农产品保鲜新材料环氧乙烷高级脂肪醇合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以天然高级脂肪醇和环氧乙烷为原材料,合成制取环氧乙烷高级脂肪醇(OHAA)农产品保鲜新材料。OHAA合成的难点是合成反应催化剂的选择,本文通过研究找出了催化OHAA合成的高效催化剂,并对催化合成反应的工艺进行了优化,研究结论主要如下:
     确定了Mg/Al/Co复合金属氧化物最佳的煅烧温度为500℃,在此温度下煅烧的催化剂具有很好的多孔结构,有利于催化OHAA的合成。通过比较得出了镁铝比为3:1的Mg/Al/Co复合金属氧化物具有最佳的催化性能。Mg/Al/Co复合金属氧化物都具有很大的比表面积,当Mg:Al=3:1时比表面积为235,具有最大比表面积。研究了催化剂用量、反应温度、反应压力对Mg/Al/Co复合金属氧化物催化OHAA合成反应的影响,用响应面分析法得出最佳的反应条件:催化剂用量2.5%,反应温度158℃,反应压力0.5 MPa,此时的反应速度为9.08 g/h,产物分子量分布为90%。通过研究表明Mg/Al/Co复合金属氧化物具有很好的重复利用性,为环境友好型催化剂。通过与传统KOH催化剂比较,Mg/Al/Co复合金属氧化物催化剂在反应速度上不如KOH,但是产物性能在过方面都超过了KOH。对Mg/Al/Co复合金属氧化物催化合成产物做红外分析,红外图谱与我们设计产物的分子式相符。对Mg/Al/Co复合金属氧化物催化的OHAA进行了薄层色谱分析,分析得出产物具有很好的窄分布效果,而且副产物PEG的含量低,产物中没有未反应的高级脂肪醇。根据转化率与时间变化曲线找到以Mg/Al/Co复合金属氧化物为催化剂时,符合动力学方程的反应阶段的分界点为63%。通过拟合1nP与时间曲线可以得到以Mg/Al/Co复合金属氧化物为催化剂时,不同温度下的反应速率常数,根据阿仑尼乌斯方程求出反应的活化能为:67.7 KJ/mol。
     通过不同的合成路线合成了五种Fe-Zn双金属配合物催化剂,首先对这些催化剂做了XRD表征,得出以1,4-二氧六环为配位体的催化剂的结晶度高于以叔丁醇为配位体的催化剂;K3Fe(CN)6和有机配体的混合溶液滴入ZnCl2溶液中得到的催化剂相比其它路径合成的催化剂结晶度更高;将配位体预先加入合成起始剂中可以得到结晶度更好的催化剂。比较了五种Fe-Zn双金属配合物催化剂的催化活性得出合成高分子量的OHAA时,适宜的滴加顺序为将K3Fe(CN)6溶液和有机配体的混合溶液滴加到ZnCl2溶液;合成小分子量的OHAA则将ZnCl2溶液滴加到K3Fe(CN)6溶液,这样可以缩短诱导期的时间。以1,4-二氧六环为配位体的Fe-Zn双金属配合物催化剂催化OHAA合成的速度达到了14.3g/h。Fe-Zn双金属配合物络合1,4-二氧六环催化剂催化OHAA合成100℃为最合适的温度,催化OHAA反应产物的窄分布程度也非常高的。
In this thesis, the natural fatty alcohol and ethylene oxide were used to synthesize fatty alcohol ethylene oxide (OHAA), which was a new agriculture products freshing material. The nodus of synthesis reaction is to search a high performance catalyst. The efficient catalyst of synthesis OHAA were found out in this article. The main results are as follows:
     The best calcination temperature of Mg/Al/Co composite metal oxides is 500℃. Calcination at this temperature the catalyst owned a good porous structure and formed the internal crystal structure. The ratio of Mg:Al at 3:1 Mg/Al/Co composite metal oxide owned the best catalytic performance. Mg/Al/Co composite metal oxides owned the greatest surface area of 235 when Mg:Al at 3:1. The impact of the amount of catalyst, reaction temperature, reaction pressure in Mg/Al/Co composite metal oxide catalyst synthesis OHAA were researched. The optimized conditions of Mg/Al/Co composite metal oxide catalysis OHAA synthesis were:catalyst amount of 2.5%、temperature 158℃、pressure 0.5 Mpa and the reaction speed was 9.08 g/h, the distribution of OHAA was 90%. Mg/Al/Co composite metal oxides is environmental-friendly catalyst, wich is with good re-use nature and non-toxic pollution. By comparison with conventional KOH catalyst, Mg/Al/Co composite metal oxide catalyst synthesis OHAA have a less speed which is due to strong alkaline of KOH, but the performance of product is better than KOH. Analysis the product catalyst by Mg/Al/Co composite metal oxide by IR spectra and the product on line is matched with we designed. Thin-layer chromatography analysis reveals that the product catalyst by Mg/Al/Co composite metal oxide owned the narrow distribution and low content of PEG-product, and the product of unreacted higher fatty alcohol is not exist. According to the conversion rate the cut off point in Mg/Al/Co composite metal oxide catalyst synthesis OHAA is 63%, which is in line with the response phase of the dynamic equation. We can find the rate constant at different temperatures of Mg/Al/Co composite metal oxide catalyst synthesis OHAA by LnP and time curves. According to Arrhenius equation, activation energy of reaction is 67.7 KJ/mol by fitting 1nK and 1/T curve.
     Five kinds of Fe-Zn double metal complex catalyst were synthisized through XRD analyze, which have different synthetic route and obtained that 1,4-dioxane ligand catalyst for the degree of crystallinity higher than tert-butyl alcohol as a catalyst ligand; K3Fe (CN) 6 and a mixed solution of organic ligands in solution instilled ZnCl2 catalyst for the synthesis of catalyst was with high crystallinity, compared with other paths; the synthesis of ligands from the pre-accession can be better crystallinity of the catalyst before agents. Comparison of five Fe-Zn double metal complex catalytic activity obtained when the synthesis of high molecular weight OHAA, the appropriate order of dropping is the K3Fe (CN) 6 solution and the organic ligand mixture added to ZnCl2 solution; synthesis of low molecular weight OHAA, ZnCl2 solution was added to K3Fe (CN)6 solution, this can shorten the induction period of time.1,4-dioxane as the ligand of Fe-Zn double metal complex catalysts, and OHAA synthesis rate reached 14.3 g/h. Fe-Zn complex double metal complexes of 1,4-dioxane catalyst OHAA for the synthesis,100℃was the most suitable temperature, catalyst OHAA narrow distribution of reaction products have a very high level.
引文
1.程侣柏.脂肪醇聚乙氧基化窄分布技术.日用化学工业,1991,4:21-27.
    2.陈铭福.非离子表面活性剂的新动向.金陵石油化工,1989,7(6):31-34
    3.陈华,朱新宝,王康芳等.环氧化合物开环聚合催化剂的研究进展.化学工业与工程技术,2008,29(2):167-182
    4. 陈永春.高分子表面活性剂的研究现状.日用化学工业,1997,05:213-119
    5. 杜以波,李峰,何静等.影响水滑石晶体结构的因素.燃料化学学报,1997,25(5):449-453
    6.黄耐.略论果蔬涂膜保鲜技术.广西热带农业,2006,4:8-13
    7. 洪良智,祝方明,涂建军.双金属氰化物催化剂的研究进展.合成树脂与塑料,2002,19(3):5
    8. 洪珍玉.应用薄层色谱技术分沂脂肪醇聚氧乙烯醚中环氧乙烷加成摩尔数分布.天津日化简讯,1982,2:42-50
    9. 胡少强,翁筱,王文浩等.双金属氰化络合物(DMC)催化剂的热分析表征.浙江大学学报(理学版),2007,43(5):287-295
    10.胡迁林.我国催化剂技术及我国催化剂的发展.当代化工,2001,1:2-6
    11.李长海,王元瑞,孟庆新.C12-14醇乙氧基化反应催化剂的研究.精细化工,2002,19:63-66
    12.李正西.聚醚的现状与预测.化工开发与设计,2001,12:30-37
    13.姜杨.聚醚羟值测定的新方法.聚胺酯工业,1996,3:43-45
    14.倪哲明,俞卫华.新型杂多酸阴离子层柱材料的合成、表征及性能的研究.浙江大学学报(理学版),2003,30(3):299-301
    15.刘金龙,王永杰,廖世键等..水滑石选择性催化合成三乙二醇单丁醚.催化学报,2005,2(3):283-285
    16.刘金廷.环氧乙(丙)烷聚合物生产过程中的强化问题.石油化工,1986,7:433-438
    17.刘卫,高正中.用钙系催化剂合成月桂醇聚氧乙烯.石油化工,1993,4:252-255
    18.马利静,周卯星,王宏斌等.脂肪酸甲酯乙氧基化物中未反应脂肪酸甲酯的测定.日用化学工业,2004,34(2):119-121
    19.孟庆新,李长海,王元瑞.脂肪醇乙氧基化窄分布催化剂.吉林工学院学报,2001,22(4):31-36
    20.藕伟民.脂肪醇聚氧乙烯醚及乙氧基化技术.日用化学工业,1995,4:20-27
    21.戚渭新,丁国来,韩勇等.双金属氰化物络合催化合成聚醚起始条件的研究.化学推进剂和高分子材料,2002,11:145-151
    22.陶炎鑫.Mg/Al类水滑石衍生复合氧化物上N2O催化分解.物理化学学报,2007,23(2):162-168
    23.王夔.未来化学的发展趋势.中国科学院院刊,2001,1:6-91
    24.王西奎.双金属氰化物催化剂的制备表征与催化剂性能的研究.现代工业,2003,23增刊:68-72
    25.王永杰,刘金龙,李文钊等.杂多酸催化乙醇与环氧乙烷醚化.精细化工,1999,28:94-99
    26.王文浩,李俊贤,周集义等.双金属氰化物的合成与应用研究进展.化学推进剂和高分子材料,2004,2:147-153
    27.魏香奕,贾利蓉,吕远平等.天然多糖涂膜保鲜果蔬的研究进展.食品科技,2007,2:252-254
    28.吴立传,余爱芳,张敏等.双金属催化环氧化物聚合动力学研究.高分子学报,2003,6:71-76
    29.吴至宁,周迎媞,程侣柏.薄层色谱法对窄分布月桂醇聚氧乙烯醚的分析鉴定.日用化学工业,1992,3:149-154
    30.许世超,张纪梅,高祥等.杂多离子水滑石催化窄分布聚氧乙烯醚研究.天津化工,2002,11:14-18
    31.杨树良.醇醚生产技术的开发及应用.精细石油化工,1990,6:18-23
    32.张纪梅,吕彤.精细化工实验.天津工业大学,1996,第一版:87-92
    33. A.Gugliuzza, E.Drioli. New performance of a modified poly (amide-12-b-ethylene oxide). Polymer,2003,44:2149-2157
    34. Brian J.Hoffman, Larry T Taylor, Stephen Rumbelowb et al. Determination of alcohol polyether average molar oligomer value/distribution via supercritical fluid chromatography coupled with UV and MS detection. Journal of Chromatography A, 2004,1043:285-290
    35. Chlebieki J, Awiflka A. Reaction of fatty acid with propylene oxide. Ten-side Detergent,1985,3:121-122
    36. Chu P, Kuhl G h. Preparation of Methyltert-buty Ether(MTBE) over Zeolite Catalysts. Ind Eng Chem.Res,1987,26:365-370
    37. Clapses P, Valenecia G. Progress in the study on peptide synthesis catalyzed by immobilized enzymes. Enzyme Microb Technol,1992,14:575-580
    38. Daehwan Kim, Chengzhe Huang, Hongsun Lee et al. Hydrotalcite-type catalysts for narrow-range oxyethylation of 1-dodecanol using ethyleneoxide. Applied Catalysis A:General,2003,249:229-240
    39. Danut e Kau sp edien, Julius Snuki skis, Audron Gefenien et al. Effect of alkyl tail and oxyethylation degree on the cosorption of nonionic surfactant and nickel (Ⅱ) by polyacrylic acid-functionalized cation exchanger. Colloids and Surfaces A: Physicochem. Eng Aspects,2007,311:180-186
    40. Das.N.N. Catalytic characterization of bi-functional catalyst derived from Pd-Mg-Al layered double hydroxides. Bulletin of Materials Science,2002,25(4):283-289
    41.Der-Jang Liaw, Wuu-Jyh Liang, Been-Yang Liaw et al. Preparation of new polyether with oxetane pendant group. Journal of Polymer Science Part A: Polymer Chemistry,1998,36:103-107
    42. D.Vollhardt, G Czichocki, R Rudert. EVect of the molecular structure on the adsorption of alkyl ethersulphates and alkane ether sulphonates at the air-water interface. Physicochemical and Engineering Aspects,1998,142:315-322
    43. Ernesto Salzano, Martino Di Serio, Elio Santacesari. The role of recirculation loop on the risk of ethoxylation processes. Journal of Loss Prevention in the Process Industries,2007,20:238-250
    44. E Santacesari, M.DiSerio, R Tesser. Ole of ethylene oxide solubility in the ethoxylation processes. Catalysis Today,1995(24):23-28
    45. Felix Sirovski, Sergei Mulyashov, Valery Shvets. Large-scale fatty amine ethoxylation reactor:A dynamic model. Chemical Engineering Journal,2006,117: 197-203
    46. Guohua QU. INTEGRATION OF REFINING AND CHEMICAL INDUSTRY —Development Strategy for Petrochemicals in New Century. Oil Transaction (Oil Chemistry),2001,17(1):23-27
    47. Hans Schott. A linear relation between the cloud point and the number of oxyethylene units of water-soluble nonionic surfactantsvalid for the entire range of ethoxylation. Journal of Colloid and Interface Science,2003,260:219-224
    48. Hanna Adamczak, Katarzyna Mater, Radoslaw Urban ski et al. Ultrafiltration of Micellar Solutions Containing Phenols. Journal of Colloid and Interface Science, 1999,218:359-368
    49. Hao Ju, Bryan D McCloskey, Alyson C Sagle et al. Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. Journal of Membrane Science,2008,307:260-267
    50. Hreczuch.W. Synthesis of surfactants with narrow-range distribution of the polyoxyethylene chain. Journal of the American Oil Chemists Society,1996,73 (1): 73-78
    51. I Hama, T Okamoto. Direct Ethoxylation of Fatty Methy, Ester over AI-Mg Composite oxide Catalyst JAOCS,1997,74(1):19-24
    52. JENO MORGOS. A novel way for ethoxylation with basic catalysts. JAOCS,1983, 160(11):1905-1907
    53. J.I.Di Cosimo, V.K.Diez. Structure and Surface and Catalytic Properties of Mg-AI Basic Oxides. Journal of Catalysis,1998(178):499-510
    54. Kirpal. Enzyme-catalyzed Ring-Oping Polymerization of co-Pentadecalactone. Macromolecules,1997,30:2705-2711
    55. Kim, Daehwan. Hydrotalcite-type catalysts for narrow-range oxyethylation of 1-dodecanol using ethyleneoxide. Applied Catalysis A:General,2003,249(2): 229-240
    56. K Lee, Matheson. Peaked distribution ethoxylates—their preparation characterization and performance evaluation. JAOCS,1986,3:65-370
    57. Kloprogge.J.T. Synthesis and spectroscopic characterization of deuterated hydrotalcite. Journal of Materials Science Letters,2002,21(8):603-605
    58. Kulamani Parida. Mg/Al Hydrotaleite:PreParation,Characterization,Ketonisation of Aeetic Acid. Journal of Molecular Catalysis,2000,151:189-192
    59. Kutarzyna Materna,Gerard Cote, Jan Szymanowski. Cloud point of aqueous solutions containing oxyethylated methyldodecanoates:effects of surfactant hydrophilicity, nature of added electrolyte, and water activity. Journal of Colloid and Interface Science,2004,269:466-471
    60. Li Datang, Guojun. Exploration on influence of Calcination Temperature on Structure and Surface Acidity andBasicity of Mg(Al)O Composite Oxide. Chinese Journal of Chemical Physics,2000,13(2):220.
    61. Lorena I Luppi, Ivo Hardmeier, Paola A. Babay et al. Anaerobic nonylphenol ethoxylate degradation coupled to nitratereduction in a modified biodegradability batch test. Chemosphere,2007,68:2136-2143
    62. Magdalena Jachowska, Hanna Adamczak, Jan Szymanowski. Ultrafiltration characteristics of oxyethylated methyl dodecanoate aqueous solutions. Physicochemical and Engineering Aspects,2002,192:11-18
    63. Mansfield R C, Locke J E. The preparation of series of molecularly homogenous para-t-octyl-phenoxy poly(ethoxy) ethanol. JAOCS,1964,41(4):267-272
    64. Maria A Rojas-Grau, Maria S Tapia, Olga Martin-Belloso. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT,2008,41: 139-147
    65. Max Donbrow. Stability of Polyoxyethylene Chain. Surf Sci Ser,1987, (23): 1011-1025
    66. Michael. F. Cox. The Effect of "pealing" the ethylene oxide distribution on the performance of alcohol ethoxylates and ether sulfates. JAOCS,1990,67(9): 599-604
    67. M Selvaraj, P.K. Sinha, K.S. Seshadri et al. Comparison of solid acid catalysts in the production of ethyl 「-naphthyl ether (neroline) by ethoxylation of 「-naphtho. Applied Catalysis A:General,2004,265:75-84
    68. N.S.Battersby, A.J.Sherren, R.N.Bnmpus. et al. The fate linear alcohol ethoxylates during activated sludge sewage treatment. Chemosphere,2001,45:109-121
    69. Parthasarathy.G. Pressure-induced phase transitions of hydrotalcite by electrical resistivity, structural and thermal studies. Microporous and Mesoporous Materials, 2002,56(2):147-152
    70. Radojevic.Z. Anionic clay and hydrotalcite synthesis. Key Engineering Materials, 2001,206(111):1763-1766
    71. Rao K K,Gravelle M, A.Evans et al. Activation of Mg-Al hydrotacite catalyst for aldol condesation reactoion. Catal,1998,173:115-121
    72. Ren qingli. Optimization of differential scanning calorimetry endothermic value and thermal analysis of the hydrotalcite. Materials Science Forum,2003,425: 151-156
    73. R.Spilker, H.B.Mekelburger, A.Evans et al. Chromatographic analyis of ethoxylates. Tenside Surf Det,1998,35(6):415-450
    74. R. van Compernolle, D.C.McAvoy, A.Sherren et al. Predicting the sorption of fatty alcohols and alcohol ethoxylatesto effluent and receiving water solids. Ecotoxicology and Environmental Safety,2006,64:61-74
    75. Sonia Z Vina, Alicia Mugridge, Mari A Garci et al. Efects of polyvinylchloride films and edible starch coatings on quality aspects of refrigerated Brussels sprouts Food Chemistry,2007,103:701-709
    76. S.W. de Leeuw, A Van Zon, G.J Bel. Structural relaxation in poly(ethyleneoxide) andpoly(ethyleneoxide)-sodium iodide systems:a moleculardynamics study. Electrochimica Acta,2001,46:1419-1426
    77. S.W.Morrall, J.C.Dunphy, M.L.Cano et al. Removal and environmental exposure of alcohol ethoxylates in US sewage treatment. Ecotoxicology and Environmental Safety,2006,64:3-13
    78. T. Wind, R.J.Stephenson, C.V.Eadsforth et al. Determination of the fate of alcohol ethoxylate homologues in a laboratory continuous activated-sludge unit study. Ecotoxicology and Environmental Safety,2006,64:42-60
    79. W Hreczuch, G Bekierz.Homologue. distribution of alcohol ethoxylates. Tenside Suif Det,1995,32:55
    80. Yueying Ren, Huanxiang Liu, Xiaojun Yao et al. The accurate QSPR models for the prediction of nonionic surfactant cloud point. Journal of Colloid and Interface Science,2006,302:669-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700