芫花酯甲抗黑色素瘤的作用及其机理的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     芫花酯甲由瑞香科植物芫花中提取所得,可以抑制P-388,L1210,KB等多种细胞的增殖,抑制DNA,RNA和蛋白的合成,对拓扑异构酶Ⅰ的活性具有显著的抑制作用,而对肿瘤坏死因子TNF-α,白细胞介素IL-1α和IL-1β的生物合成则并无显著影响。动物体内实验的结果表明,芫花酯甲可抑制C57BL/6和BDF_1小鼠Lewis肺癌的发展和转移。
     尽管许多研究证实芫花酯甲可抑制肿瘤细胞的增殖以及肿瘤的生长,但是其具体的作用途径目前尚未阐明。为此,我们检测了芫花酯甲对黑色素瘤A375细胞增殖的影响,肯定了其对黑色素瘤细胞增殖的抑制作用,并从细胞周期阻滞、诱导细胞凋亡以及对蛋白激酶C(PKC)活化作用三个方面解释了其可能的作用机理,并在小鼠黑色素瘤模型上验证了芫花酯甲的抗肿瘤活性,为今后研究芫花酯甲的作用机理及将其开发成为新的抗癌药物打下基础。
     研究方法
     我们采用台盼蓝染料排斥实验和CCK-8分析法来检测芫花酯甲对细胞存活率的影响。通过[~3H]-胸腺嘧啶掺入实验分析其对细胞DNA合成的影响。另外,对细胞进行碘化丙啶染色,利用流式细胞仪检测细胞的DNA含量,进而评价芫花酯甲对细胞周期分布的影响。使用annexin V-FITC/PI凋亡检测试剂盒,通过流式细胞仪定量分析磷脂酰丝氨酸外翻程度从而检测芫花酯甲作用后细胞凋亡比例的变化。采用Rhodamine 123染色,流式细胞技术检测芫花酯甲长期孵育对线粒体膜电势的影响。进行Western blot实验,分析细胞周期相关蛋白以及细胞凋亡相关蛋白表达量的变化。采用Ca~(2+)敏感的探针fluo-3·AM进行标记,激光共聚焦显微镜和流式细胞术检测芫花酯甲瞬时作用25min以及长期作用24h后对细胞内钙离子浓度的影响。制备红细胞膜,利用其对蛋白激酶C(PKC)的结合作用随Ca~(2+)浓度变化而改变的特性提取PKC,并经亲和柱层析进一步纯化PKC,通过检测γ~(32)p-ATP中~(32)p掺入底物组蛋白的量的多少反映细胞内及体外经纯化的PKC的活性变化。应用激光共聚焦显微镜观察转入pPKCγ-EGFP质粒的A375细胞在芫花酯甲作用下荧光位置的改变进而判断PKCγ的活性状态。建立C57BL/6小鼠黑色素瘤模型,通过测量黑色素瘤大小以及最后称重确定芫花酯甲对肿瘤生长的抑制作用。将经过药品处理的小鼠以及对照组小鼠的肺部包埋切片,HE染色,观察黑色素瘤的转移情况。
     研究结果
     1.在台盼蓝染料排斥试验中,我们观察道芫花酯甲能够抑制A375细胞的增殖,且呈现明显的剂量依赖关系和时间依赖关系。药物作用A375细胞24h的IC_(50)为6.78±2.4μM;处理48h的IC_(50)为1.23±0.85μM。
     2.CCK-8分析实验显示,芫花酯甲能够显著抑制细胞活力水平,且呈剂量和时间依赖关系。10μM芫花酯甲作用12,24,36和48h,细胞活力抑制率分别为32.2±6.52%,43.51±4.69%,46.1±5.26%和55±2.28%。
     3.[~3H]-胸腺嘧啶掺入实验表明芫花酯甲可以抑制A375细胞DNA合成,且呈时间和剂量依赖关系。0.1,1,10和50μM芫花酯甲孵育48h以后,A375细胞DNA的合成率分别降为对照组的51.6±2.57%,38.8±5.49%,32.3±6.53%,4.2±3.96%。
     4.通过流式细胞术分析,我们得知,芫花酯甲能够诱导A375细胞发生G_2/M周期阻滞,而且这一效应具有剂量依赖性和时间依赖性。0.1μM,1μM和10μM芫花酯甲孵育48h后,A375细胞的G_2/M期比例由8.47±1.34%升高到11.42±2.49%。15.74±2.94%和22.4±2.48%,细胞与1μM芫花酯甲共同孵育12h,24h和48h后,G_2/M期细胞的比例由8.47±1.34%升高为10.62±1.96%,10.82±2.83%以及15.7±2.94%。
     5.Western blot实验结果显示,0.1μM,1μM和10μM芫花酯甲作用于A375细胞48h后,细胞内CyclinB1和cdc2蛋白的表达量有了显著降低。
     6.A375细胞经annexin V-FITC/PI双染后,流式细胞仪分析显示,0.1,1和10μM芫花酯甲处理细胞48h,发生早期凋亡细胞比例分别从3.7%升高到4.8%,8.5%和24.6%,晚期凋亡细胞数量没有明显变化。
     7.Rhodamine 123染色后,经流式细胞仪分析荧光强度可知,芫花酯甲可引起A375细胞线粒体膜电势降低,且具有时间和剂量依赖性。0.1μM,1μM和10μM芫花酯甲孵育48h后,细胞的平均荧光强度由9.99±0.85分别降至8.02±1.45,6.1±0.15和4.23±0.7。而10μM芫花酯甲作用12,24和48h后,平均荧光强度值降低为对照组的69±7.4%,50±10.7%和43±4.23%。
     8.Western blot实验分析显示,含有0.1μM,1μM和10μM芫花酯甲的培养基孵育A375细胞48h后,线粒体内细胞色素c含量降低,而胞浆中细胞色素c含量显著升高,同时,caspase-3水解为17kD片断增多,Bcl-2蛋白表达量降低而Bax蛋白表达量升高,使得Bax/Bcl-2比例明显升高。P53蛋白表达有所上升而mdm2蛋白表达量降低,同时我们还观测道p21蛋白表达也降低。
     9.细胞经fluo-3·AM染色后,流式细胞术显示芫花酯甲急性和长期给药都可以引起细胞内Ca~(2+)浓度的升高,长期给药24h后升高为对照组的1.23倍,急性给药25min内Ca~(2+)缓慢升高。
     10.芫花酯甲可引起细胞内PKC活性的增加,对于纯化后的PKC同样具有激活作用,具有剂量依赖性,而且该激活作用不依赖于Ca~(2+)。反应体系内不含Ca~(2+)和PMA时,1μM芫花酯甲使得cpm值升高为对照组的3.53±0.18倍,含有Ca~(2+)和PMA时升高为对照组的1.78倍。芫花酯甲的激活作用可被G06986完全抑制,而Rottlerin则部分抑制此活性。
     11.激光共聚焦显微镜观察到芫花酯甲可直接引起PKCγ的活化,使其由胞浆部位转至胞膜,并且可以加速PMA引起的PKCγ转位。
     12.芫花酯甲可以抑制C57BL/6小鼠黑色素瘤的生长,皮肤涂抹给药的抑制率为31%,皮下注射剂量为0.8mg/kg时,抑制率可达47%,腹腔注射浓度为0.4mg/kg抑制率达50.2%。芫花酯甲对于黑色素瘤在C57BL/6小鼠体内的转移并没有显著的影响。
     结论
     芫花酯甲能够抑制A375细胞的增殖,能够抑制A375细胞的活力水平以及DNA的合成,呈现剂量依赖关系和时间依赖关系。我们通过三个作用途径研究其抑制细胞增殖的机理。首先证实芫花酯甲可以使得A375细胞停滞于G_2/M期,该时期关键蛋白CyclinB1和cdc2蛋白表达降低;同时我们也证实芫花酯甲能够诱导细胞凋亡,此过程中线粒体膜电势降低,细胞色素c由线粒体释放至胞浆;caspase-3水解为17kD活性片断增多;抗凋亡的Bcl-2蛋白表达量下调而促进凋亡Bax蛋白表达量上升,导致Bax/Bcl-2比例升高;p53蛋白表达增多而p53抑制因子mdm2蛋白以及p21表达降低,在这些因素的共同作用下,使细胞进入凋亡前期。此外,芫花酯甲还能够增加细胞内钙离子浓度,可直接激活PKC。在这三个可能途径的作用下,细胞的增殖得以抑制。动物体内实验证实,芫花酯甲对于C57BL/6小鼠的黑色素瘤的生长有显著的抑制作用。总之,根据我们的研究结果可以推测,芫花酯甲作为一种植物提取成分,对于黑色素瘤的治疗具有潜在的应用价值。
Background.
     Yuanhuacine (YHC) was isolated from D. genkwa and has been reported to have activity in the termination of early pregnancy by combination with testosterone propionate. YHC has been shown to be active against the growth of P-388 lymphocytic leukemia cells, L-1210 lympHoid leukemia, human KB carcinoma cell lines. In addition, YHC also suppresses DNA, RNA and protein synthesis of some tumor cells. Recent research showed that YHC has weak effect on tumor necrosis factor (TNF-a) and interleukin-1 (IL-la, IL-lb) biosynthesis, but exhibited potent inhibitory activities against DNA topo I. In the experiments in vivo, YHC significantly inhibited the growth of P-388 lympHocytic leukemia cells and suppressed tumor growth of Lewis lung carcinoma in BDF1 mice and in C57BL/6 mice.
     However, although the antiproliferative effects of YHC have been well- documented, the cellular mechanisms underlying the antiproliferative activity of YHC are unclear. In present study, we demonstrated that yuanhuacine inhibited the growth of human malignant melanoma A 375 cells in a dose- and time-dependent manner. This growth arrest was shown to be because of cell cycle inhibition at G_2/M, apoptosis induction and activation of protein kinase C (PKC). The experiments in vivo confirmed that yuanhuacine suppressed the growth of melanoma. These results indicate that yuanhuacine can inhibit cancer cell growth not only in vitro but also in vivo, therefore it may ultimately be proved to be useful as a new potential antitumor medicine for malignant melanoma.
     Methods.
     Survival/proliferation of cell lines treated with YHC was determined by trypan blue dye exclusion assay or CCK-8 assay. [~3H]-thymidine incorporation assay was performed to assess DNA synthesis of cells. Cell cycle distribution was determined by flow cytometric analysis of DNA content of nuclei of cells following staining with propidium iodide. Apoptosis induction by YHC in A375 cells was assessed by quantification of phosphatidylserine exposure using annexin V-FITC kit. Alterations in mitochondrial membrane potential (△Ψm) were analyzed by flow cytometry using the△Ψm-Sensitive dye rhodamine123. Western blot was performed to investigate the expression of cell cycle and apoptosis related proteins. Cytosolic calcium level of cells after short-term and long-term YHC exposure was measured using a calcium probe fluo-3·AM by laser confocal microscopy and flow cytometry. Intracellular or purled PKC activity was determined by ~(32)p radioisotope incorporation. Confocal microscopy was used to observe fluorescence disposition to evaluate the translocation of PKCγ-EGFR The inhitition of tumor growth was confirmed by C57BL/6 melanoma modeling.
     Results.
     1. The treatment of A375 cells with 0.01-10μM of YHC resulted in a dose-dependent decrease in cell survival with an IC_(50) of 6.78±1.74μM for 24 h and 1.23±0.29μM for 48 h.
     2. Viability of the cells was inhibited significantly upon treatment with YHC in a dose- and a time-dependent manner. The inhibition rate of cell viability was increased to 32.2±6.52%, 43.51±4.69%, 46.1±5.26% and 55±2.28% respectively which were treated with YHC for 12, 24, 36 and 48h in concentration of 10μM, and IC_(50) was 4.89μM for 48 h.
     3. [~3H]-thymidine incorporation into A375 cells was decreased to 51.6±2.57%, 38.8±5.49%, 32.3±6.53%, 4.2±3.96% (as a percentage of control) respectively, after treatment with YHC in concentrations of 0.1, 1, 10 and 50 mM for 48h, and IC_(50) was 0.23μM.
     4. Exposure of A375 cells to YHC for increasing time intervals produced a concentration and time-dependent G_2/M pHase cell cycle arrest. For example, after treatment with 0.1, 1 and 10μM YHC for 48 h, the percentage of cells in the G_2/M pHase increased to 11.42±2.49%, 15.74±2.94% and 22.4±2.48%, respectively, showing significant difference compared with the control group (8.47±1.34%). After incubation with 1μM YHC for 12 h, 24 h and 48 h, the percentage of cells in the G_2/M pHase increased to 10.62±1.96%, 10.82±2.83%and 15.7±2.94%, respectively.
     5. When cells were treated with 0.1, 1 and 10μM YHC for 48 h, CyclinB 1 and cdc2 protein expression levels were decreased significantly.
     6. Flow cytometric quantification of apoptotic A375 cells stained with annexin V-FITC/PI showed that YHC treatment increased the percentage of apoptotic cells to 4.8%, 8.5% and 24.6%, respectively in concentration of 0.1, 1 and 10μM for 48 h.
     7. The△Ψm of A375 cell was reduced from 9.99±0.85 to 8.02±1.45, 6.1±0.15 and 4.23±0.7 by exposure to 0.1, 1 and 10μM YHC.
     8. Treatment with yuanhuacine resulted in cytochrome c releasing from mitochondria and activation of caspase-3, accompanied with significant down-regulation of the Bcl-2 and mdm-2 expression, up-regulation of Bax, p53 and p21 expression.
     9. The cytosolic calcium level was 1.23 folds higher compared with control after treatment with 1μM YHC for 48 h, and the level's upregulation was observed within 25 min.
     10. YHC induced protein kinase C activation both in cell and in tube, and this effect independented on Ca~(2+). PKC activity was 1.78 and 3.53 folds higher compared with or without Ca~(2+)/PMA.
     11. YHC induced PKCγtranslocation from cytoplasm to plasma membrane and showed synergistic effect with PMA.
     12. YHC suppressed the growth of malignant melanoma in C57BL/6, the inhibition rate was 31% for animal which were application with YHC, subcutaneous injection in dose of 0.8mg/kg induced 47% decrease and intraperitoneal injection 0.4mg/kg YHC resulted in the reduction of 50.2%.
     Conclusion.
     YHC inhibited A375 cell growth in a dose- and a time-dependent manner, and arrested cell cycle at the G_2/M phase through decreased expression of cyclin B1 and cdc2 and activation of p53. Simultaneously, our data also provide evidence for the induction of apoptotic cell death of YHC, which may be attributable to the dissipation of△Ψm, the up-regulation of Bax and down-regulation of Bcl-2, accompanied with cytochrome c releasing and caspase-3 cleavage. In addition, p53, p21 and mdm2 contribute to this process. YHC also induces cytosolic calcium increasing and PKC activation. Furthermore, YHC inhibits the growth of malignant melanoma in vivo. These results indicate that as an extraction from DapHne genkwae, YHC may ultimately prove useful for malignant melanoma.
引文
1 张保献,原思通,张静修等.芫花的现代研究概况.中国中医药信息杂志,1995,2(10):21.
    2 Kupchan, S. M, Shizuri, Y, Sumner, W.C. et. Isolation and structural elucidation of new potent antileukemic diterpenoid esters from Gnidia species. B.R.J.Org.Chem, 1976,41:3850.
    3 B.P.Ying,C.R.Wang,B.M.Zhou,et al. Acta Chimica Sinica, 1977. 103.
    4 Lu XR, Chen SM. Uterine contraction and pyrogenic action of yuanhuacine (author's transl). Zhongguo Yao Li Xue Bao JT, 1981,2(3):186-8.
    5 Wang SX. Clinical study of termination of early pregnancy by administration of yuanhuacine in combination with testosterone propionate. Zhonghua Fu Chan Ke Za Zhi JT, 1988,23(5): 296-8, 318.
    6 Hall IH, Liou YF, Oswald CB, et al. The effects of genkwadaphnin and gnidilatidin on the growth of P-388, L-1210 leukemia and KB carcinoma cells in vitro. European journal of cancer & clinical oncology, 1986,22 (1):45-52.
    7 Hall IH, Kasai R, Wu RY, et al. Antitumor agents LV: Effects of genkwadaphnin and yuanhuacine on nucleic acid synthesis of P-388 lymphocytic leukemia cells. Journal of pharmaceutical sciences, 1982, 71 (11):1263-7.
    8 Yesilada E, Taninaka H, Takaishi Y, et al. In vitro inhibitory effects of Daphne oleoides ssp. oleoides on inflammatory cytokines and activity-guided isolation of active constituents. Cytokine, 2001,13(6):359-64.
    9 Shixuan Zhang,~* Xiaona Li, Fenghong Zhang. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure—activity relationship of potent inhibitory activity against DNA topoisomerase I. Bioorganic & Medicinal Chemistry 14, 2006,14:3888—3895.
    10 Bo-Young Park a, Byung-Sun Minb, Kyung-Seop Ahna, Ok-Kyong Kwon a, Hyouk Joung a, Ki-Hwan Baec, Hyeong-Kyu Lee a, Sei-Ryang Oha. Daphnane diterpene esters isolated from flower buds of Daphne genkwa induce apoptosis in human myelocytic HL-60 cells and suppress tumor growth in Lewis lung carcinoma (LLC)-inoculated mouse model. Journal of Ethnopharmacology 111 (2007), 2007,111:496-503.
    
    11 Zheng W, Gao X, Chen C, et al. Total flavonoids of Daphne genkwa root significantly inhibit the growth and metastasis of Lewis lung carcinoma in C57BL6 mice. International immunopharmacology, 2007, 7 (2): 117-27.
    
    12 Dziegielewski J, Beerman TA. Cellular responses to the DNA strand-scission enediyne C-1027 can be independent of ATM, ATR, and DNA-PK kinases. The Journal of biological chemistry, 2002,277 (23):20549-54.
    
    13 Wu X, Deng Y, Wang G, et al. Combining siRNAs at two different sites in the EGFR to suppress its expression, induce apoptosis, and enhance 5-fluorouracil sensitivity of colon cancer cells. The Journal of surgical research, 2007,138(l):56-63.
    
    14 Zhang S, Li X, Zhang F, et al. Preparation of yuanhuacine and relative daphne diterpene estersfrom Daphne genkwa and structure-activity relationship of potent inhibitory activity against DNA topoisomerase I. Bioorganic & medicinal chemistry, 2006,14(11):3888-95.
    
    15 Zhang S, Zhang F, Li X, et al. Evaluation of Daphne genkwa diterpenes: fingerprint and quantitative analysis by high performance liquid chromatography. Phytochemical analysis : PCA, 2007,18(2):91-7.
    
    16 Huang RM, Wu TM, Xu L, Liu AH, Ji Y, and Hu GX. Upstream binding factor up-regulated in hepatocellular carcinoma is related to the survival and cisplatin-sensitivity of cancer cells. FASEB J, 2002,16:293-301.
    
    17 Johnson LV, Walsh ML, Bockus BJ, et al. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. The Journal of cell biology, 1981,88 (3):526-35.
    
    18 Rita Gatti, Silvana Belletti, Guido Orlandini, Ovidio Bussolati, Valeria Dall'Asta, and Gian Carlo Gazzola. Comparison of Annexin V and Calcein-AM as Early Vital Markers of Apoptosis in Adherent Cells by Confocal Laser Microscopy . J. Histochem. Cytochem,1998. 895.
    
    19 Yang Cao, Sharmila Adhikari, Abel Damien Ang, Marie Veronique Clement, Matthew Wallig, and Madhav Bhatia . Crambene induces pancreatic acinar cell apoptosis via the activation of mitochondrial pathway. Am J Physiol Gastrointest Liver Physiol, 2006,291 :G95 - G101.
    20 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976,72: 248-54.
    21 Shi LG, Zhang GP, Jin HM. Inhibition of microvascular endothelial cell apoptosis by angiopoietin-1 and the involvement of cytochrome C. Chinese medical journal, 2006,119(9): 725-30.
    22 Zhang DC, Cao CX, Zhang CJ, et al. Yuanhuacin A is a selective antagonist of phorbol ester receptor in protein kinase C. Science in China. Series B, Chemistry, life sciences&earth scieces, 1993:803-808.
    23 Manetto V, Lorenzini R, Cordon-Cardo C, et al. Bcl-2 and Bax expression in thyroid tumours. An immunohistochemical and western blot analysis. Virchows Archiv : an international journal of pathology, 1997,430(2):125-30.
    24 Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Molecular cell, 2003,11(3):577-90.
    25 Chen HF, Luo R. Binding Induced Folding in p53-MDM2 Complex. Journal of the American Chemical Society, 2007,129(10):2930-7.
    26 Brustovetsky N, Dubinsky JM. Dual responses of CNS mitochondria to elevated calcium. J. Neurosci, 2000. 103-113.
    27 WilliamC. Wetsel, WasiuddinA. Khan,~* Istvan Merchenthaler, Hector Rivera, Andrew E. Halpern, Hahn M. Phung, Andrés NegroVilar, and YusufA. Hannun~*. Tissue and Cellular Distribution of the Extended Family of Protein Kinase C Isoenzymes. The Journal of Cell Biology, 1992,117(1):121—133.
    28 杨仓良.毒药本草.北京:北京中医药出版社,1993.508.
    29 魏城武,鲁维华,杨翠芝等.芫花的药理研究.中草药,1981.27.
    30 Baba. K, et al. Chemical studies on the constituentsof the Thymelaeaceae plants, structure of a new spirobiflavonoid ,genkwanol A, from the root of daphne genkwa Sieb. Yakugaku. zasshi, 1987,107(7):525.
    31 Stewart ZA, Westfall MD, Pietenpol JA. Cell-cycle dysregulation and anticancer therapy. Trends in pharmacological sciences, 2003,24(3): 139-45.
    32 Badia Bisbis, Frederic Delmas, Jer,me Joubes, Adrien Sicard. Cyclin-dependent Kinase (CDK) Inhibitors Regulate the CDK-Cyclin Complex Activities in Endoreduplicating Cells of Developing Tomato Fruit. J. Biol. Chem, 2006,281:7374 - 7383.
    
    33 Yeou-Ping Tsao, Peter D'Arpa, and Leroy F. Liu2. The Involvement of Active DNA Synthesis in Camptothecin-induced G2 Arrest:Altered Regulation of p34cdc2/Cyclin B1 Cancer Research, 1992,52:1823-1829.
    
    34 Ji JY, Haghnia M, Trusty C, et al. A genetic screen for suppressors and enhancers of the Drosophila cdkl-cyclin B identifies maternal factors that regulate microtubule and microfilament stability. Genetics, 2002,162(3): 1179-95.
    
    35 Nobumoto Watanabe, Harumi Arai, Jun-ichi Iwasaki. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Weel via multiple pathways . PNAS, 2005,102:11663 - 11668.
    
    36 RAJESH K. NAZ, KHALIQ AHMAD, and PAUL KAPLAN 4. Involvement of Cyclins and cdc2 Serine/Threonine Protein Kinase in Human Sperm Cell Function'. Biology of Reproduction 1993,48:720-728.
    
    37 Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA repair,2004. 997-1007.
    
    38 M.K. Sier, A.J. Sehnert ,J.J.cohen. Apoptosis in Leukocytes. Journal of Leukocyte Biology, 1995,57.
    
    39 Manson M, Farmer P, Gescher A, Steward W. Innovative agents in cancer prevention. Recent Results Cancer Res 2005.166:257-275.
    
    40 Bold RJ. Termuhlen PM. McConkey DJ. Apoptosis, cancer and cancer therapy. Srugical oncology, 1977,6:133-142.
    
    41 Reed J. Apoptosis-regulating proteins as targets for drug discovery.Trends Mol Med 2001 7:314-319.
    
    42 Lockshin R, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol, 2004,36: 2405-2419.
    
    43 Reed J. Dysregulation of apoptosis in cancer. J Clin Oncol, 1999.17:2941-2953.
    44 L. Scorrano, S.J.Korsmeyer. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun, 2003,304:437-444.
    
    45 Hartmut Jaeschkel and Mary Lynn Bajt. Intracellular Signaling Mechanisms of Acetaminophen- Induced Liver Cell Death. Toxicological Sciences, 2006,89:31-41.
    
    46 Ueda S, Makamura H, Masutani H, Sasada T, Takabayashi A,Yamaoka Y, Yodoi J. Baicilin induces apoptosis via mitochondrial pathway as pro-oxidant. Mol Pharmacol, 2001,38:781 —791.
    
    47 Hartmut Jaeschkel and Mary Lynn Bajt. Intracellular Signaling Mechanisms of Acetaminophen-Induced Liver Cell Death. Toxicological Sciences, 2006,89(1):31 —41.
    
    48 Dumann H, Rehm M, Kogel D, Prehn JHM. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. Cell Sci, 2003,116:525-536.
    
    49 Susin, S. A, Daugas, E, Ravagnan, L, Samejima, K, Zamzami, N, Loeffler, M, Costantini, P, Ferri, K. F, Irinopoulou, T, Prevost, M. C, et al. Two distinct pathways leading to nuclear apoptosis. J. Exp. Med. (2000). 192, 571-580.
    
    50 Kim, J. S, He, L, and Lemasters, J. J. Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. (2003). 304,463-470.
    
    51 Hajra K, Liu J. Apoptosome dysfunction in human cancer. Apoptosis , 2004.9:691-704.
    
    52 Zhou P. Chou J,Olea R.S. et al. Solutions tructure of Apaf-1CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction. Proc. Natl. Acad. Sci. U.S.A, 1999,96(20):11265-11170.
    
    53 Philchenkov A. Caspases: potential targets for regulating cell death. J Cell Mol Med, 2004,8:432 -444.
    
    54 CohenG.M. Caspases: the executioners of apoptosis. Biochem J, 1977. 1-16.
    
    55 Zhang Y, Center D.M, Wu D.M et al. Processing and activation of pro-interleukin-16 by caspase-3. J BiolChem, 1998,27(3):1144-1149.
    
    56 Gong XF, Wang MW, Tashiro S, et al. Pseudolaric acid B induces apoptosis through p53 and Bax/Bcl-2 pathways in human melanoma A375-S2 cells. Arch Pharm Res JT - Archives of pharmacal research, 2005,28(1):68-72.
    57 Danial NN, Korsmeyer SJ. critical Cell death:control points. Cell, 2004,116:205-219.
    
    58 Cory S, Huang DC, Adams JM. The Bcl-2 family:roles in cell survival and oncogenesis. Oncogene., 2003,22:8590-8607.
    
    59 Droin NM, Green DR. Role of Bcl-2 family members in immunity and disease. Biochim Biophys Acta., 2004,1644:179-188.
    
    60 Zha H, Reed JC. Heterodimerization-independent functions of cell death regulatory proteins Bax and Bcl-2 in yeast and mammalian cells. J Biol Chem JT - The Journal of biological chemistry, 1997,272(50):31482-8.
    
    61 Donovan M, Cotter TG. Control of mitochondrial integrity by Bcl-2 family members and caspaseindependent cell death. Biochim Biophys Acta., 2004,1644:133-147.
    
    62 E. Z. Bagci,~* Y. Vodovotz,yz T. R. Billiar,y G. B. Ermentrout,§ and I. Bahar*. Bistability in Apoptosis: Roles of Bax, Bcl-2, and Mitochondrial Permeability Transition Pores. Biophysical Journal Volume, 2006,90:1546-1559.
    
    63 Martin R. Sprick, Henning Walczak*. The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochimica et Biophysica Acta, 2004,1644:125-132.
    
    64 Hofer W.R, Schmid J.A, Stehlik C, et al. Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol Chem,2000. 22064-22068.
    
    65 Holcik M, Gibson H, Robert G. et al. Apoptotic brake and promising therapeutic target. Apoptosis, 2001,6(4):253-261.
    
    66 X.M. Sun, S. B. Bratton, M. Butterworth, M. MacFarlane, G. M. Cohen. Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein . J. Biol. Chem,2002. 11345-11351.
    
    67 Giovanna De Chiara, Maria Elena Marcocci, Maria Torcia, Maria Lucibello. Bcl-2 Phosphorylation by p38 MAPK. The Journal of Biological Chemistry, 2006,281(30): 21353-21361.
    
    68 Lai PB, Chi TY, Chen GG. Different levels of p53 induced either apoptosis or cell cycle arrest in a doxycycline-regulated hepatocellular carcinoma cell line in vitro. Apoptosis JT - Apoptosis : an international journal on programmed cell death, 2007,12(2):387-93.
    
    69 Schumacher B, Hofmann K, Boulton S, et al. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Current biology : CB, 2001, 11 (21): 1722-7.
    
    70 Jin S, Martinek S, Joo WS, et al. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(13):7301-6.
    
    71 Clarke AR, Purdie CA, Harrison DJ, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature, 1993,362(6423):849-52.
    
    72 Derry WB, Putzke AP, Rothman JH. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science, 2001,294(5542):591 -5.
    
    73 Geng Y, Akhtar RS, Shacka JJ, et al. p53 transcription-dependent and -independent regulation of cerebellar neural precursor cell apoptosis. Journal of neuropathology and experimental neurology, 2007,66(1):66-74.
    
    74 Han H, Pan Q, Zhang B, et al. 4-NQO induces apoptosis via p53-dependent mitochondrial signaling pathway.Toxicology, 2007,230(2-3): 151-63.
    
    75 Miyashita T, Krajewski S, Krajewska M, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994,9(6):1799-805.
    
    76 Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 2004,303(5660): 1010-4.
    
    77 Sansome C, Zaika A, Marchenko ND, et al. Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. - FEBS letters, 2001,488(3): 110-5.
    
    78 Lin SY, Lai WW, Chou CC, et al. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. - Melanoma research, 2006,16(6):509-19.
    
    79 Carol Imbriano,l Aymone Gurtner,2 Fabienne Cocchiarella,1 Silvia Di Agostino,2. Direct p53 Transcriptional Repression: In Vivo Analysis of CCAAT-Containing G2/M Promoters. Mol.Cell.Bio, 2005,25(9):3737-3751.
    
    80 Choudhuri T, Pal S, Das T, et al. Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner.The Journal of biological chemistry, 2005, 280 (20):20059-68.
    
    81 Jiang.Y, Porter. A. G. Prevention of tumor necrosis factor (TNF)-mediated induction of p21 WAF1/CIP1 sensitizes MCF7 carcinoma cells to TNF-induced apoptosis. Biochem Biophys. Res. Commun, 1998,245:691-697.
    
    82 Van den Bos, C, Silverstetter, S, Murphy, M, Connolly, T. p21 (cip 1) rescues human mesenchymal stem cells from apoptosis induced by low-density culture. Cell Tissue Res, 1998,293:463-470.
    
    83 Suzuki, A, Tsutomi, Y, Akahane, K, Araki, T, and Miura, M. Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene, 1999,18:1239-1244.
    
    84 Parl. J. A, Kim, K. W, Kim, S. I. Lee, S. K. Caspase 3 specifically cleaves p21 wafl/cip1 in the earlier stage of apoptosis in SK-HEP-1 human hepatoma cells. Eur. J. Biochem, 1998,257: 242-248.
    
    85 Polyak, K, Waldman, T, He, T. C, Kinzler, K. W, and Vogelstein, B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev, 1996,10:1945-1952.
    
    86 Allende-Vega N, Saville MK, Meek DW. Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53. Oncogene, 2007.
    
    87 Lindstrom MS, Jin A, Deisenroth C, et al. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol Cell Biol JT - Molecular and cellular biology, 2007,27(3): 1056-68.
    
    88 He, L, and Lemasters, J. J. Regulated and unregulated mitochondrial permeability transition pores: A new paradigm of pore structure and function? FEBS Lett.(2002). 512, 1-7.
    
    89 Brustovetsky N, Dubinsky JM. Dual responses of CNS mitochondria to elevated calcium. J. Neurosci, 2000,20:103-113.
    
    90 Yuichi Tanaka, M. Veronica Gavrielides, Yasuhiro Mitsuuchi. Protein Kinase C Promotes Apoptosis in LNCaP Prostate Cancer Cells through Activation of p38 MAPK and Inhibition of the AktSurvival Pathway. The Journal of Biological Chemistry. 2003,278(36): 33753-33762.
    
    91 Jaken, S. Protein kinase C isozymes and substrates. Curr Opin Cell Biol, 1996,8:168—173.
    
    92 Bartimole TM, Vrana JA, Freemerman AJ, et al. Modulation of the expression of Bcl-2 and related proteins in human leukemia cells by protein kinase C activators: relationship to effects on 1-[beta-D-arabinofuranosyl]cytosine-induced apoptosis. Cell death and differentiation, 1997,4(4):294-303.
    
    93 Di Giulio C, Rapino M, Zingariello M, et al. PKC alpha-mediated CREB activation is oxygen and age-dependent in rat myocardial tissue. Histochem Cell Biol, 2007,127(3):327—333.
    
    94 Wei Zhou, Noriko TakuwaS, Mamoru Kumada. Protein Kinase C-mediated Bidirectional Regulation of DNA Synthesis, RB Protein Phosphorylation, and Cyclin-dependent Kinases in Human Vascular Endothelial Cells. The Journal of Biological Chemistry. 1993,268(31): 23041-23048.
    
    95 Krajewski S, Thor AD, Edgerton SM, et al. Analysis of Bax and Bcl-2 expression in p53-immunopositive breast cancers. Clinical cancer research : an official journal of the American Association for Cancer Research, 1997,3(2): 199-208.
    
    96 Smith FL, Gabra BH, Smith PA, et al. Determination of the role of conventional, novel and atypical PKC isoforms in the expression of morphine tolerance in mice. Pain, 2007,127(1 —2):129-139.
    
    97 Coaxum SD, Griffin TM, Martin JL, et al. Influence of PKC-alpha over-expression on HSP70 and cardioprotection. Am J Physiol Heart Circ Physiol, 2007.
    
    98 Susan Finniss, Hae Kyung Lee, Cunli Xiang. PKC gamma has tumor suppressor activity in gliomas. AACR Meeting Abstracts, 2006:1004-1005.
    
    99 Zhang, S.X, Zhang F.H, Li X.N, Wen L.H, Wang S.S. Fingerprint of daphne diterpene esters from Daphne genkwa by high-performance liquid chromatography and quantitative analysis. Phytochemical Analysis. 18,91-97, 2007,18:91—97.
    
    100 Shixuan Zhang, Xiaona Li, Fenghong Zhang. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure-activity relationshipof potent inhibitory activity against DNA topoisomerase I. Bioorganic & Chemistry, 2006,14(14):3888-2895.
    101 Jennifer R. Giorgionel, Jung-Hsin Lin. Increased Membrane Affinity of the C1 Domain of Protein Kinase C Compensates for the Lack of Involvement of Its C2 Domain in Membrane Recruitment. The Journal of Biological Chemistry, 2006,281 (3): 1660-1669.
    102 Yang CL. Toxic herbal medicine. Traditional Chinese Medicine Press, 1993:504-505.
    103 郑维发,石枫,王莉,宗志敏.芫花根醇提物弱极性组分化学成分及抗炎活性研究.解放军药学学报,2004,20(1):18—21.
    104 Zheng W, Gao X, Gu Q, et al. Antitumor activity of daphnodorins from Daphne genkwa roots. Int Immunopharmacol JT - International immunopharmacology, 2007,7(2): 128-34.
    105 郑维发,王莉,石枫,崔贵友.芫花根总黄酮对小鼠细胞免疫功能的调节作用!.解放军药学学报,2004,20(4):241—245.
    106 王莉,郑维发,王建华,崔桂友,夏艳秋.芫花根总黄酮的镇痛作用及其机制研究.宁夏医学杂志,2005,27(1):21—23.
    107 M. Waheed Roomi, Nusrath Roomi, Vadim Ivanov, Aleksandra Niedzwiecki, and Matthias Rath. A nutrient mixture consisting of lysine, proline, ascorbic acid and green tea extract inhibits lung metastasis by B16 melanoma cells in mice. AACR Meeting Abstracts, 2006:448 - 449.
    108 Mohammed Amarzguiouil, Qian Peng2,3, Merete T. Wiiger1. Ex vivo and In vivo Delivery of Anti-Tissue Factor Short Interfering RNA Inhibits Mouse Pulmonary Metastasis of B16 Melanoma Cells. Clinical Cancer Research, 2006,12:4055-4061.
    1 Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature (Lond.), 1988,334:661-665.
    
    2 Kikkawa, U, Takai, Y, Tanaka, Y, Miyake, R, and Nishizuka, Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters.. J. Biol. Chem, 258:11442- 11445.
    
    3 Kikkawa, U, O. Kouji, Y. Ono, Y. Asaoka, M. S . Shearman, T. Fujii, K. Ase, K. Sekiguchi, K. Igarashi, and Y. Nishizuka. The common structure and activities of four subspecies of rat brain protein kinase C family . FEBS (Fed. Eur. Biochem. Soc.) Lett, 1987,223:212-216 ..
    
    4 Jaken, S. Protein kinase C isozymes and substrates. Curr OpinCell Biol, 1996,8:168-173..
    
    5 Blobe, G.C, Stribling, S, Obeid,L.M.& Hannun, Y.A. Protein kinase C isoenzymes regulation and function. Cancer Surveys, 1996,27:213-248.
    
    6 Eesmond N. Jackson and David A. Foster The enigmatic protein kinase C_: complex roles in cell proliferation and survival. The FASEB Journal, 2006,18:627—636
    
    7 Hug H, Sarre TF. Protein kinase C isoenzymes: Divergence in signal transduction. Biochem J, 1993,291:329-343..
    
    8 OnoY, Fujii T, Ogita K, Kikkawa U, Igarashi K, NishizukaY. Identification of three additional members of rat protein kinase C family: Delta-, epsilon- and zeta-subspecies. FEBS Lett., 1987,226:125-128.
    
    9 Huppi, K, Siwarski, D, Goodnight. J. & Mischak, H. Assignment of the protein kinase C5 polypeptide gene (PRKAD) to human chromosome 3 and mouse chromosome 14. Genomics, 1994,19:161-162.
    
    10 Leibersperger, H, Gschwendt, M. & Mark, F. Purification and characterization of a calcium-unresponsive, phorbol ester/phospholipids-activated protein kinase from porcine spleen. J. Biol. Chem, 1990,263:16108-16111.
    
    11 Gschwendt M. Protein kinase C 5. Eur J Biochem, 1999,259:555-564
    
    12 Newton AC. Protein kinase C. Seeing two domains. Curr Biol, 1995,5:973-976
    13 Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 1998,281:2042-2045.
    
    14 Emoto Y, Kisaki H, Manome Y, Kharbanda S, Kufe D. Activation of protein kinase Cdelta in human myeloid leukemin cells treated with 1-beta-D-arabinofuranosylcytosine. Blood 1996, 87:1990-1996.
    
    15 Zhimin Lu, Liu D, Hornia A, Devonish W, Pagano M, Foster DA. Activation of protein kinase C triggers its ubiquitination and degradation. Mol Cell Biol, 1998,18:839-845.
    
    16 Marina Gartsbein, Addy Alt, Koji Hashimoto, Koichi Nakajima, Toshio Kuroki, and Tamar Tennenbaum The role of protein kinase C activation and STAT3 Ser727 phosphorylation in insulin-induced keratinocyte proliferation J. Cell Sci, 2006; 119: 470 - 481.
    
    17 Lu Z, Hornia A, Jiang YW, Zang O, Ohno S, Foster DA. Tumor promotion by depleting cells of protein kinase Cδ. Mol Cell Biol, 1997,17:3418-3428.
    
    18 Miyamoto A, Nakayama K, Imaki H, et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. . Nature, 2002,416:865-869.
    
    19 Protein Kinase C Stimulates Apoptosis by Initiating Gl Phase Cell Cycle Progression and S Phase Arrest Ademi E. Santiago-Walker, Aphrothiti J. Fikaris, Gary D. Kao, Eric J. Brown, Marcelo G. Kazanietz, and Judy L. Meinkoth J. Biol. Chem,2005; 280: 32107 - 32114.
    
    20 Ashton, A. W, Watanabe, G, Albanese, C, Harrington, E. O, Ware, J. A, and Pestell, R. G. (1999) Protein kinase C δ inhibition of S-phase transition in capillary endothelial cells involves the cyclin-dependent kinase inhibitor p27Kip1. J. Biol. Chem. 274, 20805-20811.
    
    21 Inhibition of terminal B cell tumor growth by protein kinase C-delta through G2/M arrest and apoptosis induction Weiqun Li, Hiroshi Miyazaki, and Silvio Gutkind AACR Meeting Abstracts, Mar 2004; 2004: 602.
    
    22 Kitamura, K, Mizuno, K, Etoh, A, Akita, Y, Miyamoto, A, Nakayama, K, and Ohno, S. (2003) The second phase activation of protein kinase C _ at late G1 is required for DNA synthesis in serum-induced cell cycle progression. Genes Cells 8, 311-324.
    
    23 Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide range implications in tissue kinetics. Br J Cancer, 1972,26:239-257.
    
    24 Lockshin R, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol, 2004,36:2405-2419.
    
    25 L. Scorrano, S.J.Korsmeyer. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun, 2003,304:437-444.
    
    26 Shi LG, Zhang GP, Jin HM. Inhibition of micro vascular endothelial cell apoptosis by angiopoietin-1 and the involvement of cytochrome C. . Chinese medical journal, 2006,119: 725-30.
    
    27 Taketoshi Kajimoto. Ceramide-induced apoptosis by translocation,phosphorylation,and activation of protein kinase C 5 in the golgi complex. J.B.C, 2004,279:12668-12676.
    
    28 akoto Sumitomo. Neutral endopeptidase promotes phorbol ester -induced apoptosis in prostate cancer cells by inhibiting neuropeptide -indeced protein kinaseδ degradation. Cancer Research, 2000,60:6590-6596.
    
    29 Sung-Jin Lee. Regulation of p53 by Activated Protein Kinase C- during Nitric Oxide-induced Dopaminergic Cell Death. J.B.C, 2006,281:2215-2224.
    
    30 Pongracz, J, Webb P. Wang K. Deacon E. Lunn OJ, Lord JM. Spontaneous neutrophil apoptosis involves Caspase 3-mediated activation of protein kinase C-8. J Biol Chem, 1999,274:37329-37334.
    
    31 Shizukuda Y, Reyland ME, Buttrick. PM Protein kinase C8 modulates apoptosis induced by hyperglycemia in adult ventricular myocytes. Am J Physiol Heart Circ Physiol, 2002,282:H1625-634.
    
    32 Konishi H, Yamauchi E, Taniguchi H, et al. Phosphorylation sites of protein kinase C8 inH2O2-treated cells and its activation by tyrosine kinase in vitro. Proc Natl Acad Sci USA, 2001,98(6587-6592.
    
    33 Laurie E. Kilpatrick, Shuang Sun, DeMauri Mackie, Fred Baik, Haiying Li, and Helen M. Korchak J. Leukoc.Regulation of TNF mediated antiapoptotic signaling in human neutrophils: role of-PKC and ERK1/2 Biol. 2006; 80: 1512 -1521.
    
    34 Yen-Kim Won, Choon-Nam Ong, and Han-Ming Shen Carcinogenesis, Parthenolide sensitizes ultraviolet (UV)-B-induced apoptosis via protein kinase C-dependent pathways 2005; 26: 2149-2156.
    
    35 Lee YJ, Soh JW, Dean NM, et al. Protein kinase Cδ overexpression enhances radiation sensitivity via extracellular regulated protein kinase 1/2 activation, abolishing the radiationinduced G(2)-M arrest.. Cell Growth Differ, 2002,13:237-246.
    
    36 Calivarathan Latchoumycandane, Vellareddy Anantharam, Masashi Kitazawa. Protein Kinase Cδ Is a Key Downstream Mediator of Manganese-Induced Apoptosis in Dopaminergic Neuronal Cells. The Journal of Pharmacology and Experimental Therapeutics, 2005. 46-55.
    
    37 Neera V.Gopee. Sodium Selenite-induced apoptosis in murine B-lymphoma cells is associated with inhibition of protein kinase Cδ, nuclear factor kB and inhibitor of apoptosis.
    
    38 Grossoni VC, Falbo KB. Protein kinase C delta enhances proliferation and survival of murine mammary cells.. Molecular carcinogenesis, 2007:381-90.
    
    39 Zrachia A. Infection of glioma cells with Sindbis virus induces selective activation and tyrosine phosphorylation of protein kinase Cδ. Implications for Sindbis virus-induced apoptosis. J Biol Chem, 2002,777:23693-23701.
    
    40 Reshmi A. Rambaratsingh, James C. Stone, Peter M. Blumberg, and Patricia S. Lorenzo. RasGRPl Represents a Novel Non-protein Kinase C Phorbol Ester Signaling Pathway in Mouse Epidermal Keratinocytes. The Journal of Biological Chemistry, 2003,278:52792- 52801.
    
    41 Joseloff E, Cataisson C, Aamodt H, et al. Src family kinases phosphorylate protein kinase C8 on tyrosine residues and modify the neoplastic phenotype of skin keratinocytes. J Biol Chem, 2002,277:12318-12323.
    
    42 Brodie C, Bogi K, Acs P, Lorenzo PS, Baskin L, Blumberg PM. Protein kinase Cδ (PKCdelta) inhibits the expression of glutamine synthetase in glial cells via the PKC8 regulatory domain and its tyrosine phosphorylation.. J Biol Chem, 1998,273:30713-30718.
    
    43 Konishi H, Yamauchi E, Taniguchi H, et al. Phosphorylation sites of protein kinase C8 inH2O2-treated cells and its activation by tyrosine kinase in vitro. Proc Natl Acad Sci USA, 2001,98:6587-6592.
    
    44 Blass M, Kronfeld I, Kazimirsky G, Blumberg PM, Brodie C. Tyrosine phosphorylation of protein kinase Cδ is essential for its apoptotic effect in response to etoposide. Mol Cell Biol, 2002,22:182-195.
    
    45 Chen N, Ma W, Huang C, Dong Z. Translocation of protein kinase Cε and protein kinase Cδ to membrane is required for ultraviolet B-induced activation of mitogen-activated protein kinases and apoptosis.. J Biol Chem, 1999,274:15389-15394.
    
    46 Majumder PK, Mishra NC, Sun X, et al. Targeting of protein kinase Cδ to mitochondria in the oxidative stress response.. Cell Growth Differ, 2001,129:465-470.
    
    47 Majumder PK, Pandey P, Sun X, et al. Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis.. J Biol Chem, 2000,275:21793- 21796.
    
    48 Li L, Lorenzo PS, Bogi K, Blumberg PM, Yuspa SH. Protein kinase Cδ targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector.. Mol Cell Biol, 1999,19:8547 -8558.
    
    49 Blass M, Kronfeld I, Kazimirsky G, Blumberg PM, Brodie C. Tyrosine phosphorylation of protein kinase Cδ is essential for its apoptotic effect in response to etoposide. Mol Cell Biol, 2002,22:182-195..
    
    50 Yuan ZM, Utsugisawa T, Ishiko T, et al. Activation of protein kinase Cδ by the c-Abl tyrosine kinase in response to ionizing radiation. Oncogene, 1998,16:1643-1648.
    
    51 Kajimoto T, Ohmori S, Shirai Y, Sakai N, Saito N. Subtypespecific translocation of the 8 subtype of protein kinase C and its activation by tyrosine phosphorylation induced by ceramide in HeLa cells. Mol Cell Biol, 2001,21:1769-1783.
    
    52 Zrachia A, Dobroslav M, Blass M, et al. Infection of glioma cells with Sindbis virus induces selective activation and tyrosine phosphorylation of protein kinase Cδ. Implications for Sindbis virus-induced apoptosis. . J Biol Chem, 2002,277: 23693-23701.
    
    53 Katharine Hanrott, Louise Gudmunsen, Michael J. O'Neill, and Susan Wonnacott 6-Hydroxydopamine-induced Apoptosis Is Mediated via Extracellular Auto-oxidation and Caspase 3-dependent Activation of Protein Kinase C . J. Biol. Chem, 2006,281:5373 - 5382.
    
    54 Ghayur T, Hugunin M, Talanian RV, et al. Proteolytic activation of protein kinase Cδ by an ICE/CED 3-like protease induces characteristics of apoptosis. J Exp Med, 1996,184:2399-2404.
    
    55 Leonid A. Sitailo, Shalini S. Tibudan, and Mitchell F. Denning The Protein Kinase CδCatalytic Fragment Targets Mcl-1 for Degradation to Trigger Apoptosis. J.B.C, 2006,281:29703-29710.
    
    56 Cross T, Griffiths G, Deacon E, et al. PKC8 is an apoptotic lamin kinase.. Oncogene, 2000,19:2331-2337.
    
    57 Oliver H. Voss, Sunghan Kim, Mark D. Wewers. Regulation of Monocyte Apoptosis by the Protein Kinase C8-dependent Phosphorylation of Caspase-3 Phosphorylation of Caspase-3 J.B.C, 2005,280:17371-17379.
    
    58 Jang, B. C, Lim, K. J, Paik, J. H, Cho, J. W, Baek, W. K, Suh, M. H, Park, J. B, Kwon, T. K, Park, J. W, Kim, S. P, Shin, D. H, Song, D. K, Bae, J. H, Mun, K. C, and Suh, S. I. (2004) Biochem. Pharmacol. 67, 1819-1829.
    
    59 Oliver H. Voss Sunghan Kim, Mark D. Wewers, and Andrea I. Doseff. Regulation of Monocyte Apoptosis by the Protein Kinase C 8 -dependent Phosphorylation of Caspase-3. The Journal of Biological Chemistry, 2005,280:17371-17379.
    
    60 Man-Gen Song, Shen-Meng Gao, Ke-Ming Du, Min Xu. Nanomolar concentration of NSC606985, a camptothecin analog, induces leukemic-cell apoptosis through protein kinase C-dependent mechanisms . Blood, 2005,105:3714 - 3721.
    
    61 Kamada, S, Kikkawa, U, Tsujimoto, Y, and Hunter, T. Nuclear Translocation of Caspase-3 Is Dependent on Its Proteolytic Activation and Recognition of a Substrate-like Protein(s) J. Biol. Chem. 2005:280,857-860.
    
     62 Majumder PK, Pandey P, Sun X, et al. Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem, 2000,275:21793-21796.
    
    63 Basu A,Woolard MD, Johnson CL. Involvement of protein kinase CS in DNA damage-induced apoptosis. Cell Death Differ, 2001,8:899-908.
    
    64 Michael J. Humphries, Kirsten H. Limesand, Jonathan C. Schneider Suppression of Apoptosis in the Protein Kinase Cδ Null Mouse in Vivo. J. Biol. Chem, 2006,281:9728-9737.
    
    65 Yongwen He1, Jihua Liu1, David Durrant1. N-Benzyladriamycin-14-Valerate(AD198) Induces Apoptosis through Protein Kinase C-δ-Induced Phosphorylation of Phospholipid Scramblase 3 . Cancer Rearch, 2005,65:10016-10023.
    
    66 Matassa AA, Carpenter L, Biden TJ, Humphries MJ, Reyland ME. PKC8 is required for bioochondrial-dependent apoptosis in salivary epithelial cells. J Biol Chem 2001; 276: 29719-29728.
    
    67 Man-Gen Song, Shen-Meng Gao, Ke-Ming Du, Min Xu, Yun Yu, Yu-Hong Zhou, Qiong Wang. Nanomolar concentration of NSC606985, a camptothecin analog, induces leukemic-cell apoptosis through protein kinase C_-dependent mechanisms . BLOOD, 2005,105:3714—3721.
    
    68 Sumitomo M, Ohba M, Asakuma J, et al. Protein kinase C8 amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 2002; 109: 827-836.
    
    69 Viktoria Kheifets, Rachel Bright, Protein Kinase C8(8PKC)-Annexin V Interaction: A Required Step in 8PKC Translocation and Function J. Biol. Chem. 2006:281, 23218-23226.
    
    70 Chiung-Huei Peng, Chien-Ning Huang , Penta-Acetyl Geniposide Induce Apoptosis in C6 Glioma Cells by Modulating the Activation of Neutral Sphingomyelinase-Induced p75 Nerve Growth Factor Receptor and Protein Kinase CSPathway Mol. Pharm . 2006 70: 997 - 1004.
    
    71 Nuclear Accumulations of p53 and Mdm2 Are Accompanied by Reductions in c-Abl and p300 in Zinc-Depleted Human Hepatoblastoma Cells Ali A. Alshatwi, Chung-Ting Han, Norberta W. Schoene, and Kai Y. Lei Experimental Biology and Medicine, 2006; 231: 611 - 618.
    
    72 Majumder PK, Mishra NC, Sun X, et al. Targeting of protein kinase C8 to mitochondria in the oxidative stress response. Cell Growth Differ, 2001,129:465-470.
    
    73 Kumar S, Bharti A, Mishra NC, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J Biol Chem, 2001,276:17281-17285.
    
    74 Yoshida K, Kufe D. Negative regulation of the SHPTP1 protein tyrosine phosphatase by protein kinase C8 in response to DNA damage. Mol Pharmacol, 2001,60:1431-1438.
    
    75 Smith GCM, Jackson SP. The DNA-dependent protein kinase. Genes & Dev, 1999,13:916-934.
    
    76 Kharbanda S, Pandey P, Jin S, et al. Functional interaction of DNA-PK and c-Abl in response to DNA damage. Nature, 1997,386:732-735.
    
    77 Bharti A, Kraeft SK, Gounder M, et al. Inactivation of DNAdependent protein kinase by protein kinase Cδ: Implications for apoptosis. Mol Cell Biol, 1998,18:6719-6728.
    
    78 Wen-Xing Ding, Hong-Min Ni, Xiaoyun Chen, Jian Yu, Lin Zhang, and Xiao-Ming Yin Mol. A coordinated action of Bax, PUMA, and p53 promotes MG132-induced mitochondria activation and apoptosis in colon cancer cells Cancer Ther, 2007; 6: 1062 - 1069.
    
    79 V Vella, R Vigneri, and F Frasca Endocr. Relat. p53 family proteins in thyroid cancer R Malaguarnera,Cancer, 2007; 14: 43 - 60.
    
    80 Kim, S. J, Hwang, S. G, Shin, D. Y, J. p38 Kinase Regulates Nitric Oxide-induced Apoptosis of Articular Chondrocytes by Accumulating p53 via NF B-dependent Transcription and Stabilization by Serine 15 Phosphorylation. Biol. Chem, 2002,277:33501-33508.
    
    81 Brooks, C. L, and Gu, W. Ubiquitination, Phosphorylation and Acetylation: the Molecular Basis for p53 Regulation. Cell Biol, 2003,15:164-171) .
    
    82 Evan J.Rver,Kenji Sakakibara. Protein Kinase C Delta Induces Apoptosis of Vascular Smooth Muscle Cells through Induction of the Tumor Suppressor p53 by Both p38-dependent and p38-independent Mechanisms. J. Biol. Chem, 2005,280:35310-35317.
    
    83 Sung-Jin Lee , Dong-Chan Kim. Regulation of p53 by Activated Protein Kinase C-5 during Nitric Oxide-induced Dopaminergic Cell Death. J. Biol. Chem, 2006,281:2215-2224.
    
    84 Kiyotsugu Yoshidal, Hanshao Liu. Protein Kinase C Regulates Ser46 Phosphorylation of p53 Tumor Suppressor in the Apoptotic Response to DNA Damage. J. Biol. Chem, 2006,281:5734-5740.
    
    85 Johnson, C. L, Lu, D, Huang. Regulation of p53 Stabilization by DNA Damage and Protein Kinase C . Mol. Cancer Ther, 2002,1:861-867.
    
    86 Ben-Efraim I, Zhou Q, Wiedmer T. Phospholipid scramblase 1 is imported into the nucleus by a receptor-mediated pathway and interacts with DNA. Biochemistry, 2004,43:3518-26.
    
    87 Wiedmer T, Zhao J, Li L, et al. Adiposity, dyslipidemia,and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3). Proc Natl Acad Sci U S A, 2004,101:13296-301.
    
    88 Yongwen He, Jihua Liu, David Durrant. N-Benzyladriamycin-14-Valerate (AD 198) Induces Apoptosis through Protein Kinase C-8-Induced Phosphorylation of Phospholipid Scramblase 3. CancerRes, 2005,65:10016-10023.
    
    89 Minotti G, Menna P, Salvatorelli E. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev Pharmacol Rev, 2004,56:185-229.
    
    90 Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell. Biol, 2002,3:430-440.
    
    91 Kiyotsugu Yoshida, Tomoko Yamaguchi. Protein Kinase C 8 Activates Topoisomerase IIa To Induce Apoptotic Cell Death in Response to DNA Damage. Mol. Cel. Bio, 2006:3414-3431.
    
    92 Michels, J, Johnson, P. W. Mcl-1 Int. J. Biochem. Cell Biol. 2005:37, 267-271.
    
    93 Maurer, U, Charvet, C, Wagman, A. S. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 2006:21, 749-760.
    
    94 Opferman, J. T, Iwasaki, H, Ong, C. C, Obligate Role of Anti-Apoptotic MCL-1 in the Survival of Hematopoietic Stem Cells Science 2005:307, 1101-1104.
    
    95 Willis, S. N, Chen, L, Dewson, G, Wei, A, Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins Genes & Dev.2005 : 19, 1294-1305.
    
    96 Leonid A. Sitailo, Shalini S. Tibudan, The Protein Kinase C δ Catalytic Fragment Targets Mcl-1 for Degradation to Trigger Apoptosis J.Biol.Chem 2006:281, 29703-29710.
    
    97 Leonid A. Sitailo, Shalini S. Tibudan, and Mitchell F. Denning The Protein Kinase C Catalytic Fragment Targets Mcl-1 for Degradation to Trigger Apoptosis. J. Biol. Chem,2006. 29703 - 29710.
    
    98 Cross T, Griffiths G, Deacon E, et al. PKC8 is an apoptotic lamin kinase. Oncogene 2000; 19: 2331-2337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700