往复挤压Mg-Al-Si合金的组织、性能及强化机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用普通凝固法制备了Mg-4Al-2Si(AS42)、Mg-4Al-4Si(AS44)和Mg-6Al-6Si(AS66)三种合金。深入研究了普通凝固、往复挤压(RE)、热处理及Sb微合金化对三种合金微观组织、力学性能的影响规律,讨论了基体组织和Mg_2Si相颗粒的细化、强化机制。研究结果表明:
     通过在镁合金熔体中加入Al-Si中间合金制备的AS42、AS44和AS66合金,由α-Mg基体、汉字状及块状Mg_2Si相和β-Mg_(17)Al_(12)相组成。
     往复挤压可显著细化AS42合金的组织。挤压过程中,AS42合金基体发生了动态再结晶。随着挤压道次的增加,基体晶粒与Mg_2Si相颗粒不断细化。往复挤压6道次时,通过再结晶,基体形成了尺寸约3μm的等轴晶,Mg_2Si相颗粒尺寸减小到约1.4μm;挤压8道次时,基体组织和Mg_2Si相颗粒尺寸进一步减小,此时合金的抗拉强度和屈服强度均达到最大值,分别为283.5MPa和269.1MPa;挤压道次介于6~8时,晶粒和强化相尺寸基本不再变化,即合金组织的细化趋于稳定,达到了细化极限。但是,如果继续增加往复挤压道次,晶粒和强化相则会出现长大。如,当挤压道次为11时,由于挤压温度过高,导致基体晶粒和Mg_2Si相颗粒均发生长大。
     往复挤压也可细化AS44和AS66合金组织。挤压过程中基体发生了动态再结晶而得到细化;汉字状Mg_2Si相颗粒得到了显著细化,粗大的骨骼状Mg_2Si相在挤压破碎后呈较大的块状分布于基体中。
     往复挤压可大幅提高铸态AS42合金的力学性能。
     铸态和往复挤压态AS42合金中,Mg_2Si颗粒尺寸遵从Weibull分布;在挤压过程中,汉字状Mg_2Si颗粒依弯曲机制而破碎成块状或条状,随挤压道次的增加,条状颗粒依短纤维加载机制而破碎,块状颗粒依剪切机制而破碎;颗粒开裂的概率与颗粒相对密度成正比,与基体晶粒尺寸平方成正比,与外加真应力的5次方成正比。
     对挤压态AS42合金进行T4与T6处理后,Mg_2Si颗粒的形貌与尺寸只发生微小变化,说明Mg_2Si相具有较高的热稳定性;而基体晶粒粗化,使合金的力学性能降低。
     挤压态AS42合金在150℃高温下的短时拉伸试验表明,挤压道次小于8时,挤压道次对合金抗拉强度影响不大;当挤压道次为8时,合金的抗拉强度开始迅速增加;当挤压道次为11时,合金的抗拉强度最高,为256MPa,与铸态高温抗拉强度相比,增长163.9%;挤压态AS42合金的高温抗拉强度均高于相同道次挤压态AS44和AS66合金的。
     微量Sb的加入使铸态AS44和AS66合金中的Mg_2Si相由粗大枝晶状转变为细小枝晶状,随着组织的改善,合金的抗拉强度和屈服强度均得到不同程度的提高。研究认为,合金中加入Sb后形成高熔点Mg_3Sb_2相,弥散分布的Mg_3Sb_2相与Mg_2Si相存在界面共格对应,成为Mg_2Si相非均质形核的核心,阻碍其进一步长大。
In this paper Mg-4Al-2Si (AS42), Mg-4Al-4Si (AS44) and Mg-6Al-6Si (AS66) alloys were prepared by traditional solidification. The effects of solidification, reciprocating extrusion (RE), heat treatment and alloying with Sb on microstructures and mechanical properties were investigated. The grain and strengthening phase refinement and strengthening mechanisms were analyzed.
     The results show that AS42, AS44 and AS66 alloys can be prepared by adding Al-Si intermediate alloy into magnesium-aluminum melt system. The microstructures of these alloys are composed ofα-Mg matrix,β-Mg_(17)Al_(12) and Mg_2Si which in Chinese script or/and massive shapes.
     RE is an effective method to be as grain and strengthening particles refining to AS42 alloy. The grain refinement of AS42 is mostly due to dynamic recrystallization RE. The dimension of theα-Mg matrix and Mg_2Si particle decreases with increasing passes of the RE. As fine as 3μm and 1.4μm of equaxedα-Mg and Mg_2Si particle, respectively, can be achieved after REed 6 passes. And 8 pass of RE also brought about finer matrix grain and Mg_2Si particle and maximum ultimate tensile strength and yield strength of 283.5MPa and 269.1Mpa, respectively. The results also showed that 6-8 pass of RE resulted in limitaion of finememt of grain The strain-hardening and dynamic recrystallization are equilibrium, which means that the rate of multiplication and annihilation of dislocations are almost the same. The grain size and particle size begin to coarse due to high temperature from 11 passes RE.
     RE can refine microstructures of AS44 and AS66 alloys apparently. The dynamic recrystallization of AS44 and AS66 matrix has happened; the 'Chinese' script Mg_2Si particle has been refined; and the large skeleton Mg_2Si has broken into large block in matrix by extrusion.
     RE can improve mechanical properties of as-cast AS42 alloy. The tensile properties at room temperature, such as yielding strength, ultimate strength and hardness of the alloys increase with increasing the pass of extrusion.
     The results of cracking Mg_2Si particles of AS42 alloy showed that Mg_2Si particles size distribution fits 'Weibull' rule. The 'Chinese' script Mg_2Si particles could break into massive or strip particles by the bending mechanisms, the plate particles could crack by the short-fiber loading mechanisms, the massive particles, crack by the shear mechanism during RE process. The crack probability of Mg_2Si particles are proportional to relative density of Mg_2Si particles, and also proportional to square of matrix grain size and 5 power of applied true stress.
     AS42 alloy were heat treated after extrusion. The results show that the morphology and size of Mg_2Si particles were changed slightly by T4 and T6 treatment. It indicated that Mg_2Si phase has a high thermal stability. However, the matrix grain coursed obviously and resulted in decreased mechanical properties.
     The tensile results of AS42 alloy after RE at 150℃showed that: RE pass have little effects on the ultimate tensile strength when it is less than 8 passes; and the ultimate tensile strength improved rapidly when the pass is more than 8 passes. RE-11 passes resulted in the maximum ultimate tensile strength, 256Mpa. The ultimate tensile strength increased by 163.9% compared with as-cast AS42 at 150℃. Moreover, the ultimate tensile strength of RE AS42 was higher than that of RE AS44 and RE AS66 at 150℃.
     The morphology of Mg_2Si particle in as-cast AS44 and AS66 changed from coarse dendritic-like to fine 'Chinese' script-like by alloying element Sb. The ultimate tensile strength and yield strength are also improved by refine microstructures. It is considered that the high melting-point Mg_3Sb_2 phase is dispersed in the matrix due to addition of Sb. Mg_3Sb_2 phase is conherent to Mg_2Si phase and become the inhomgenious nuclei of Mg_2Si and Mg_3Sb_2 phase gathered in the front of primary Mg_2Si phase and hinder its growth.
引文
[1] 陈振华,严红格,陈吉华,等.镁合金[M].第一版.北京:化学工业出版社,2004:28-236.
    [2] Froes F H, Elizer D, Aghion. EThe science, technology and applications of magnesium[J]. JOM, 1998, (9): 30-33.
    [3] Clow b B. B. Magnesium industry overview [J]. Advanced Mater & Proc, 1996, (10): 33-36.
    [4] 张丁非,彭建,丁培道,等.关于我国镁合金产业发展战略的思考[J].世界有色金属,2004,(7):4-5.
    [5] Michael M Avedesian, Baker H. ASM Speciality Handbook Magneisum and Magnesium alloys. Ohio: ASM International Materials Park, 1999: 87-93.
    [6] 陈力禾,赵慧杰,刘正.镁合金压铸及其在汽车工业中的应用[J].铸造,1999,48(10):45-50.
    [7] Socjusz-Podosek M, Lityfiska L. Effect of yttrium on structure and mechanical properties of Mg alloys. Materials ChemistryandPhysics[J]. 2003, 80(2): 472-475.
    [8] 匡震邦,顾海澄,李中华.材料的力学行为[M].北京:高等教育出版社,1998:177.188.
    [9] Mayumi Suzuki, Hiroyuki Sato, Kouich Maruyama, et al. Creep Deformation Behavior and Dislocation Substructures of Mg-Y Binary Alloys[J]. Mater. Sci. Eng., 2001, 319-321: 751-755.
    [10] 余琨,黎文献,王日初.变形镁合金的研究开发及应用[J].中国有色金属学报,2003,(4):282-284.
    [11] 陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及技术[J].化工进展,2004,23(2):127-134.
    [12] Luo A, Pekguleryuz M. Review cast magnesium alloys for elevated temperature applications [J]. Journal ofMaterialsScience, 1994, (29): 5259-5271.
    [13] 黄晓东,王渠东,曾小勤,等.钕对Mg-5Al-Si高温蠕变及组织性能的影响[J].中国稀土学报,2004,22(3):361-364.
    [14] Humble P. Towards a cheep resistant magnesium alloy [J]. Materaials Forum, 1997, (21): 45-56.
    [15] 关绍康,王迎新.高温镁合金的研究进展及其在汽车工业中的应用[J].机械工程材料,2003,27(8):1-4.
    [16] Yuan Guangyin, Sun Yangshan, et al. Effect of bismuth and antimony additions on the microstructure and mechanical properties of AZ91D magnesium alloy [J]. Mat Sci & Eng, 2001, A308 38-44.
    [17] 陈振华主编.变形镁合金[M].第一版.北京:化学工业出版社,2005:62-354.
    [18] 刘英.Mg-Al-X变形镁合金的制备及组织性能的研究[D].华南理工大学,2003:16-17.
    [19] Polmear I J. Magnesium alloys and applications [J]. Mater Sci &Tech, 1994, 10: 1-14.
    [20] Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B[J]. International Journal of Plasticity, 2003, (19): 1843.
    [21] Yoo M H. Slip, twinning and fracture in hexagonal close-packed metals[J]. Metallurgical Transaction, 1981, 12A: 409.
    [22] 杨平,胡轶嵩,崔风娥.镁合金AZ31高温形变机制的织构分析[J].材料研究学报,2004,18(1):53.
    [23] Jien-Wei Yeh, Shi-Ying Yuan, Chao-Hung Peng. A reciprocating extrusion process for pro -ducing hypereutectic A1-20wt.%Si wrou-ght alloys[J]. Materials Science and Engineering, 1998, A252: 212-221.
    [24] 陈立.等通道弯角挤压之有限元分析[D].台湾:国立中央大学机械工程研究所,2002:68-71.
    [25] Iwahashi Y, Wang J, Zohorita et al. Principle of Equal Channel An-gular Pressing for the Processing of Ultra-fineGrainedMaterials[J]. Scripta. Mater., 1996, 35: 143.
    [26] Kim W J, Jeeng H G. Mechanical Properties and Texture Evoluton in ECAP Processed AZ61 Mg Alloys[J]. Materials ScienceForum, 2003, 419-422: 201.
    [27] Yoshida Y, Cisar L, Shigeharu K, et al. Effect of Microstructure Factors on Tensile Properties of Microstructure Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy[J]. Transactio-Ns, 2003, 44(4): 468.
    [28] 孙佩铃.纯铝经等径转角挤压之变形组织[D].台湾:国立中山大学材料科学研究所,2002:11-12.
    [29] Yeh J W, Yuan S Y, Peng C H. Microstructures and Tensile Properties ofanAl-12Wt Pct Si Alloy Produced by Reciprocating Extrusion. Metallurgical and Mateials Transactions[J], 1997, 30A: 1999-2503.
    [30] Yuan S Y, Yeh J W, Tsau C H. Improved Microstructures and Mechanical Properties of 2024 Aluminum Alloy Produced by a Reciprocating Extrusion Method. Materials Transactions JIM[J]. 1999, 40(3): 233-241.
    [31] Lee S W, Yeh J W, Liao Y S. Premium 7075 Aluminium alloys produced by reciprocating extrusion. Advanced engineeringmaterials[J]. 2004, 6(12): 936-943.
    [32] Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures ofheat-treatableAl(Sc)alloys. ActaMaterialia[J]. 2002, 50: 4021-4035.
    [33] Chu H S, Liu K S, Yeh J W. Study of 6061-A1203p composites produced by reciprocating extrusion. Metallurgical and materials transactions [J]. 1998, 31A: 2587-2596.
    [34] Hsu-Shen Chu, Kuo-Shung Liu, Jien-Wei Yeh. An in situ composite of Al (graphite, A14C3) produced by reciprocating extrusion[J]. Materials Science and Engineering, 2000, A277: 25-32.
    [35] Chu H S, Liu K S, Yeh J W. Damping behavior of in situ Al-(graphite, Al4C3) composites produced by reciprocatingextrusion. J. Mater. Res[J]. 2001, 16(5): 1372-1379.
    [36] Lee S W, Wang H Y, Chen Y L, et al. An Mg-Al-Zn alloy with very high specific strength and superior high-strain-rate superplasticity processed by reciprocating extrus. Advanced engineering materials[J]. 2004, 6(12): 948-952.
    [37] Lu Y Z, Wang Q D. Effects of Silicon on Microstructure, Fluidity, Mechanical Properties and Fracture Behavior of Mg-6Al alloy[J]. Material Science and Technology, 2001, 17: 207-214.
    [38] Watanable H, Mukai T, Ishikawa K. High-strain-rate superplasticity at low temperature in a ZK60 alloy produced by powder metallurgy[J]. Scripta Mater, 1999, 41(2): 209.
    [39] Jae Joong Kim, Do Hyangg Kim, Shin K S, ect. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition[J]. Scripta Materialia, 1999, 41(3): 333-334.
    [40] 袁广银,刘满平,王渠东,等.Mg-Al-Zn-Si合金的显微组织细化[J].金属学报,2002,38(10):1105-1108.
    [41] Terje Kr. Aune, Hukon Westengen. Property update on magnesium die casting alloys[J]. SAE Transactions, 1995, 104(section5): 104-340.
    [42] Nussbaum G, Sainfort P, et al. Strenghthening mechanism in the rapidly Solidifide AZgl magnesium alloy[J]. ScriptaMetall., 1989, 23: 70-79.
    [43] 黄晓锋,王渠东,卢晨,等.Si对AM50力学性能和高温蠕变性能的影响[J].材料研究学报,2004,Vol.18(6):630-634.
    [44] Wang Qudong, Chen Wenzhou, et al. Effect of Ca addition on the microstructure and mechanical properties of AZgID magnesium alloys[J]. Journal of Materials Science, 2001, 36: 3035-3040.
    [45] 长崎诚三,林平真.二元状态图集[M].北京:冶金工业出版社,2004:200-203.
    [46] 胡德林编.三元合金相图及其应用[M].西安:西北工业大学出版社,1982:106-108.
    [47] 黄明志主编.金属力学性能[M].西安:西安交通大学出版社,1986:56-6.
    [48] 孙茂才主编.金属力学性能[M].第一版.哈尔滨:哈尔滨工业大学出版社,2003:49-50.
    [49] 崔约贤,王长利.金属断口分析[M].第一版.哈尔滨:哈尔滨工业大学出版社,1988:68-69.
    [50] J. Zhang, Z. Fan, Y. Q. Wang, B. L. Zhou. Microstructural development ofAl-15wt.%Mg2Si in situ composite with mischmetal addition[J]. Materials Science and Engineering, 2000, A281: 104-112.
    [51] 安运铮主编.热处理工艺学[M].第一版.北京:机械工业出版社,986:52-54.
    [52] Lu Y Z, Wang Q D, Zeng X Q, et al. Behavior of Mg-6Al-xSi alloys during solution heat treatment at420℃[J]. Materials Science and Engineering, 2001, A301(2): 2575-2581.
    [53] 金云学,张二林,曾松岩等.热处理对Ti-6A1-2C合金中TiC枝晶形貌的影响[J].材料工程,2001,(8):18-21.
    [54] 冯端.金属物理学第二卷相变[M].北京:科学出版社,1990:150-152.
    [55] 吕宜振.Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D]上海:上海交通大学,2001:27-83.
    [56] CarbonneauY, Couture A, Van NesteA, etal. Communications the observation of anewtemary Mg-Si-Ca phase in Mg_2Si alloys[J]. Metallurgical and Materials Transactions A, 1998, 29(6): 1759-1763.
    [57] G. Y. Yuan, Z. L. Liu, Q. D. Wang, et al. Microstructure refinement of Mg-Al-Zn-Si alloys[J]. Materials Letters, 2002, (56): 53-58.
    [58] YUAN Guang-yin, LIU Man-ping, DING Wen-jiang, et al. Microstructure and mechanical properties of Mg-Zn-Si-based alloys[J]. Materials Science and Engineering, 2003, A357: 314-320.
    [59] 黄晓锋,王渠东,曾小勤,等.钕对Mg-5Al-1Si高温蠕变及组织性能的影响[J].中国稀土学报,2004,22(3):361-364.
    [60] MABUCHI M, HIGASHJ K. STRENGTHENING MECHANISMS OF Mg-Si ALLOYS [J]. Acta mater, 1996, 44(11): 4611-4618.
    [61] Juarez Islas J A. Rapid solidification of Mg-Al-Zn-Si alloys[J]. Materials Science and Engineering A, 1991, (134): 1193.
    [62] Shi-Ying Yuan, Jien-Wei Ye, Chun-Huei Tsau. Improved Microstructures and Mechanical Properties of 2024 Aluminum Alloy Produced by a Reciprocating Extrusion Method[J]. Materials Transactions, JIM, 1999, 40(3): 233-241.
    [63] Galiyv A, Kaiby R, Gottstein G. Correlation of plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZKr0[J]. Acta Materialia, 2001, 49(7): 1199-1207.
    [64] Hiroyuki Watanabe, et al. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Materials transactions, 2001, 42: 1200-1205.
    [65] Kaibyshev R, Kaibyshev R, Sitdikov O. On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys[J]. Nanostructured Materials, 1994, 6: 621-624.
    [66] Sitdikov O, Kaibyshev R. Dynamic recrystallization in pure magnesium[J]. Materials Transactions, 2001, 42(9): 1928-1937.
    [67] Kaibyshev, R. Gottstein, G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZKr0[J]. Acta Materialia, 2001, 49(7): 1199-1207.
    [68] Sivakesavam 0, Prasad Y R K. Processing map for hot working of hot-rolled Mg-11.5Li-1.5A 1-0.15Zr alloy[J]. Materials ResearchandAdvancedTechniques, 2002, 93(9): 913-91.
    [69] Hinyuki Watanabe. Consolidation of mechined magnesium alloy chips by hot extrusion utilizing superplastic flow[J]. Journal of Materials and Science, 2001, 36: 5007-5011.
    [70] 叶永南.AZ31镁合金往复挤压成形热力耦模拟研究[D].西安:西安理工大学,2007:28-67.
    [71] 陈继勤,陈敏熊,赵敬世.晶体缺陷[M].浙江:浙江大学出版社,1992-120-218.
    [72] Zhzng Ya, Zeng Xiao-qin, Liu Liu-fa, et al. Effects ofyttrium on microstructure and mechanical properties of hot-extrusion Mg-Zn-Y-Zr alloys[J]. Materials Science and Engineering, 2004, A373: 320-327.
    [73] 于翔,丁培道,彭健.挤压变形对MB15镁合金及组织性能的影响[J].金属成形工艺,2004,22(1):43.
    [74] Hsu-Shen Chu, Kuo-Shung Liu, Jien-Wei Yeh. Aging behavior and tensile properties of 6061A1-0.3μm Al_2O_3 particle composites produced by reciprocating extrusion[J]. Scripta Materialia, 2001, 45: 541-546.
    [75] 刘云旭主编.金属热处理原理[M].北京:机械工业出版社,1981:26-27.
    [76] 程祥宇编译.热处理对6105铝合金中Mg_2Si粗化的影响[J].国外金属热处理,2005,26(1):12-15.
    [77] Armstrong R W. Theory of the tensile ductile-brittle behavior of polycrystalline H. C. P. materials, with application to beryllium[J]. Acta Metallurgia, 1968, 16: 347-355.
    [78] 束德林.金属力学性能[M].第一版.北京:机械工业出版社,1987:37-128.
    [79] Mamoru Mabuchi, Kohei Kubota, Kenji Higashi. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars[J]. Materials Transactions, 1995, 36(10): 1249.
    [80] 哈宽富编著.金属力学性能的微观理论[M].北京:科学出版社,1983:210-629.
    [81] 周惠久,黄明志.金属材料强度学[M].第一版.北京:科学出版社,1989:174.
    [82] 杨道明,朱勋,李紫桐.金属力学性能与失效分析[M].第一版.北京:冶金工业出版社,1991:187-193.
    [83] 钟顺思,王昌生.轴承钢[M].第一版.北京:冶金工业出版社,2000:327.
    [84] 王栓住编著.金属疲劳[M].福州:福建科学技术出版社,1985:268-291.
    [85] 魏建锋,赵康,鄢君辉.动载和静载下切口构件的性能及预测[M].西安:陕西科学技术出版社,2001:112.
    [86] J. Richert, Mafia Richert, krak ow. A New Method for Unlimited Deformation of Metals and Alloys[J]. Aluminum, 1986, 8: 604-607.
    [87] 黄光胜.镁合金成形性能的改善及热变形行为研究[D].重庆:重庆大学,2003:70-98.
    [88] S. Takeuchi, T. hashimoto, k. Suzuki. Plastic deformation of Mg_2Si withthe Cl structure[J]. Itermetallics, 1996(4): 147-150.
    [89] S. Barbagallo, P. Cavaliere, E. Cerri. Compressive plastic deformation of An AS21X magnesium alloy produced by high pressure die casting at elevated temperatures[J]. Materials Science and EngineeringA, 2004(367): 9-16.
    [90] 罗治平,张少卿,鲁立奇,等.热处理对Mg-Nd-Zr挤压合金性能与组织的影响[J].中国稀土学报,1994,12(2):183-185.
    [91] 肖晓玲.AZ91镁铝锌合金HCP→BCC析出相变行为[D].广东:华南理工大学,2001:16-68.
    [92] 刘腾,张伟,吴世丁,等.双相合金Mg-8Li-AI的等通道转角挤压Ⅱ.挤压后合金的室温拉伸性能[J].金属学报,2003,39(8):795-798.
    [93] 余琨,黎文献.Mg-Al-Zn变形镁合金轧制及热处理后的组织和性能[J].金属热处理,2002,27(5):8-10.
    [94] 王从增.材料性能学[M].第一版.北京:北京工业大学出版社,2002:27-31.
    [95] Chen P S. High strain rate superplasticity in SiCP reinforced AZ31 Magnesium matrix composite[J]. Transactions of Najing University ofAeronautice & Astronautics, 2001, 18(1): 17.
    [96] 闫蕴琪,张廷杰,邓炬,等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,Vol.33(6):561-564.
    [97] B. L. Mordike Creep-resistant magnesium Alloys Materials[J]. Science and Engineering, 2002, A324: 103-112.
    [98] Pekguleryuz M O, Luo A. Creep Resistant Magnesium Alloys for Diecasting Applications[P]. ITM Inc, International Patent Application: WO 96/25529, 1996.
    [99] Mordike B L, Kainer K U. Magnesium Alloys and Their Applications[C]. Wolsburg: Verkstoff-Informatio, 1998: 37-47.
    [100] 袁广银.轿车用耐热镁合金的应用基础研究[博士后研究工作报告][R].上海:上海交通大学,2001:3-18.
    [101] Anyanwu I A, Kamado S, Honda T. Heat Resistance of Mg-Zn-Al-CaAlloy Casings[J]. Materials Science Forum, 2000, 350(70): 73-78.
    [102] Von Buch F, Lierzau J, Mordike B L. Development of Mg-Sc-Mn Alloys[J]. Materials Science and Engineering, 1999, A263: 1-7.
    [103] Mordike B L. Development of Highly Creep Resistant Magnesium Alloys[J]. Journal of Materials Processing Technology, 2001, 117(3): 391-394.
    [104] Grobner J, Schmid-Tetzer R. Selecion of Promising Quaternary Resistant Magnesium Alloys[J]. Journal of Alloys and Compunds, 2001, 320: 296-301.
    [105] W. Blum, P. Zhang, B. Watzinger, etc. Comparative studyofcreepofthedie-castMg-alloys AZ91, AS21, AS41, AM60andAE42[J]. Material ScienceandEngineering, 2001, A319: 735-740.
    [106] Yuan G Y, Sun Y S, Ding W J. Effects of Sb addition on the microstructure and mechanical properties of AZ91 magnesium alloy[J]. Scr Mater., 2000, 43: 1009.
    [107] [日]长崎诚三,林平直编著.刘安生译.二元合金状态图集[M].第一版.北京:冶金工业出版社,2004:201.
    [108] Yi zhen Lu, Qu dong Wang, Xiao qin Zeng, et al. Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys[J]. Materials Science and Engineering, 2000, A278: 66-76.
    [109] 孙扬善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1999,9(1):55-60.
    [110] Q. D. Qin,Y. G.. Zhao, C. Liu, P. J. Cong, W. Zhou. Strontium modification and formation of cubic primary Mg_2Si crystals in Mg_2Si AI composite[J]. Journal of Alloys and Compounds, 2007: 1-5.
    【111】 袁广银,孙扬善,王震.Sb低合金化对Mg-9A1基合金显微组织和力学性能的影响[J].中国有色金属学报,1999,9(4):779-784.
    【112】 A. Bochenek, K. N. Braszczynska. Structural analysis of the MgA15 matrix cast composites containing SiC particles[J]. Materials Science and Engineering, 2000, A290: 122-127.
    【113】 ChunjiangMa, Manping Liu, GuohuaWu, WenjiangDing, YanpingZhu. Tensile properties of extruded ZK60-RE alloys[J]. Materials Science and Engineering, 2003, A349: 207-212.
    【114】 K. F. Ho a, M. Gupta a, T. S. Srivatsan. The mechanical behavior of magnesium alloyAZ91 reinforced with fine copper particulates[J]. Materials Science and Engineering, 2004, A369:302-308.
    【115】 黄正华,郭学锋,张忠明.合金化对AZ91D镁合金组织与力学性能的影响[J].稀有金属材料与工程,2006,35(3):363-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700