DC-DC模块化组合变流器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力电子系统集成是电力电子技术发展的一个重要趋势,系统集成DC-DC模块化组合变流器的研究是其中的重要课题之一。为了克服在高压大功率场合单个功率变换器具有输入输出电流脉动大、功率器件的电压应力高、损耗大、变换器电磁干扰严重等缺点,本文研究了具有自然输入(输出)均压与输出(输入)均流功能的DC-DC模块化组合变流器。模块化功率变换器的主要优点有:功率器件的电压与电流应力低;通过引进一定的冗余模块,极大的提高了系统的可靠性;标准的功率变换器模块可以减小生产成本与开发时间;功率模块可以很容易的再组合来满足多种输入输出功率等级的需要;可以提高系统的效率与功率密度,特别当引进交错控制技术的时候。
     本文通过大量的实验研究验证了两种输入端并联输出端串联的模块化直流变换器和一种输入端串联输出端并联的模块化直流变换器的优点。在这三种结构中,每个单元模块在输入端(或者输出端)并联来提高系统的功率等级,在输出端(或者输入端)串联来满足系统的高电压等级需要。本文主要以全桥变换器单元为研究对象,来揭示输入并联输出串联以及输入串联输出并联模块化直流功率变换器的特点,其结论可以推广到正激、推挽等电路。文中的控制方式引入了交错控制技术与恒定占空比技术,优化了系统性能。
     文章首先研究了输入端并联输出端对称串联的模块化全桥变换器,得出了这种变换器具有各模块单元输出端二极管电压应力低、开关管电流应力小、输出均压、输入均流、输入输出滤波器体积小等优点。其次研究了输入端并联输出端不对称串联的模块化变换器,得出了这种结构的变换器具有输入端并联输出端对称串联的模块化全桥变换器的优点外,还有输出滤波电感数量少、动态响应速度高、系统损耗小等优点。然后研究了输入端串联输出端并联的模块化变换器,得出了这种变换器具有控制简单、输入端开关管电压应力低、输入均压、输出均流、输入输出滤波器体积小等优点。
     针对模块组合变换器系统复杂,控制器设计难度大的特点,本文提出了基于能量贡献等效的系统降阶控制方法,降低了控制系统的设计难度。
     为了验证本文方案的实用性,分析了模块元件参数差异对于系统性能的影响。
     论文的一些研究成果在航空静止变流器与模块式不间断电源中进行了应用实验。
Power electronics system integration is seen as an important development trend in power electronics technique nowadays. Research on modular and combined DC-DC converters is one of the most important projects in the power electronic system integration.
     To overcome the disadvantages of the large input and output current ripple fluctuation、high voltage stresses of the secondary-side diodes、large losses of the power devices、high electromagnetic interference etc in the single power converter of high voltage area, modular and combined DC-DC converters with naturally input (output) voltage and output(input) current sharing are studied in this paper. The main advantages of the modular power converters include: low voltage and current stresses of the power devices; significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and developing time; power systems can be easily reconfigured to support varying input-output specifications; and higher efficiency and power density of the overall system, especially with interleaving control methods.
     The advantages of the two types of the input-parallel and output-series and one type of the input-series and output-parallel modular DC-DC converter are verified by a plenty of experimental research work. The system power level is enlarged by the parallel structure of each modular at the input-end (or output-end), and the voltage level is enlarged by the series structure of each modular at the output-end (input-end). As a single-unit of the modular combined converters, Full-bridge converters are main research objects chosen to discover the characteristics of the input-parallel and output-series as well as that of the input-series and output-parallel modular DC-DC converters, and the research conclusions can be extended and applied to the circuit structures of the half-bridge、forward、push-pull and so on. The interleaving control techniques and constant duty cycle strategies are adopted to achieve better performance of the system.
     In this paper, firstly the full-bridge modular DC-DC converters connected in input-parallel and output-series symmetrically are studied, and the research conclusions exhibit the following advantages: low voltage stresses in transformer secondary side diodes; low current stresses of the power devices; output voltage sharing; input current sharing; small volume of input and output filter. Secondly the Full-Bridge modular DC-DC converters connected in input-parallel and output-series dissymmetrical are studied, and the research conclusions exhibit the following advantages: small number of inductors; fast dynamic response time and low losses of the system besides that in the full-bridge modular DC-DC converters connected in input-parallel and output-series symmetrically. Thirdly the Full-Bridge modular DC-DC converters connected in input-series and output-parallel are studied, and the research conclusions exhibit the following advantages: the simplicity of the control strategy; low voltage stresses in transformer primary side MOSFET; input voltage sharing; output current sharing; small volume of input and output filter.
     A reduced-order system model and responding control method using the equivalent energy contribution is presented to alleviate the hardness of designing controller resulting from the complicated modular combined system.
     The effect on the system quality brought about by the parameter difference existing in the components of each modular is studied to verify the practicality of the scheme.
     Some research results of this paper are obtained from an aeronautical static converter and a modular uninterrupted power supply (UPS).
引文
[1] M.F. Escalante, J. C. Vannier, and A, Arzande, "Flying capacitor multilevel inverters and DTC motor drive applications," Industrial Electronics, IEEE Transactions on, vol. 49, pp. 809-815, 2002.
    [2] K. Dae-Wook, L. Yo-Han, S. Bum-Seok, C. Chang-Ho, and H. Dong-Seok, "An improved carrier-based SVPWM method using leg voltage redundancies in generalized cascaded multilevel inverter topology," Power Electronics, 1EEE Transactions on, vol. 18, pp.180-187, 2003.
    [3] S. Gui-Jia, "Multilevel DC-link inverter," Industry Applications, IEEE Transactions on, vol. 41, pp. 848-854, 2005.
    [4] R.S. Kanchan, M. R. Baiju, K. K. Mohapatra, E E Ouseph, and K. Gopakumar, "Space vector PWM signal generation for multilevel inverters using only the sampled amplitudes of reference phase voltages," Electric Power Applications, IEE Proceedings-, vol. 152, pp. 297-309, 2005.
    [5] L. Poh Chiang, M. J. Newman, D. N. Zmood, and D. G. Holmes, "A comparative analysis of multiloop voltage regulation strategies for single and three-phase UPS systems," Power Electronics, IEEE Transactions on, vol. 18, pp. 1176-1185, 2003.
    [6] 柳莺,“无源软开关三电平非隔离DC/DC变换电路的仿真与实验研究,”vol.硕士学位论文:浙江大学,2004.
    [7] 陈阿莲,“新型多电平逆变器组合拓扑结构和多电平逆变器的容错技术,”vol.博士学位论文:浙江大学,2005.
    [8] P. Fang Zheng, "A generalized multilevel inverter topology with self voltage balancing," Industry Applications, IEEE Transactions on, vol. 37, pp. 611-618, 2001.
    [9] F.Z. Peng, "A generalized multilevel inverter topology with self voltage balancing," Industry Applications Conference, 2000, vol. 3, pp. 2024-2031 vol.3, 2000.
    [10] J.M. Guerrero, L. G. de Vicuna, N. Berbel, J. Sosa, and M. Castilla, "Simple feedback linearizing controller to reduce audiosusceptibility and load disturbance in the full-bridge current doubler synchronous rectifier," IEEE APEC 2005., vol. 2, pp. 689-694 Vol. 2, 2005.
    [11] A.L. Shenkman, B. Axelrod, and V. Chudnovsky, "A new simplified model of the dynamics of the current-fed parallel resonant inverter," Industrial Electronics, IEEE Transactions on, vol. 47, pp. 282-286, 2000.
    [12] S. Xiao, L. Yim-Shu, and X. Dehong, "Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme," Power Electronics, IEEE Transactions on, vol. 18, pp. 844-856, 2003.
    [13] T. Kawabata and S. Higashino. "Parallel operation of voltage source inverters," Industry Applications, IEEE Transactions on, vol. 24, pp. 281-287, 1988.
    [14] S. Ogasawara, J. Takagaki. H. Akagi. and A. Nabae, "A novel control scheme of a parallel current-controlled PWM inverter," Industry Applications. IEEE Transactions on, vol. 28, pp. 1023-1030, 1992.
    [15] L. Tsomg-Juu, S. Wen-Bin, C. Chun-An, C. Chia-Ming, and C. Jiann-Fuh, "Investigation on transient and steady-state characteristics with electronic ballast of automotive HID lamps," 2002.
    [16] C. Yu-Kai, W. Yu-En, W. Tsai-Fu, and K. Chung-Ping, "ACSS for paralleled multi-inverter systems with DSP-based robust controls," Aerospace and Electronic Systems, IEEE Transactions on, vol. 39, pp. 1002-1015, 2003.
    [17] H. Van Der Broeck and U. Boeke, "A simple method for parallel operation of inverters," 1998.
    [18] D. Czarkowski and M. K. Kazimierczuk, "Phase-controlled series-parallel resonant converter," Power Electronics, IEEE Transactions on, vol. 8, pp. 309-319, 1993.
    [19] L. Chen, L. Xiao, W. Hu, and Y. Yan, "Application of coupled inductors in parallel inverter system," IEEE ICEMS 2003, vol. 1, pp. 398-401 vol.1, 2003.
    [20] P. Yunqing, J. Guibin, Y. Xu, and W. Zhaoan, "Auto-master-slave control technique of parallel inverters in distributed AC power systems and UPS," PESC 04., vol. 3, pp. 2050-2053 Vol.3, IEEE PESC 04.
    [21] J. Ribas, J. M. Alonso, A. J. Calleja, E. L. Corominas, J. Cardesin, and M. Rico-Secades, "A new discharge lamp ballast based on a self-oscillating full-bridge inverter integrated with a buck-type PFC circuit," 2001.
    [22] E. Sanchis-Kilders, J. M. Espi, J. A. Carrasco, D. Ramirez, A. Ferreres, and E Badia, "New application of an LLC full bridge inverter topology for corona generation in plastic industry," 2001.
    [23] C.P. Dias, A. A. Pereira, J. B. Vieira, Jr., V. J. Farias, and L. C. de Freitas, "A comparison of three self-resonant PWM forward converter," APEC '99. Fourteenth Annual., vol. 2, pp. 1080-1085 vol.2, 1999.
    [24] K. Premkumar and A. Chockalingam, "Performance analysis of RLC/MAC and LLC Layers in a GPRS protocol stack," Vehicular Technology, IEEE Transactions on, vol. 53, pp. 1531-1546, 2004.
    [25] P.C. Lob, D. G. Holmes, Y. Fukuta, and T. A. Lipo, "Reduced common mode cartier-based modulation strategies for cascaded multilevel inverters," IEEE IAS, 2000., vol. 3, pp. 2002-2009 vol.3, 2002.
    [26] M. Jinno, "Efficiency improvement for SR forward converters with LC snubber," Power Electronics, IEEE Transactions on, vol. 16, pp. 812-820, 2001.
    [27] W. Leung-Pong, D. K. W. Cheng, M. H. L. Chow, and L. Yim-Shu, "Interleaved three-phase forward converter using integrated transformer," Industrial Electronics, IEEE Transactions on, vol. 52, pp. 1246-1260, 2005.
    [28] X. Youhao and P. K. Jain, "A forward converter topology employing a resonant.auxiliary circuit to achieve soft switching and power transformer resetting," Industrial Electronics, IEEE Transactions on, vol. 50, pp. 132-140, 2003.
    [29] E.H. Wittenbreder, V. D. Baggerly, and H. C. Martin, "A duty cycle extension technique for single ended forward converters," IEEE.APEC'92. Seventh Annual, pp. 51-57, 1992.
    [30] A. Fortran, S. Ollero. E. de la Cruz, and J. Sebastian, "Peak current mode control applied to the forward converter with active clamp," PESC 98 Record. 29th Annual IEEE, vol. l, pp. 45-51 vol. 1, 1998.
    [31] C. Qing, F. C. Lee, and M. M. Jovanovic, "Small-signal modeling and analysis of current-mode control for multiple-output forward converters," PESC'94 Record, pp. 1026-1033 vol.2, 1994.
    [32] F.A. Talukdar, B. Majumdar, P. Mukherjee, and S. K. Biswas, "A clamped forward converter power supply with inherent active power factor correction," IEEE PEDS '99, vol. 1, pp. 479-484 vol. 1, 1999.
    [33] C.P. Dias, A. A. Pereira, J. B. Vieira, Jr., V. J. Farias, and L. C. de Freitas, "An improved self-resonant PWM forward converter," APEC '98., vol. 2, pp. 620-625 vol.2, 1998.
    [34] L.D. Salazar and P. D. Ziogas, "Design and evaluation of two types of controllers for a two-switch forward converter with extended duty cycle capability," Industrial Electronics, IEEE Transactions on, vol, 39, pp. 128-140, 1992.
    [35] E.O. Rogers, J. G. Genderson, W. S. Smith, G. F. Denny, and P. J. Farley, "Underwater acoustic glider," vol. 3, pp. 2241-2244 vol.3, 2004.
    [36] W. Chien-Ming, W. Yen-Nien, and Y. Chia-Hao, "A new ZVS-PWM full-bridge step-up/down converter," IEEE, IECON2004., vol. 1, pp. 908-913 Vol. 1,2004.
    [37] G. Moschopoulos, Q. Mei, H. Pinheiro, and P. Jain, "PWM full-bridge converter with natural input power factor correction," Aerospace and Electronic Systems, IEEE Transactions on, vol. 39, pp. 660-674, 2003.
    [38] J.R. Pinheiro and I. Barbi, "The three-level ZVS PWM converter-a new concept in high voltage," IEEE Proc. of IECON'92,, vol. 1, pp. 173-178, 1992.
    [39] S. Brehaut, J. C. Le Bunetel, D. Magnon, and A. Puzo, "A conducted EMI model for an industrial power supply full bridge," IEEE PESC 04., vol. 4, pp. 3227-3231 Vol.4, 2004,
    [40] X. Ming, R. Yuancheng, Z. Jinghai, and F. C. Lee, "I-MHz self-driven ZVS full-bridge converter for 48-V power pod and DC/DC brick," Power Electronics, IEEE Transactions on, vol. 20, pp. 997-1006, 2005.
    [41] S. Moisseev, K. Soshin, and M. Nakaoka, "Tapped-inductor filter assisted soft-switching PWM DC-DC power converter," Aerospace and Electronic Systems, IEEE Transactions on, vol. 41, pp. 174-180, 2005.
    [42] K. Suzuoka, S. Moisseev, L. Gamage, K. Soshin, K. Nishida, and M. Nakaoka, "Boost transformer linked full bridge soft-commutation DC-DC power converter with secondary-side phase-shifted PWM rectifier switches," IECON '03., vol. 1, pp. 49-54 vol. 1, 2003.
    [43] R. Xinbo, C. Zhiying, and C. Wu, "Zero-voltage-switching PWM hybrid full-bridge three-level converter," Power Electronics, IEEE Transactions on, vol. 20, pp. 395-404, 2005.
    [44] Q. Chongming and K. M. Smedley, "An isolated full bridge boost converter with active soft switching," IEEE.PESC. 2001 vol. 2, pp. 896-903 vol.2, 2001.
    [45] C. Hang-Seok, J. H. Lee, B. H. Cho, and J. W. Kim, "Analysis and design considerations of zero-voltage and zero-current-switching (ZVZCS) full-bridge PWM converters," IEEE, pesc 02. 2002 vol. 4, pp. 1835-1840, 2002.
    [46] K. Mochizuki, K. I. Tanaka, H. Uchiyama, H. Ohta, A. Terano. T. Kikawa. T. Taniguchi, and R. Mira, "Characterization and modeling of bias-stressed lnGaP/GaAs collector-up tunneling-collector HBTs fabricated with boron-ion implantation." Electron Devices, IEEE Transactions on, vol. 52, pp. 2144-2149, 2005.
    [47] S.N. Manias and G. Kostakis, "Modular DC-DC convertor for high-output voltage applications," Electric Power Applications, IEE Proceedings B [see also IEE Proceedings-Electric Power Applications], vol. 140, pp. 97-102, 1993.
    [48] J.H. Mulkern, C. P. Henze, and D. S. Lo, "A high-reliability, low-cost, interleaved bridge converter," Electron Devices, IEEE Transactions on, vol. 38, pp. 777-783, 1991.
    [49] R. Ayyanar, R. Giri, and N. Mohan, "Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme," Power Electronics, IEEE Transactions on, vol. 19, pp. 1462-1473, 2004.
    [50] Y. Jiang, A. M. Khambadkone, and O. Ramesh, "Parallel operation of power electronic cells using serial communication for cell based converter architecture," 2003.
    [51] R. Girl, R. Ayyanar, and N. Mohan, "Common duty ratio control of input series connected modular DC-DC converters with active input voltage and load current sharing," IEEE APEC '03., vol. 1, pp. 322-326 vol. 1, 2003.
    [52] C.A. Gallo, M. T. Galelli, E. A. A. Coelho, L. C. Freitas, J. B. Vieira, Jr., and V. J. Farias, "Proposal of a switch-mode power supply by the association of an interleaved boost-flyback converter and an interleaved forward topology," IEEE APEC 2005., vol. 3, pp. 1595-1599 Vol. 3, 2005.
    [53] R.M. Button, P. E. Kascak, and R. Lebron-Velilla, "Digital control technologies for modular DC-DC converters," IEEE Aerospace Conference Proceedings', 2000 vol. 5, pp. 355-362 vol.5, 2000.
    [54] M.R.D. Al-Mothafar, "Comparison of large-signal behavior of control schemes for high-output voltage modular DC-DC converters," IEEE ICECS '99. , vol. 3, pp. 1427-1431 vol.3,1999.
    [55] R. Xinbo and Y. Yangguang, "Soft-switching techniques for PWM three-level converters," IEEE PIEMC 2000, vol. 1, pp. 417-423 vol.1,2000.
    [56] Y. Xiaoming and I. Barbi, "Zero-voltage switching for three-level capacitor clamping inverter," Power Electronics, IEEE Transactions on, vol. 14, pp. 771-781, 1999.
    [57] A.A. Santander, A. J. Perin, and I. Barbi, "A three-level push-pull inverter: analysis, design and experimentation," IEEE APEC '94., pp. 668-674 vol.2, 1994.
    [58] J.E. Baggio, H. L. Hey, H. A. Grundling, H. Pinheiro, and J. R. Pinheiro, "Isolated interleaved-phase-shift-PWM DC-DC ZVS converter," Industry Applications, IEEE Transactions on, vol. 39, pp. 1795-1802, 2003.
    [59] H. Guan-Chyun, L. Jung-Chien, L. Ming-Huei, W. Jia-Pemg, and H. Tsai-Fu, "A study on full-bridge zero-voltage-switched PWM converter: design and experimentation," IEEE IECON '93., pp. 1281-1285 vol.2, 1993.
    [60] Y. Hyun-Ki, tt. Sang-Kyoo, P. Jin-Sik, and Y. Myung-Joong, "Zero-voltage switching two-transformer full-bridge PWM Iossless diode-clamp rectifier for PDP sustain power module (IECON '04)," IEEE IECON 2004,, vol. 1, pp. 18-23 Vol. 1. 2004.
    [61] Y. Jang and M. M. Jovanovic, "A new family of full-bridge ZVS converters," IEEE APEC '03., vol. 2, pp. 622-628 vol.2, 2003.
    [62] Y. Jang and M. M. Jovanovic, "A new family of full-bridge ZVS converters," Power Electronics, IEEE Transactions on, vol. 19, pp. 701-708, 2004.
    [63] K. Joongheon, K. Sunhyoung, K. Dongshin, L. Wonjun, and K. Eunkyo, "Low-energy localized clustering: an adaptive cluster radius configuration scheme for topology control in wireless sensor networks," 2005.
    [64] M, Marx and D. Schroder, "A novel zero-current-transition full-bridge DC-DC converter," IEEE PESC '96. vol. 1, pp. 664-669 vol. 1, 1996.
    [65] J. Seong-Jeub and C. Gyu-Hyeong, "A zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation," Power Electronics, IEEE Transactions on, vol. 16, pp. 573-580, 2001.
    [66] L. Zhu, W. Qu, ELi, and S. Shen, "A novel soil-switching full-bridge PWM DC/DC converter with auxiliary resonant commutating network," IEEE INTELEC '96., pp. 692-697, 1996.
    [67] 阮新波,严仰光,脉宽调制DC/DC全桥娈换器的软开关技术.北京:科学出版社,2001.
    [68] M. Borage, S. Tiwari, and S. Kotaiah, "A passive auxiliary circuit achieves zero-voltage-switching in full-bridge converter over entire conversion range," Power Electronics Letters, IEEE, vol. 3, pp. 141-143, 2005.
    [69] F. E Dawson, "Analysis and design of a full bridge commutator," IEEE IAS, 1990., pp. 1295-1301 vol.2, 1990.
    [70] J.A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee, and B. H. Cho, "Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter," IEEE, APEC '90, pp. 275-284, 1990.
    [71] M. Akherraz, "An improved full-bridge switched mode DC power supply," IEEE PESC '96,, vol. 1, pp. 383-389 vol.1, 1996.
    [72] Y. Chao, W. Hongyang, Z. Jianhong, J. Ying, and T. Jingtao, "A precise ZVS range calculation method for full bridge converter," IEEE PESC '03,, vol. 4, pp. 1832-1836 vol.4, 2003.
    [73] D.K. Jackson and S. B. Leeb, "Feedforward ripple cancellation for a full-bridge converter," IEEE APEC 2000., vol. 1, pp. 347-352 vol.1, 2000.
    [74] B. Jin-Yong, K. Yong, L. Dong-Hyun, K. Soon-Do, K. Pill-Soo, and H. Dae-Hee, "A study on the loss model and characteristic comparison of three-level converter and full-bridge converter through the conduction loss analysis of power devices," IEEE IECON 2004,, vol. 3, pp. 2314-2320 Vol. 3, 2004.
    [75] R.S. Lai and K. D. T. Ngo, "A PWM method for reduction of switching loss in a full-bridge inverter," IEEE APEC '94., pp. 122-127 vol.1, 1994.
    [76] L. Mihalache, "A modified PWM control technique for full bridge ZVS DC-DC Converter with equal losses for all devices," IEEE IAS 2004., vol. 3, pp. 1776-1781 vol.3, 2004.
    [77] I. Barbi, R.Gules, R. Redl, and N. O. Sokal, "DC-DC converter: four switches V/sub pk/=V/sub in//2, capacitive turn-off snubbing, ZV turn-on," Power Electronics, IEEE Transactions on, vol. 19, pp. 918-927, 2004.
    [78] SongTingTing and HuangNianci, "A novel zero-voltage and zero-current-switching full-bridge PWM converter," IEEE APEC '03., vol. 2, pp. 1088-1092 vol.2, 2003.
    [79] T. Viitanen and H. Tuusa, "A steady-state power loss consideration of the 50kW VIENNA I and PWM full-bridge three-phase rectifiers." IEEE PESC 02., vol. 2, pp. 915-920 vol.2, 2002.
    [80] S. Jiangjiang, C. Lifeng, H. Xiangning, and Y. Yangguang, "A novel combined converter with naturally sharing input-current and high voltage gain applied in aeronautical power supplies," IEEE 2004. IAS,, vol. 2, pp. 1121-1126 vol.2, 2004.
    [81] J. Cruz, M. Castilla, J. Miret, J. Matas, and J. M. Guerrero, "Averaged large-signal model of single magnetic push-pull forward converter with built-in input filter," Industrial Electronics, 2004 IEEE International Symposium on, vol. 2, pp. 1023-1028 2004.
    [82] R.T. Chen and Y. Y. Chen, "Synthesis and design of integrated-magnetic-circuit transformer for VRM application," Electric Power Applications, IEE Proceedings-, vol. 153, pp. 369-378, 2006.
    [83] Z. Fanghua, Q. Haihong, W. Huizhen, and Y. Yangguang, "Freewheeling current in push-pull forward converter," IEEE, PESC '03., vol. 1, pp. 353-358 2003.
    [84] F. Huliehel and S. Ben-Yaakov, "Low-frequency sampled-data models of switched mode DC-DC converters," Power Electronics, IEEE Transactions on, vol. 6, pp. 55-61, 1991.
    [85] E A. Huliehel, T. Wei, E C. Lee, and B. H. Cho, "Modeling, analysis, and design of the quasi-charge control," Power Electronics, IEEE Transactions on, vol. 10, pp. 597-604, 1995.
    [86] J. Chen and K. D. T. Ngo, "Alternate forms of the PWM switch model in discontinuous conduction mode [DC-DC converters]," Aerospace and Electronic Systems, IEEE Transactions on, vol. 37, pp. 754-758, 2001.
    [87] J.A. Morales-Saldana, E. E. C. Gutierrez, and J. Leyva-Ranos, "Modeling of switch-mode dc-dc cascade converters," Aerospace and Electronic Systems, IEEE Transactions on, vol. 38, pp. 295-299, 2002.
    [88] K.D.T. Ngo, S. Srinivas, and P. Nakmahachalasint, "Broadband extended cantilever model for magnetic component windings," Power Electronics, IEEE Transactions on, vol. 16, pp. 551-557, 2001.
    [89] L. Tzann-Shin, "Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters," Industrial Electronics, IEEE Transactions on, vol. 51, pp. 892-902, 2004.
    [90] B. Yang, F. C. Lee, and M. Concannon, "Over current protection methods for LLC resonant converter," 2003.
    [91] C. Jing, J. D. McCalley, and M. Kommareddy, "An energy approach to analysis of interarea oscillations in power systems," Power Systems, IEEE Transactions on, vol. 11, pp. 734-740, 1996.
    [92] 章涛 and 阮新波,“输入串联输出并联全桥变换器的均压均流的一种方泫,”,中国电机工程学报 24,pp.47.50,2005.
    [93] Bhinge A, Mohan N, Girl R, Ayyanar R. "Series parallel connection of DC-DC converter modules with active sharing of input voltage and load current". APEC 2002, vol.2.pp: 648-653.
    [94] Y. Bo, F. C. Lee, A. J. Zhang, and H. Guisong, "LLC resonant converter for front end DC/DC conversion," APEC 2002., vol. 2, pp. 1108-1112 vol.2, 2002.
    [95] R. Cheng. Y. Yang, and Y. Jiang, "Design of LLC resonant converter with integrated magnetic technology,"ICEMS 2005., vol. 2, pp. 1351-1355 Vol. 2, 2005.
    [96] R. Liu. C. Q. Lee, and A. K. Upadhyay, "A multioutput LLC-type parallel resonant converter," Aerospace and Electronic Systems, IEEE Transactions' on, vol. 28, pp. 697-707, 1992.
    [97] K. Jin and X. Ruan, "Hybrid Full-Bridge Three-Level LLC Resonant Converter Suitable for Fuel-Cell Power System," Industrial Electronics, IEEE Transactions on, vol. 53, pp. 1492-1503, 2006.
    [98] G. Yilei, L. Zhengyu, and Q. Zhaoming, "Three level LLC series resonant DC/DC converter," 2004. APEC '04., vol. 3, pp. 1647-1652 Vol.3, 2004.
    [99] 陈道炼,“静止变流器,”哈尔滨工业大学出版社,2004.
    [100] H. Feng, G. Gong, and X. Dehong, "Two interleaving methods for two-transistor forward converter," IEEE PIEMC 2000,, vol. 2, pp. 757-762 vol.2, 2000.
    [101] H. Feng, D. Xu, and M. Matsui, "A novel ZVT circuit for interleaving two-transistor forward converter," IEEE APEC 2000., vol. 2, pp. 754-759 vol.2, 2000.
    [102] D.V. Ghodke and K. Muralikrishnan, "ZVZCS, dual, two-transistor forward DC-DC converter with peak voltage of Vin/2, high input and high power application," IEEE PESC 02,, vol. 4, pp. 1853-1858, 2002.
    [103] W. Solter, "A new international UPS classification by IEC 62040-3," IEEE 2002. INTELEC,, pp. 541-545, 2002.
    [104] F. Kamran and T. G. Habetler, "A novel on-line UPS with universal filtering capabilities," Power Electronics, IEEE Transactions on, vol. 13, pp. 410-418, 1998.
    [105] S. Rathmann and H. A. Warner, "New generation UPS technology, the delta conversion principle," IEEE IAS '96,, vol. 4, pp. 2389-2395 vol.4, 1996.
    [106] T. Suntio, J. Uusitalo, and L. Jonsson, "AC-UPS reliability and availability performance: comparison of available solutions," IEEE INTELEC '89,, pp. 14.1/1-14.110 vol.2, 1989.
    [107] S. Chand and K. Chawla, "EMC evaluation and analysis of UPS," IEEE Electromagnetic Interference and Compatibility, 2002,, pp. 37-42, 2002.
    [108] S. Skok, M. Skok, and N. Vrkic, "Electrical performance test procedure for uninterruptible power supplies," IEEE IEEE ICIT '04,, vol. 2, pp. 667-671 Vol. 2, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700