并联型有源电力滤波器的控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谐波污染问题向电网供电质量提出了严峻的挑战,有源电力滤波器(APF)做为治理谐波最有效的方案,一度成为国内外研究的热点。随着APF主电路结构逐步走向成熟,电流控制方案的好坏成为影响有源电力滤波器性能的最主要因素之一。现行的控制方法较多,不同的控制算法各有自身优、缺点,针对不同的谐波源选择合适的控制方法,将能够更好的发挥APF系统治理电网谐波的作用。
     本文以并联型有源电力滤波器作为研究对象,分析了其基本工作原理,建立了数学模型,并以此为基础推导出主电路电容、电感等参数设计原理,为后续仿真研究提供了强有力的理论支持。
     本文重点将滞环控制、比例积分并联重复控制、迭代PI控制三种控制算法应用于APF系统电流环控制,并进行了深入的对比研究。结合各控制算法的原理,推导了滞环环宽与开关频率的关系函数,提出了重复控制和迭代PI控制在“内模”结构上的一致性。最后本文通过Saber软件搭建了三相三线制并联型APF系统的仿真平台,选用基于瞬时无功功率理论的谐波检测方法,从不同角度对比了三种控制算法下APF系统的性能,给出了仿真波形、频谱分析和对比数据,验证了滞环控制各参数之间的联系、PI+重复控制和迭代PI控制在性能表现上的相似性,并对各控制算法下的APF系统响应速度、稳态精度、动态性能、鲁棒性,以及受开关频率的影响程度等方面进行了详细对比研究,最后对仿真结果进行归纳总结,研究结论对用户针对不同谐波源选取合适的控制算法具有一定的参考价值。
Harmonic pollution is proved to be one serious challenge in the procedure of power supply, Active Power Filter(APF) as the most effective technology in harmonic control, has been one hot research for a one time. With the development of main circuit structure, the performance of APF relies more on control strategy. Though different strategies have their own features, choosing the appropriate strategy against different harmonic source will make APF play a more important role in suppressing the harmonic.
     In the thesis, the operating principle and mathematical model of shunt APF are analyzed and established, meanwhile design principle of parameters in main circuit, such as capacity, inductance, is also derived, which provide the theoretical support for the follow-up simulation study.
     The hysteresis control, PI control of parallel repetition, iterative PI control are used to design APF current control respectively, and then the comprehensive compare study is developed. Besides, the functional relationship between hysteresis loop width and switching frequency is proposed, and indicating the consistency in "internal model" structure between repetitive control and iterative PI control.The simulation model of three-phase three-wire shunt APF is established in Saber, the harmonic is detected based on the theory of instantaneous reactive power, and the three control algorithms above are compared in different aspects. Meanwhile, the simulation waveforms and spectrum analysis data are shown in the thesis, which verifies the relationship among parameters in hysteresis control, as well as similarity of repetitive control and iterative control in performance. Using different control algorithm, the response speed, steady-state accuracy, dynamic performance, robustness, impact of switching frequency are compared and studied in detail. At last, the simulation results are summarized for the user to select the appropriate control algorithm, which surely has a considerable reference value.
引文
[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿(第一版).北京:机械工业出版社, 2004
    [2]吴勇.有源电力滤波器若干关键技术研究: [博士学位论文].华中科技大学, 2007
    [3]漆铭钧,罗安,刘定国,徐先勇,李锋.有源电力滤波器参考电流的预测方法及其实现.中国电机工程学报, 2009, 7(20): 32-36
    [4]罗安.电网谐波治理.北京:中国电力出版社, 2006
    [5]吴勇,徐金榜,王庆义,万淑芸.并联有源电力滤波器电流预测控制.华中科技大学学报(自然科学版). 2008, 36(4): 99-102
    [6]陈仲.并联有源电力滤波器实用关键技术研究: [博士学位论文].浙江大学, 2005
    [7]陈东华.有源滤波应用于飞机交流电源系统的关键技术研究: [博士学位论文].南京航空航天大学, 2007
    [8]耿攀,戴珂,魏学良,张凯,康勇.三相并联型有源电力滤波器电流重复控制.电工技术学报, 2007, 22(2): 127-131
    [9]周柯.注入式有源电力滤波器的关键技术研究与工程应用: [博士学位论文].湖南大学, 2007
    [10]赵金,延烨华,徐金榜,万淑芸.逆变电源重复控制技术的研究.华中科技大学学报(自然科学版). 2003, 31(12): 25-28
    [11] Wu Jian, He Na, Xu Dianguo. A 10KV shunt hybrid active filter for a power distribution system[P]. Twenty-Third Annual IEEE on APEC, 2008. 927-932
    [12] Huayun Yang, Shiyan Ren. A Practical Series-Shunt Hybrid Active Power Filter Based on Fundamental Magnetic Potential Self-Balance[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 2089– 2096
    [13] An Luo, Zhikang Shuai, Shen, Z.J., Wenji Zhu. Design Considerations for Maintaining DC-Side Voltage of Hybrid Active Power Filter With Injection Circuit [J]. IEEE Transactions on Power Electronics, 2009, 24(1): 75-84
    [14] Corasaniti, V.F., Barbieri, M.B., Arnera, P.L., Valla, M.I., Comparison of active filters topologies in medium voltage distribution power systems[P]. IEEE, 2008. 1-8
    [15] Vodyakho, O., Kim, T., Kwak, S., Comparison of the space vector current controls for shunt active power filters[P]. IEEE on IECON, 2008. 612-617
    [16] Mortazavi, S.S., Kianinezhad, R., Ghasemi, A. Auto tuned robust active power filter for power quality improvement under fast load variation[P]. IEEE on PEMD, 2008. 1646-1651
    [17] da Silva, C.H., Pereira, R.R., da Silva, L.E.B., Lambert-Torres, G., Pinto, J.O.P., Se Un Ahn. Dead-time compensation in Shunt Active Power Filters using fast feedback loop[P]. IEEE on IECON, 2008. 1-4
    [18] Yong Wang, Fuhua Ye, Miao Guan. Three-phase active power filter based on simplified space vector control[P]. IEEE on ICEMS, 2008. 2008-2011
    [19] Lascu, C., Asiminoaei, L., Boldea, I., Blaabjerg, F.. Frequency Response Analysis of Current Controllers for Selective Harmonic Compensation in Active Power Filters[J]. IEEE, 2009, 56(2): 337-347
    [20] Kumar, P., Mahajan, A.. Soft Computing Techniques for the Control of an Active Power Filter[J]. IEEE, 2009,24(1): 452-461
    [21] Ramos-Carranza, H.A., Medina, A., Chang, G.W.. Real-Time Shunt Active Power Filter Compensation[J]. IEEE, 2008,23(4): 2623-2625
    [22] Khadkikar, V., Chandra, A., Singh, B.N.. Generalised single-phase p-q theory for active power filtering: simulation and DSP-based experimental investigation[J]. IET, 2009,2(1): 67-78
    [23] Lenwari, W, Sumner, M, Zanchetta, P. The Use of Genetic Algorithms for theDesign of Resonant Compensators for Active Filters[P]. IEEE Transactions on Accepted for future publication, 2009. 1-1
    [24] Mazumder, S.K.. A sequence-based control scheme for voltage-source converters in naval and commercial microgrids[J]. IEEE on ESTS, 2009. 461-468
    [25] Czarnecki, L.S.. Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control[J]. IEEE, 2009,24(2): 483-488
    [26] Tzung-Lin Lee, Jian-Cheng Li, Po-Tai Cheng. Discrete Frequency Tuning Active Filter for Power System Harmonics[J]. IEEE,2009,24(5): 1209-1217
    [27] Yu, Jingrong, Hu, Kai, Jing, Zhang. Design and Stability Analysis of Comprehensive Compensation System Based on Active Power Filter and Capacitors[P]. IEEE on APPEEC, 2009. 1-5
    [28] Liu, Dong, Zhang, Bingda, Zhang, Xiaolei. Design of Adaptive Increment Controlled Hybrid-Type Active Power Filter[P]. IEEE on APPEEC, 2009: 5-8
    [29] Fujita, H.. A Single-Phase Active Filter Using an H-Bridge PWM Converter With a Sampling Frequency Quadruple of the Switching Frequency[J]. IEEE Transactions on Power Electronics, 2009, 24(4): 934-941
    [30] Cirrincione, M., Pucci, M., Vitale, G., Miraoui, A.Current Harmonic Compensation by a Single-Phase Shunt Active Power Filter Controlled by Adaptive Neural Filtering[P]. IEEE, 2009. 1-1
    [31] Peng Xiao, Venayagamoorthy, G.K., Corzine, K.A.. Seven-Level Shunt Active Power Filter for High-Power Drive Systems[J]. IEEE,2009,24(1): 6-13
    [32] An Luo, Zhikang Shuai, Shen, Z.J., Wenji Zhu, Xianyong Xu. Design Considerations for Maintaining DC-Side Voltage of Hybrid Active Power Filter With Injection Circuit[J]. IEEE, 2009, 24(1): 75-84
    [33] Yingjie He, Jinjun Liu, Zhaoan Wang, Yunping Zou. An Improved Repetitive Control for Active Power Filters with Three-Level NPC Inverter[P]. IEEE on APEC, 2009. 1583-1588
    [34] Radzi, M. A. M., Rahim, N. A..Neural Network and Bandless Hysteresis Approach to Control Switched Capacitor Active Power Filter for Reduction of Harmonics[J]. IEEE, 2009, 56(5): 1477-1484
    [35] Patidar, R.D., Singh, S.P.. Harmonic, Reactive and Neutral Currents Compensation and Load Balancing in 3P4W Distribution Systems[P]. IEEE on ICCET, 2009. 512-516
    [36] Ping Wei, Zhixiong Zhan, Houquan Chen. A DSP-based Active Power Filter for Three-phase Power Distribution Systems[P]. IEEE on ICCET, 2009. 210-214
    [37]陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社, 2002
    [38]张崇巍,张兴. PWM整流器及其控制(第一版).北京:机械工业出版社, 2005
    [39]许欢,陈特放,龙占勇.有源电力滤波器直流侧电压控制的研究.微电机, 2009, 10(9): 40-45
    [40]袁洪,余胜,李俊.双闭环SVPWM控制的并联型有源电力滤波器仿真研究.电工电气, 2009, 4(4): 28-34
    [41]姜齐荣,赵东业,陈建立.有源电力滤波器的结构、原理、控制.北京:科学出版社, 2005
    [42]陈兵,谢运祥,宋静娴.单周控制有源电力滤波器关键参数的最优选择.电工技术学报, 2008, 23(7): 86-91
    [43]陈伯时.电力拖动自动控制系统.北京:机械工业出版社, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700