
    84 M. D. Blech, T. F. Eibert. A Dipole Excited Ultrawideband Dielectric Rod Antenna with Reflector. IEEE Transactions on Antennas and Propagation. 2007, 55(7): 1948~1954
    85 J. S. Tyo, E. G. Farr and D. I. Lawry. Effect of Defocus on the Prompt Response of a Reflector IRA. IEEE Transactions on Antennas and Propagation. 2005, 53(10): 3247~3254
    86 J. G. Lee, J. S. Kang, J. H. Kim and T. W. Kang. Time Domain Antenna Range at Kriss. Conference on Precision Electromagnetic Measurements, CPEM 2008, Broomfield, CO, United States, 2008: 642~643
    87 P. Gorniak, W. Bandurski. Direct Time Domain Analysis of an UWB Pulse Distortion by Convex Objects with the Slope Diffraction Included. IEEE Transactions on Antennas and Propagation. 2008, 56(9): 3036~3044
    88 H. G. Schantz. Dispersion and UWB Antennas. International Workshop on Ultrawideband Systems. Joint with Conference on Ultrawideband Systems and Technologies, Kyoto, Japan, 2004: 161~165
    89 H. G. Schantz. Planar Elliptical Element Ultra-wideband Dipole Antennas. IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, United States, 2002, 3: 44~47
    90 H. G. Schantz. The Art and Science of Ultrawindband Antennas. ArtechHouse, 2005: 74
    91 L. J. Chu. Physical Limitations on Omni-directional Antennas. Journal of Applied Physics. 1948, 19: 1163~1175
    92 R. F. Harrington. Effect of Antenna Size on Gain, Bandwidth, and Efficiency. Journal of Research of National Bureau of Standards, D-radio Propagation. 1960, 64: 1~12
    93 Y. Hao, Y. Zhao, Y. J. Lee and I. J Youngs. Electrically Small Antennas with Dielectric, Magneto-Dielectric and Metamaterial Loading. Loughborough Antennas and Propagation Conference, LAPC 2007 Conference Proceedings, Loughborough, UK, 2007: 57~62
    94 C. D. Zhao. Analysis on the Properties of a Coupled Planar Dipole UWB Antenna. Antennas and Wireless Propagation Letters. 2004, 3(1): 317~320
    95 Z. Tu, G. L. Chen and G. Q. Zhang. The FDTD Analysis of Two Ultra Wide-band Dipole Antennas. 2004 4th International Conference on Microwave and Millimeter Wave Technology, ICMMT 2004, Beijing, China, 2004: 46~49
    96屠振,张广求.两种超宽带双极天线阻抗特性的FDTD分析.制导与引信. 2004, (9): 37~40
    97 S. Honda, M. Ito, H. Seki and Y. Jingo. A Disc Monopole Antenna with 1:8 Impedance Bandwideth and Omnidirectional Radiation Pattern. International Symposium on Antennas and Propagation, Sapporo, Japan, 1992: 1145~1148
    98 C. A. Balanis. Antenna Theory: Analysis and Design. New York: Harper and Row, 1982: 451~454
    99 A. Ben, D. Mischa, O. Ernest, M. Wasim, B. Anthony and E. David. Ultra-wideband Antennas and Propagation for Communications, Radar and Imaging. John Wiley & Sons, Ltd, 2006: 120~121
    100 D. M. Pozar. Microwave Engineering. Second Edition. John Wiley & Sons, Ltd, 1998: 275~295
    101 R. E. Collin. The Optimum Tapered Transmission Line Matching Section. Proceedings. of the IRE. 1956, 44: 539~548
    102 M. A. Grossberg. Extremely Rapid Computation of the Klopfenstein Impedance Taper. Proceedings of the IEEE. 1968, 56: 1629~1630
    103张敏. CST微波工作室用户全书.电子科技大学出版社, 2004: 3~5
    104王均宏.脉冲电磁波通过偶极天线辐射的物理过程及其数值模拟.物理学报. 1999, 48(5): 850~861
    105 A. A. Lestari, A.G. Yarovoy and L.P. Ligthart. RC-loaded Bow-tie Antenna for Improved Pulse Radiation. IEEE Transaction Antennas and Propagation. 2004, 52, (10): 2555~2563
    106阮成礼,王春.小型化准分形加载单极子天线.电波科学学报. 2006, 21(5): 727~730
    107张福顺,李雪安.一种实用的指数渐变线喇叭天线.电子科技. 1996, (3): 59~60
    108 R. W. Klopfenstein. A Transmission Line Taper of Improved Design. Proceedings. of the IRE. 1956, 44(1): 31~35
    109 C. P. Wen. Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyro-magnetic Device Applications. IEEE Transactions on MTT. 1969, 17(12): 1087~1090
    110 T. Sporkmann. Evolution of Coplanar MMICs over the past 30 Years. Microwave Journal. 1998, 41(7): 96~111
    111 T. Sporkmann. Current State of the Art in Coplanar MMICs. Microwave Journal. 1998, 41(8): 60~74
    112 J. W. Greiser. Coplanar Stripline Antenna. Microwave Journal. 1976, 19(10): 47~79
    113 J. Y. Chiou, J.Y. Sze and K. L. Wong. A Broad-band CPW-Fed Strip-Loaded Square Slot Antenna. IEEE Transaction Antennas and Propagation. 2003, 51(4): 719~721
    114 J. D. Langley, P. S. Hall and P. Newham. Novel Ultrawide-bandwidth Vivaldi Antenna and Low Crosspolarisation. Electronics Letters. 1993, 29(23): 2004~2005
    115 X. L. Liang, S. S. Zhong and W. Wang. Tapered CPW-fed Printed Monopole Antenna. Microwave and Optical Technology Letters. 2006, 48(7): 1242~1244
    116 J. A. Evans, M. J. Ammann. Planar Trapezoidal and Pentagonal Monopoles with Impedance Bandwidths in Excess of 10:1. IEEE Antennas and Propagation Society, AP-S International Symposium, Orlando, FL, USA, 1999, 3: 1558~1561
    117 X. F. Bai, S. S. Zhong and X. L. Liang. Leaf-shaped Monopole Antenna with Extremely Wide Bandwidth. Microwave and Optical Technology Letters. 2006, 48(7): 1247~1250
    118 E. S. Angelopoulos, A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis and K. Dangakis. Circular and Elliptical CPW-Fed Slot and Microstrip-fed Antennas for Ultra-wideband Applications. IEEE Antennas and Wireless Propagation Letters. 2006, 5: 294~297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700