双站合成孔径雷达成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双站合成孔径雷达(Bistatic Synthetic Aperture Radar,BISAR)是将发射机与接收机分置于两个独立平台的新体制SAR系统。由于发射机与接收机的分置,可以根据测绘需求配置运动平台的几何关系。与传统的单站系统相比,双站SAR构型灵活,具备前视成像、高频率监控、抗击毁能力强、大基线干涉等多种优势。此外,双站SAR还是单发多收的分布式SAR系统的基本构成单元,因而拥有极为广阔的应用前景。
     由于收发平台的分置,导致了双站SAR在系统实现时面临着频率同步、时间同步、成像算法、天线指向、理论建模与仿真等难题。其中,成像算法是双站SAR研究工作的理论基础与核心问题。本文的主要任务是对双站SAR的成像算法进行深入的研究。
     回波信号的方位平移不变性特征是现代单站SAR的频域快速成像算法成功的基础。因为将具备该特性的回波信号变换到距离-多普勒域内,同一距离门上任意点目标的能量轨迹重合,可以通过统一化处理完成该距离门上所有目标轨迹的距离徙动矫正,从而大大提高了成像处理的效率。
     双站SAR的收发平台构型灵活,可以组成多种配置形式。根据收发平台的几何关系可分为以下四种构型:单运动平台式、前后追逐式、平行分置式和一般式。根据回波信号的方位向特性,又可分为方位平移不变型和方位平移可变型两种。与单站SAR不同,一般情况下由于双站平台的速度矢量不同,双站SAR的回波信号是方位平移可变的。但在前后追逐式和平行分置式构型条件下,双站SAR回波信号具备方位平移不变性特征,这类构型是本文的主要研究对象。
     考虑到由于收发分置导致的回波信号的复杂性,以及双站SAR成像处理研究所面临的诸多技术难题,本文主要做了以下几点工作:
     首先,提出基于多项式斜距模型的双站SAR回波信号的二维频谱变换方法与成像算法。双站SAR的回波斜距历程是两个独立的双曲线函数之和(也称平顶双曲线),传统的二维频谱变换方法并不适用于这种双站回波数据。为了克服该难题,本文提出了基于多项式斜距模型的频谱变换方法。该方法不仅保证了频谱变换的精度,而且推得的二维频谱函数与单站频谱函数形式类似,适合后续的双站成像算法推导。
     其次,提出精确、高效的双站Chirp-Scaling算法。双站回波数据的频域特性,使得传统的Chirp-Scaling算法难以应用于双站成像处理。本文在精确的频谱函数的基础之上,通过改进距离徙动矫正和方位压缩实现方法,得到了适合高分辨率处理的双站Chirp-Scaling算法。
     第三,提出适合大基线、宽测绘带数据的双站扩展非线性Chirp-Scaling算法。与单站回波信号相比,双站SAR回波信号的斜距特性更为复杂,尤其是在宽测绘带条件下,二维大基线的存在将导致成像算法性能急剧下降。为了克服此类因素的影响,本文提出了适合大基线、宽测绘带数据的扩展非线性Chirp-Scaling算法。
     第四,提出分布式SAR分辨率自动合成算法。分布式SAR是双站SAR的一个重要应用领域。为了提高分布式SAR的图像分辨率,本文提出了基于图像质量测度函数的分布式SAR分辨率自动合成算法。
Bistatic Synthetic Aperture Radar (BISAR) is a new type of radar, where the transmitter and receiver are carried on two different platforms. Due to the separation of the transmitter and the receiver, the BISAR can configure the geometry of platforms according to the surveillance requirements. In comparison with the conventional monostatic systems, the increased flexibility of the bistatic systems brings several additional benefits like forward-looking SAR imaging, frequent monitoring, reduced vulnerability of military applications, and ability to use multilevel interferometry, etc. In addition, the BISAR is a fundamental component of the spaceborne constellation SAR systems. Therefore, the BISAR system is in possession of a wide potential of application.
     Due to the separation of the transmitter and the receiver, many technical problems such as synchronization of frequency, involved adjustment of transmitter pulse versus receiver gate timing, antenna pointing, and theoretical modeling are not sufficiently solved. Besides, the imaging algorithm is another difficulty, and the purpose of this dissertation is to propose a set of precise efficient algorithms for focusing the azimuth-invariant BISAR data.
     The azimuth-invariant property is significant for the modern monostatic SAR imaging algorithms that the main processing steps are carried out in the frequency domain, because all point targets with the same closest range collapse to the same migration curve in the range-Doppler domain. As a result, the efficiency of these imaging algorithms is achieved by taking advantage of block processing.
     Because of the separation of the transmitter and the receiver, the BISAR configurations are much diverse. To rank the complexity of the geometry situation, the BISAR configurations could be divided into four cases: one fixed platform case, tandem case, translational invariant (TI) case, and general case. According to the azimuth property of the echo data, they can also be divided into the azimuth-invariant configuration and the azimuth-variant configuration. Unlike the monostatic system, the BISAR is in general azimuth-variant system as both the transmitter and the receiver move along different motion trajectories with unequal velocities. Nevertheless, the azimuth-invariant property is remained in both the TI and tandem cases.
     Considering the increased complexities induced by the separation of the transmitter and the receiver, this dissertation summarizes the current algorithms, studies on the problems of BISAR imaging, and proposes the following novel algorithms:
     First, we propose a polynomial model of the bistatic range history and approximate point target spectrum. The bistatic range history is the sum of two individual hyperbolas, which is referred to as the‘flat-top hyperbola’. This makes it impossible to obtain a precise analytic point target spectrum for the BISAR data. To overcome this difficulty, the bistatic range history is approximated by a polynomial of the azimuth time. In this way, an analytic 2-D point target spectrum is derived, and efficient monostatic imaging algorithms are easily modified to handle the BISAR data.
     Second, a precise efficient bistatic Chirp-Scaling (CS) algorithm is proposed. Due to the range property of the BISAR data in the frequency domain, the conventional CS algorithm is hardly applied to process the BISAR data. Based on the analytic spectrum, a bistatic CS algorithm is proposed by two modified key operations: the range cell migration correction and azimuth compression implementation, which is able to achieve the high precision imaging with negligible approximations.
     Third, an Extended Nonlinear Chirp-Scaling (ENCS) algorithm for large baseline BISAR data is proposed. In comparison with the monostatic echo data, the range property of the BISAR data is much more intricate. The 2-D large baseline will severely deteriorate the performance of imaging algorithm under a wide swath configuration. To eliminate the affect of these factors, we propose the ENCS algorithm which greatly enhances the performance of the BISAR processing, particularly under a large baseline and a wide range swath.
     Finally, a sub-image auto-combination algorithm for constellation SAR system is proposed. The constellation SAR system is an important application of the BISAR technique. To enhance the image resolution of the constellation SAR system, we propose an auto-combination algorithm which is based on the image quality estimation functions.
引文
[1] Skolnik M I. Introduction to radar systems. New York: McGraw-Hill, 2001.
    [2] Kovaly J J. Synthetic aperture radar. Dedham, MA: Artech House, 1976.
    [3]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社, 1999.
    [4]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社, 2005.
    [5]张澄波.综合孔径雷达.北京:科学出版社, 1989.
    [6]张直中.机载和星载合成孔径雷达导论.北京:电子工业出版社, 2004.
    [7] Soumekh M. Synthetic aperture radar signal processing with MATLAB algorithms. New York: Wiley-Interscience, 1999.
    [8] Curlander J, McDonough R. Synthetic aperture radar: Systems and signal processing. New York: John Wiley & Sons, 1991.
    [9] Harger R O. Synthetic aperture radar systems: Theroy and design. New York: Academic Press, 1970.
    [10] Belcher D P, Baker C J. High resolution processing of hybrid strip-map/spotlight mode SAR. IEE Proceedings-Radar Sonar and Navigation, 1996, 143(6): 366-374.
    [11] Gough P T, Hawkins D W. Unified framework for modern synthetic aperture imaging algorithms. International Journal of Imaging Systems and Technology, 1997, 8(4): 343-358.
    [12] Lanari R, Zoffoli S, Sansosti E, et al. New approach for hybrid strip-map/spotlight SAR data focusing. IEE Proceedings-Radar Sonar and Navigation, 2001, 148(6): 363-372.
    [13] Webb J L H, Munson D C, Stacy N J S. High-resolution planetary imaging via spotlight-mode synthetic aperture radar. IEEE Transactions on Image Processing, 1998, 7(11): 1571-1582.
    [14] Owens J W, Marcellin M W. Rate allocation for spotlight SAR phase history data compression. IEEE Transactions on Image Processing, 1999, 8(11): 1527-1533.
    [15] Aguttes J P. Radically new design of SAR satellite: Short vertical antenna approach. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 50-64.
    [16] Lanari R, Tesauro M, Sansosti E, et al. Spotlight SAR data focusing based on a two-step processing approach. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 1993-2004.
    [17] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic aperture radar: Signal processing algorithms. Norwood, MA: Artech House, 1995.
    [18] Desai M D. Spotlight mode SAR stereo technique for height computation. IEEE Transactions on Image Processing, 1997, 6(10): 1400-1411.
    [19] Moreira A, Mittermayer J, Scheiber R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1123-1136.
    [20] Herique A, Phalippou L, Ramongassie S, et al. High resolution SAR constellation for risk management. Ceos Sar Workshop, 2000, 450: 287-292.
    [21] Shemer L, Kagan L, Zilman G. Simulation of ship wakes image by an along-track interferometric SAR. International Journal of Remote Sensing, 1996, 17(18): 3577-3597.
    [22] Askne J I H, Dammert P B G, Ulander L M H, et al. C-band repeat-pass interferometric SAR observations of the forest. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 25-35.
    [23] Fornaro G, Franceschetti G, Lanari R, et al. Interferometric SAR phase unwrapping using the finite element method. IEE Proceedings-Radar Sonar and Navigation, 1997, 144(5): 266-274.
    [24] Li J, Liu Z S, Stoica P. 3-D target feature extraction via interferometric SAR. IEE Proceedings-Radar Sonar and Navigation, 1997, 144(2): 71-80.
    [25] Ichoku C, Karnieli A, Arkin Y, et al. Exploring the utility potential of SAR interferometric coherence images. International Journal of Remote Sensing, 1998, 19(6): 1147-1160.
    [26] Singhroy V, Mattar K E, Gray A L. Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Remote Sensing: Inversion Problems and Natural Hazards, 1998, 21(3): 465-476.
    [27] Stramaglia S, Pasquariello G, Guerriero L, et al. Interferometric SAR phase unwrapping by parallel tempering on a APE100/Quadrics supercomputer. International Conference and Exhibition on High-Performance Computing and Networking, 1998, 1401: 898-900.
    [28] Zhang X L, Huang S J, Wang J G. Approaches to estimating terrain height and baseline for interferometric SAR. Electronics Letters, 1998, 34(25): 2428-2429.
    [29] Vachon P W, Campbell J W M, Gray A L, et al. Validation of along-track interferometric SAR measurements of ocean surface waves. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 150-162.
    [30] Bamler R. Synthetic radar interferometry. Inverse Problems, 1998, 14(4): R1-R54.
    [31] Hanssen R F. Radar interferometry: Data interpretation and error analysis. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001.
    [32] krieger G, Moreira A. Spaceborne bi- and multistatic SAR: Potential and challenges. IEEProceedings-Radar Sonar and Navigation, 2006, 153(3): 184-198.
    [33] Krieger G, Fiedler H, Hounam D, et al. Analysis of system concepts for bi- and multi-static SAR missions. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'03, 21-25 Jul 2003, 2: 770-772.
    [34] Krieger G, Fiedler H, Mittermayer J, et al. Analysis of multistatic configurations for spaceborne SAR interferometry. IEE Proceedings-Radar Sonar and Navigation, 2003, 150(3): 87-96.
    [35] Massonnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3): 506-520.
    [36] Goodman N A, Lin S C, Rajakrishna D, et al. Processing of multiple-receiver spaceborne arrays for wide-area SAR. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(4): 841-852.
    [37] Cumming I G, Wong F. Digital processing of synthetic aperture radar data: Algorithms and implementation. Norwood, MA: Artech House, 2005.
    [38] Moccia A, Chiacchio N, Capone A. Spaceborne bistatic synthetic aperture radar for remote sensing applications. International Journal of Remote Sensing, 2000, 21(18): 3395-3414.
    [39] DiPietro R C, Fante R L, Perry R P. Space-based bistatic GMTI using low resolution SAR. IEEE Aerospace Conference, Snowmass at Aspen, CO, 1-8 Feb 1997, 2: 181-193.
    [40] Brenner A R, Ender J H G. Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR. IEE Proceedings-Radar Sonar and Navigation, 2006, 153(2): 152-162.
    [41] Franceschetti G, Lanari R. Synthetic aperture radar processing. Boca Raton, FL: CRC Press, 1999.
    [42] Moore R K, Mogili A, Fang Y, et al. Rain measurement with SIR-C/X-SAR. Remote Sensing of Environment, 1997, 59(2): 280-293.
    [43] Macklin J T, Stapleton N R. Radar backscatter statistics from the sea surface: Implications of SIR-C/X-SAR observations from the NE Atlantic. Journal of Geophysical Research-Oceans, 1998, 103(C9): 18827-18837.
    [44] Zablotskii V R. Application of Almaz-1 SAR images to the study of agricultural crops. Earth Observation and Remote Sensing, 1996, 14(2): 313-319.
    [45] Grodskii S A, Kudryavtsev V N, Ivanov A Y, et al. Interaction of surface waves with the gulf stream according to Almaz-1 SAR data. Earth Observation and Remote Sensing, 1997, 14(3): 393-405.
    [46] Fransson J E S, Walter F, Olsson H. Identification of clear felled areas using SPOTP and Almaz-1 SAR data. International Journal of Remote Sensing, 1999, 20(18): 3583-3593.
    [47] Fransson J E S, Israelsson H. Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data. International Journal of Remote Sensing, 1999, 20(1): 123-137.
    [48] Ouchi K, Maedoi S, Mitsuyasu H. Determination of ocean wave propagation direction by split-look processing using JERS-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 849-855.
    [49] Paloscia S, Macelloni G, Pampaloni P, et al. The potential of C- and L-band SAR in estimating vegetation biomass: The ERS-1 and JERS-1 experiments. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 2107-2110.
    [50] Brown I A, Kirkbride M P, Vaughan R A. Find the firn line! The suitability of ERS-1 and ERS-2 SAR data for the analysis of glacier facies on Icelandic icecaps. International Journal of Remote Sensing, 1999, 20(15-16): 3217-3230.
    [51] Cookmartin G, Saich P, Quegan S, et al. Modeling microwave interactions with crops and comparison with ERS-2 SAR observations. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 658-670.
    [52] Baghdadi N, Gauthier Y, Bernier M, et al. Potential and limitations of RADARSAT SAR data for wet snow monitoring. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 316-320.
    [53] Aly Z, Bonn F J, Magagi R. Analysis of the backscattering coefficient of salt-affected soils using modeling and RADARSAT-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 332-341.
    [54] Malet J P, Maquaire O, Calais E. The use of global positioning system techniques for the continuous monitoring of landslides: Application to the Super-Sauze earthflow. Geomorphology, 2002, 43(1-2): 33-54.
    [55]何友,蔡复青,唐小明.双/多基地SAR发展评述.雷达科学与技术, 2008, 6(1): 1-8.
    [56]汤子跃,张守融.双站合成孔径雷达系统原理.北京:科学出版社, 2003.
    [57] Walker J L. Range-Doppler imaging of rotating objects. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 23-52.
    [58] Cardillo G P. On the use of the gradient to determine bistatic SAR resolution. Antennas and Propagation Society International Symposium, Dallas, TX, 7-11 May 1990, 2: 1032-1035.
    [59] Jones H M. Predicted properties of bistatic satellite images. IEEE National Radar Conference, Wakefield, MA, 20-22 Apr 1993: 286-291.
    [60]张直中.双基地合成孔径雷达.现代雷达, 2005, 27(1): 1-6.
    [61] Raney R K. A new and fundamental Fourier-transform pair. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'92, 26-29 May 1992: 106-107.
    [62] Bamler R, Meyer F, Liebhart W. Processing of bistatic SAR data from quasi-stationary configurations.IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3350-3358.
    [63] Raney R K, Vachon P W. A phase preserving SAR processor. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'89, Canadian, 10-14 Jul 1989, 4: 2588-2591.
    [64] Wu C. A digital system to produce imagery from SAR data. AIAA Conf.: Syst. Des. Driven Sens., Oct 1976,
    [65] Bennett J R, Cumming I. A digital processor for the production of SEASAT synthetic aperture radar imagery. Proc. SURGE Workshop, Frascati, Italy, Jul. 16-18 1979,
    [66] Wu C, Liu K Y, Jin M. Modeling and a correlation algorithm for spaceborne SAR signals. IEEE Transactions on Aerospace and Electronic Systems, 1982, 18(5): 563-575.
    [67] Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.
    [68] Davidson G W, Cumming I G, Ito M R. A chirp scaling approach for processing squint mode SAR data. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121-133.
    [69] Wong F H, Yeo T S. New applications of nonlinear chirp scaling in SAR data processing. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 946-953.
    [70] Mittermayer J, Moreira A, Loffeld O. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198-2214.
    [71] Cafforio C, Prati C, Rocca F. Full resolution focusing of SEASAT SAR images in the frequency—wavenumber domain. IEEE Journal of Geoscience and Remote Sensing, 1991, 12(3): 491-510.
    [72] Cafforio C, Prati C, Rocca F. SAR data focusing using seismicmigration techniques. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207.
    [73] Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusingalgorithms. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713.
    [74] Stolt R H. Migration by transform. Geophysics, 1978, 43(1): 23-48.
    [75] Loffeld O, Nies H, Peters V, et al. Models and useful relations for bistatic SAR processing. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031-2038.
    [76] Ender J H G, Walterscheid I, Brenner A R. Bistatic SAR - translational invariant processing and experimental results. IEE Proceedings-Radar Sonar and Navigation, 2006, 153(3): 177-183.
    [77] Walterscheid I, Brenner A R, Ender J H G. Results on bistatic synthetic aperture radar. Electronics Letters, 2004, 40(19): 1224-1225.
    [78] Walterscheid I, Ender J H G, Brenner A R, et al. Bistatic SAR processing and experiments. IEEETransactions on Geoscience and Remote Sensing, 2006, 44(10): 2710-2717.
    [79] Yates G, Horne A M, Blake A P, et al. Bistatic SAR image formation. IEE Proceedings-Radar Sonar and Navigation, 2006, 153(3): 208-213.
    [80] Sanz-Marcos J, Prats P, Mallorqui J J. Bi-static fixed-receiver parasitic SAR processor based on the back-propagation algorithm. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, 25-29 Jul 2005, 2: 1056-1059.
    [81] Sanz-Marcos J, Mallorqui J J, Broquetas A. Bistatic parasitic SAR processor evaluation. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'04, 20-24 Sep 2004, 6: 3666-3669.
    [82] Sanz-Marcos J, Mallorqui J J, Aguasca A, et al. First ENVISAT and ERS-2 parasitic bistatic fixed receiver SAR images processed with the subaperture range-Doppler algorithm. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'06, Denver, CO, 1-4 Aug 2006: 1840-1843.
    [83] Qiu X L, Hu D H, Ding C B. Focusing bistaitc images use RDA based on hyperbolic approximating. CIE International Conference on Radar, CIE'06, 16-19 Oct 2006: 1323-1326.
    [84] Qiu X L, Hu D H, Ding C B. Non-linear chirp scaling algorithm for one-stationary bistatic SAR. 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR'07, Huangshan, China, 5-9 Nov 2007: 111-114.
    [85] Qiu X L, Hu D H, Ding C B. Some reflections on bistatic SAR of forward-looking configuration. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735-739.
    [86] Qiu X L, Hu D H, Ding C B. An omega-K algorithm with phase error compensation for bistatic SAR of a translational invariant case. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2224-2232.
    [87] D'Aria D, Guarnieri A M, Rocca F. Focusing bistatic synthetic aperture radar using dip move out. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1362-1376.
    [88] Natroshvili K, Loffeld O, Nies H, et al. First steps to bistatic focusing. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, 25-29 Jul 2005, 2: 1072-1076.
    [89] Rodriguez-Cassola M, Krieger G, Wendler M. Azimuth-invariant, bistatic airborne SAR processing strategies based on monostatic algorithms. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, 25-29 Jul 2005, 2: 1047-1050.
    [90] Bamler R, Meyer F, Liebhart W. No math: Bistatic SAR processing using numerically computed transfer functions. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'06, Denver, CO, 1-4 Aug 2006: 1844-1847.
    [91] Wang W Q, Liang X D, Ding C B. An omega-K algorithm with integrated synchronization compensation for bistatic SAR. CIE International Conference on Radar, CIE'06, 16-19 Oct 2006: 797-800.
    [92] Neo Y L, Wong F H, Cumming I G. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 14-21.
    [93] Natroshvili K, Loffeld O, Nies H, et al. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2718-2727.
    [94] Guarnieri A M, Rocca F. Reduction to monostatic focusing of bistatic or motion uncompensated SAR surveys. IEE Proceedings-Radar Sonar and Navigation, 2006, 153(3): 199-207.
    [95] Ding J S, Loffeld O, Wang R, et al. Weighted LBF for spaceborne general bistatic SAR processing. Progress in Natural Science, 2008, 18(10): 1271-1277.
    [96] Gebhardt U, Loffeld O, Nies H, et al. Bistatic spaceborne/airborne experiment: Geometrical modeling and simulation. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'06, Denver, CO, 1-4 Aug 2006: 1832-1835.
    [97] Natroshvili K, Loffeld O, Nies H, et al. 2D inverse scaling bistatic processing and the focused image duality measurements. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'06, Denver, CO, 1-4 Aug 2006: 1188-1191.
    [98] Zhang Z H, Xing M D, Ding J S, et al. Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3633-3645.
    [99] Ding J S, Zhang Z H, Xing M D, et al. A new look at the bistatic-to-monostatic conversion for tandem SAR image formation. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 392-395.
    [100] Ding J S, Xing M D, Bao Z. Modified phase history model for high resolution spaceborne bistatic SAR. 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR'07, Huangshan, China, 5-9 Nov 2007: 646-649.
    [101]张振华.双/多基SAR成像算法研究.西安电子科技大学博士论文2007年7月.
    [102] Bamler R, Boerner E. On the use of numerically computed transfer functions for processing of data from bistatic SARs and high squint orbital SARs. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, 25-29 Jul 2005, 2: 1051-1055.
    [103] Ender J H G, Walterscheid I, Brenner A R. New aspects of bistatic SAR: Processing and experiments. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'04, 20-24 Sep 2004, 3: 1758-1762.
    [104] Walterscheid I, Ender J H G, Brenner A R, et al. Bistatic SAR processing using an omega-k type algorithm. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, 25-29 Jul 2005, 2: 1064-1067.
    [105] Ender J H G, Klare J, Walterscheid I, et al. Bistatic exploration using spaceborne and airborne SAR sensors: A close collaboration between FGAN, ZESS, and FOMAAS. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'06, Denver, CO, 1-4 Aug 2006: 1828-1831.
    [106] Wang R, Loffeld O, Nies H, et al. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 952-964.
    [107] Wang R, Loffeld O, Nies H, et al. Bistatic point target reference spectrum in the presence of trajectory deviations. IET Radar Sonar and Navigation, 2009, 3(2): 177-185.
    [108] Eldhuset K. A new fourth-order processing algorithm for spaceborne SAR. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 824-835.
    [109] Eldhuset K. Ultra high resolution spaceborne SAR processing. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 370-378.
    [110] Neo Y L, Wong F, Cumming I G. A two-dimensional spectrum for bistatic SAR processing using series reversion. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93-96.
    [111] Neo Y L, Wong F H, Cumming I G. A comparison of point target spectra derived for bistatic SAR processing. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2481-2492.
    [112] Goodman N A, Stiles J M. Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 921-935.
    [113] Li Z F, Bao Z, Wang H Y, et al. Performance improvement for constellation SAR using signal processing techniques. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 436-452.
    [114] Cerutti-Maori D, Ender J H G. Performance analysis of multistatic configurations for spaceborne GMTI based on the auxiliary beam approach. IEE Proceedings-Radar Sonar and Navigation, 2006, 153(2): 96-103.
    [115] Yang Z W, Liao G S, Zeng C. Reduced-dimensional processing for ground moving target detection in distributed space-based radar. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 256-259.
    [116] Jing W, Xing M D, Qiu C W W, et al. Unambiguous reconstruction and high-resolution imaging for multiple-channel SAR and airborne experiment results. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 102-106.
    [117] Martinerie F, Ramongassie S, Deligny B, et al. Interferometric cartwheel payload: Development statusand current issues. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'01, Sydney, Australia, 9-13 Jul 2001, 1: 390-392.
    [118] Massonnet D, Thouvenot E, Ramongassie S, et al. A wheel of passive radar microsats for upgrading existing SAR projects. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'2000, Honolulu, HI, 24-28 Jul 2000, 3: 1000-1003.
    [119] Prati C, Rocca F. Improving slant-range resolution with multiple SAR surveys. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 135-143
    [120]徐华平.基于频谱偏移估计的分布式星载SAR提高距离向分辨率的数据处理方法.电子学报, 2003, 31(12): 1790-1794.
    [121] Wang K, Liu X. Auto-combination of sub-band for spotlight SAR imaging. IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, 25-29 Jul 2005, 5: 3325-3328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700