催化湿式氧化降解垃圾渗滤液模拟废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋过程中产生的垃圾渗滤液是一种危害较大的高浓度有机废水,是世界公认的最难处理的高浓度有机废水之一。催化湿式氧化法是处理高浓度有机废水的有效方法,其处理效果主要受催化剂特性、反应温度、反应时间、原液浓度、氧分压等因素的影响。本文拟采用柠檬酸络合法制备Mn/Ce催化剂,优化制备条件并与Co/Bi催化剂对比,分析两种催化剂在降解垃圾渗滤液及其主要组分的活性差异,为研制活性更高的催化剂提供理论基础。以小分子有机酸(乙酸、正丁酸、正己酸)和氨溶液为模拟废水,研究CWAO降解过程中氨水和有机酸之间的关系及降解机理,建立动力学方程,并推断CWAO降解垃圾渗滤液的机理,从而为催化剂的研发及该方法的实际应用创造条件。
Landfill leachate is a kind of harmful wastewater containing high concentration organic compounds, and it is called one of most resistant to treatment wastewater. Landfill leachate could pollute the around environment and the substrate of landfill site, which comes from precipitation and the water in landfill. The pollutants of landfill leachate were more complicated, COD can reach 70000mg/L, BOD5 can reach 38000mg/L, ammonia nitrogen (NH3-N) can reach 1700mg/L and high concentrated highweight metal of Fe, Pb et al. The main compounds were aromatic hydrocarbons, Alkanes, alkenes, oragnic acids, lipids, alcohols, carbonyl compounds. Because of its serious pollution to the circumjacent environment and substrate of the landfill, the long-term maintenance of pollution, and the secondary pollution, it is an urgent problem to collect and treat the landfill leachates effectively in city environments. The treatment mothed of landfill leachate is a hotspot studies over the world.
     At present, the main singleness methods to treat landfill leachates include biological methods, physical-chemical methods and the synthesis of different methods. Biological method was easy to operation, the running cost was lower, and the operation technique is relative perfect, so the method was applied extensively. Some wastewater such as low biodegradability, refractory orgnic matter, and poisonous wastewater was not suitable to be treated by biological method, but physical-chemical method was much better. The commen physical-chemical methods include photocatalysis oxidation, Fenton, adsorption, chemical precipitation, membrane separation, electrolytic oxidation method and catalytic wet air oxidation, et al.
     Catalytic wet air oxidation (CWAO) is a kind of physical-chemical method, this method is suitable to treat the high concentrated organic wastewater which is too dilute to incinerate and too concentrated for biological treatment. CWAO could be applied abroadly, the treating speed is rapidly, the degradation efficiency is higher, the treating cost is lower and have no second pollution. Since CWAO was invented, the method was favoured by researchers. CWAO is carried out under a high pressure of oxygen at elevated temperatures to decompose organic pollutants contained in wastewaters over catalyst. These years, the investigated results that applying CWAO to treat many kinds of high concentrated wastewater were achieved by many researchers, the decomposed effects were influenced by the character of catalyst, reaction temperature, reaction time, the concentration of wastewater and oxygen partial pressure.
     Mn/Ce catalyst showed very high catalytic activity over many CWAOs, in this paper Mn/Ce compoud catalysts were prepared by citric complex method, and the preparation conditions were optimized over the interactive orthogonal design. The best preparation conditions were concluded according the study results of calcination temperature, metal ratio and calcination time. The physical properties of the Mn/Ce catalyst was charactorized, then the relations of the physical properties and catalytic activities were analysised. The influence factors of degrading acetic acid, n-butyric acid and n-hexanoic acid over CWAO were investigated, and the interact of the above organic acid were also analysised. N-butyric acid was as model wastewater of landfill leachate, heating process forecast model and constand temperature kinetics model were established by study the parameters of the reaction temperature, reacion time, catalyt dosage, TOC concentration, oxygen partial pressure and pH value. The activity difference of Mn/Ce and Co/Bi catalysts over oxidating acetic, n-butyric, n-hexanoic and landfill leachate were analyzed, then the interact between NH3-N and low molecular weight organic acids were discussed over CWAO. Finally, the decomposition mechanism of landfill leachate were further analyzed.
     The reactivity of the catalysts which were prepared by citric complex method were superior to Co/Bi catalysts over the n-butyric solution oxidation, and the CeO2 was the main component of the Mn/Ce catalyst. These experiment data showed that the catalytic activity had no notable difference while calcination temperature discrepancy was smaller than 100℃with the metal bulk ratio was Mn/Ce=7/3, and calcination time have no notable influence on catalytic activity. The best preparation conditions were: Mn: Ce=3: 7, calcination temperature of 500℃and calcinations time of 5 hours through the analysis of interactive orthogonal design, the prepared catalyst under these conditions had more specific surface area and higher catalytic activity. The results indicated that metal ratio and calcination temperature have notable effect on catalytic activity (p=99% and p=95%, respective), while calcination time have no notable effect. The calcination temperature and metal ratio had notable interaction (p=99%). Therefore, this interaction between calcination temperature and metal ratio should be considered during the catalyst preparation. The best catalyst preparation conditions of interactive orthogonal design were superior to those of intuitionistic analysis. Interactive orthogonal design remedied the drawback of the orthogonal design while optimizing the preparation conditions of citric complex method, the catalytic activity of the optimized catalyst was promoted and exceeded that of the Co/Bi catalyst for the catalytic wet air oxidation of n-butyric acid. The pH of the solution during CWAO over interactive orthogonal design catalyst became higher, which reduced the corruption of the catalyst and the equipment, and the catalyst stability was also superior to the intuitionistic analysis catalyst.
     The parameters of BET indicate that the specific area and pore volume of Mn/Ce catalysts were higher than those of Co/Bi catalysts, meaning that the contact chance of Mn/Ce catalysts with organic matter were more than that of Co/Bi catalysts during CWAO. The reactivity of Mn/Ce catalysts superior to Co/Bi catalysts over the carboxylic acids oxidation., while the TOC removal rate of landfill leachate over Co/Bi catalyst were higher than that over Mn/Ce catalysts. This accounted for that the reactivity of Mn/Ce catalysts was affected by Ni2+ and NH3-N, and that Co/Bi catalysts could resist the effect definitely. The addition of NH3-N could increase the pH of the solution, and a significant decrease in the rate of oxidation when the pH of the carboxylic acid solution was increased. On the surface of Co/Bi and Mn/Ce catalyst hydrogen atom substitution react of carboxylic function could carried out, so the TOC removal rate didn’t drop notably over Co/Bi catalyst.
     With 0.5g Mn/Ce catalyst at 200℃and 1Mpa oxygen partial pressure, acetic acid, n-butyric acid and n-hexanoic acid were degraded by CWAO. The results showed the TOC removal rates of n-butyric acid and n-hexanoic acid were higher than that of acetic acid, the TOC removal rates of n-butyric acid and n-hexanoic acid had no notable difference. The mixed solution between acetic acid, n-butyric acid and n-hexanoic acid with 0.5g Mn/Ce catalyst at 200℃and 1Mpa oxygen partial pressure by CWAO. The TOC removal rate of the mixed acid solution (the TOC ratio = 1) was lower than the single carboxylic acid solution for“0”min sample, this indicated there was interaction that inhibit the TOC degradation, and the TOC difference of the mixed acid reduced after 0 min. NH3-N had two kinds of effect on the organic acid degradation, NH3-N could make the solution pH value higher and promoted organic acid ionized, ionized organic acid was refractory, so the TOC removal rate of the solution became lower. On the other hand, the substitution react could carried out that the one hydrogen atom of carboxylic function was substituted with a NH2, the molecule was then oxidized very rapidly. N-butyric acid and NH3-N maybe had same adsorption site on the catalyst surface, the pollutant degradation was inhibited by the other when the competitive adsorption of n-butyric acid and NH3-N happened. The one hydrogen atom of carboxylic function was substituted with a NH2-, the n-butyric acid was oxidized rapidly whereafter NH2- was reproduced, so the NH3-N removal rate was slow.
     The TOC removal rate became higher while the temperature, oxygen partial pressure and the Mn/Ce catalyst dosage increased. The TOC abatement rate increased due to the organic matter concentration increased, but the TOC removal rate dropped. When the initial pH increased ,the TOC removal rate dropped significantly. Allometric function was used to well fitted the reaction kinetics process of different temperature, catalyst dosage, oxygen partial pressure and initial TOC concentration in CWAO of n-butyric acid (α=0.01, n=6, r>0.8343).
     The uniform design was employed to investigate TOC conversion during the heating process of catalytic wet air oxidation. The correlation analysis shows that the heating process expected model was notable under the notability level of 95%, the multiple correlation coefficient r reached 0.997, and the model could expect the residual TOC of heating process, this make the process control easily. The temperature, oxygen partial pressure, catalyst dosage and initial TOC concentration were the main effect factors with CWAO of landfill leachate. The kinetic exponential experience model was applied to investigated the process of the butyric acid degradation, the orders with respect to the main effect factors were calculated based upon linear regression. The kinetic exponential experience model was applied to forecasted the process of the butyric acid degradation, the values of r and NSC was 0.9015 and 0.9214 respective both of which were higher than 0.80, this indicated the model could forecast the residual TOC better. GC-MS was applied to detect the organic matter and the intermediate of landfill leachate during the CWAO, the content of organic acid was 88%. Finally, the degradation mechanism of landfill leachate by CWAO was analyzed.
引文
[1] 钱小青,牛东杰,楼紫阳,赵由才。填埋场矿化垃圾资源综合利用研究进展[J]。环境卫生工程,2006,14(2):62-64。
    [2] 张懿。城市垃圾填埋场渗滤液的处理技术综述[J]。重庆环境科学,2000,22(5):63-65。
    [3] Davoli E, Gangai M L, Morselli L, Tonelli D. Characterization of odorants emissions from landfills by SPME and GC/MS [J]. Chemosphere, 2003, 51: 357-368.
    [4] Butt T E, Oduyemi K O K. A holistic approach to concentration assessment of hazards in the risk assessment of landfill leachate [J]. Environment International, 2003, 28: 597-608.
    [5] 曹占平,张景丽。UBF 处理垃圾渗滤液的中试研究[J]。天津工业大学学报,2006,25(2):44-47。
    [6] Suchecka T., Lisowski W., R. Czykwin, W.Piatkiewicz. Landfill leachate: water recovery in Poland [J]. Filtration+Separation, 2006, 6: 34-38.
    [7] 王宝贞,王琳。城市固体废物渗滤液处理与处置[M]。北京:化学工业出版社,2005:4。
    [8] 赵由才,牛冬杰,柴晓利。固体废物处理与资源化[M]。北京:化学工业出版社,2006。101。
    [9] 杨秀环,牛冬杰,陶红。垃圾渗滤液处理技术进展[J]。环境卫生工程,2006,14(1):46-49。
    [10] 马丽丽,刘晓超。垃圾填埋场渗沥液处理技术综述[J]。环境卫生工程,2006,14(1):32-35,39。
    [11] 刘东,喻晓,罗毅,孙建亭,江丁酉,谈正雄。城市生活垃圾填埋场渗滤液特性分析[J]。环境科学与技术,2006,29(6):55-57。
    [12] 李帆,张增强,黄启飞,王琪,田艳锦。准好氧填埋工艺温度变化特性研究[J]。西北农林科技大学学报(自然科学版),2006,34(6):85-90。
    [13] 李兵,董志颖,赵勇胜,赵由才,牛冬杰。2 种 MSW 好氧生物反应器型填埋方式的对比实验[J]。环境科学,2005,26(3):180-185。
    [14] 旦增,刘咏。垃圾准好氧填埋技术的研究进展[J]。云南环境科学,2006,25 (2):24-26。
    [15] 杨朝晖,李晨,曾光明,高锋,邓久华。前置 MAP-SBBR 工艺处理早期及晚期垃圾渗滤液试验[J]。环境工程,2006,24(1):14-17。
    [16] 焦斌权,李晓红,卢义玉,葛强。电解氧化预处理晚期垃圾渗滤液时的电流效率[J]。重庆大学学报(自然科学版) ,2006,29(3):128-130。
    [17] 张红梅,速宝玉。垃圾填埋场渗滤液及对地下水污染研究进展[J]。水文地质工程地质,2003,6:110-115。
    [18] 朱丽,王伟利,孙理密。济南市垃圾填埋场对地下水环境的影响分析[J]。山东建筑工程学院学报,2005,20(4):46-50。
    [19] 夏立江,温小乐。生活垃圾堆填区周边土壤的性状变化及其污染状况[J]。土壤与环境,2001,10(1):17-19。
    [20] 付美云,周立祥。垃圾渗滤液水溶性有机物对土壤吸附重金属 Cd2+、Pb2+ 的影响[J]。环境科学学报,2006,26(5):828-834。
    [21] 蒋彬,吴浩汀,徐亚明。浅谈城市垃圾填埋场渗滤液的处理技术[J]。江苏环境科技,2002,15(1):32-34。
    [22] 范洁,张悦,郑兴灿。城市垃圾填埋场渗滤水的水质特征及其处理技术[M]。土木工程学会水工业分会排水委员会第四届第一次年会。天津:2001。
    [23] 陈长太,曾扬。城市垃圾填埋场渗滤液水质特性及其处理[J]。工程与技术,2001,9:19-21。
    [24] 唐受印。废水处理工程[M]。北京:化学工业出版社,1999。
    [25] Marco A, Esplugas S, Saum G. How and why to combine chemical and biologicalprocesses for wastewater treatment [J]. Water Science Technology, 1996, 35(4): 321-327.
    [26] Marco A, Esplugas, Saun G. How and why to combine chemical and biological processes for wastewater treatment [J]. Water Science and Technology, 1996, 35(4): 321- 327.
    [27] 曹京哲。城市垃圾渗滤液特性及处理对策[J]。市政技术,2003,21(3):182-184。
    [28] 赵庆良,李湘中。垃圾渗滤液中的氨氮对微生物活性的抑制作用[J]。环境污染与防治,1998,20(6):1-4。
    [29] Cheung K C, Chu L M, Wong M H. Ammonia stripping as a pretreatment for landfill leachate [J]. Water Air and Soil Pollution, 1997, 94: 209-220.
    [30] Ilies P, Mavinic D S. The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate [J]. Water Research, 2001, 35(8): 2065-2072.
    [31] 武飞,胡晨燕。SBR 工艺处理城市垃圾渗滤液的可行性分析[J]。环境与开发,2001,16(4):35-37。
    [32] 石永,周少奇,张鸿郭。SBR 法处理垃圾渗滤液及其同时硝化反硝化生物脱氮研究[J]。四川环境,2006,25(2):21-25。
    [33] 何若,沈东升,朱荫湄。生物反应器填埋场系统渗滤液的脱氮性能[J]。应用生态学报,2006,17(3):520-524。
    [34] Lin S, Chang C. Treatment of landfill leachate by combined electro-fenton oxidation and sequencing batch reactor method [J]. Water Research, 2000, 34(17): 4243-4249.
    [35] 肖美兰,叶正芳,倪晋仁。固定化微生物技术处理垃圾渗滤液[J]。环境工程,2006,24(4):25,26,28。
    [36]Timur H, Ozturk I. Anaerobic sequencing batch reactor treatment of landfill leachate [J]. Water Research, 1999, 33(15): 3225-3230.
    [37]Kennedy K J, Lentz E M. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors [J]. Water Research, 2000, 34(14): 3640-656.
    [38] 徐竺,李正山,杨玖贤。上流式厌氧过滤器处理垃圾渗滤液的研究[J]。中国沼气,2002,20(2):12-15。
    [39]徐昕荣,贾晓珊,陈杰娥。一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析[J]。环境科学学报,2006,26(6):912-918。
    [40]陈石,王克虹,孟了,陈永。城市生活垃圾填埋场渗滤液处理中试研究[J]。给水排水,2000,26(10):15-18。
    [41]洪大林, 刘丹。厌氧—准好氧型填埋的渗滤液实验研究[J]。四川环境,2006,25(2):1-2,5。
    [42]Im J, Woo H, Choi M, Han K, Kim C. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system [J]. Water Research, 2001, 35(10): 2403-2410.
    [43]秦海燕,孙家寿,蔡鹤生,罗晓云。垃圾渗滤液的处理技术研究[J]。环境科学与技术,2004,27(2):98-100。
    [44]胡和平,黄少斌。垃圾填埋场渗滤液特性及处理方法[J]。环境卫生工程,2004,12(3):132-135。
    [45]唐家富,李国建。垃圾填埋场渗滤液回灌处理的影响因素研究[J]。环境卫生工程,1997,1:14-20。
    [46]Tyrrel S F, Leeds-Harrison P B, Harrison K S. Removal of ammoniac nitrogen from landfill leachate by irrigation onto vegetated treatment planes [J]. Water Research, 2002, 36: 291-299.
    [47]Chang Lizone, Chen I-Pin, Lin Shiow-Shyung. An assessment of the suitable operating conditions for the CeO2/γ-Al2O3 catalyzed wet air oxidation of phenol [J].Chemosphere 2005, 58: 485-492.
    [48] 张跃升,松全元,赵书平,苏昭辉。物理化学法处理垃圾填埋场渗滤液研究进展[J]。城市环境,2002,16(1):38-40。
    [49] Ahn W, Kang M, Yim S, Choi K. Advanced landfill leachate treatment using an integrated membrane process [J]. Desalination, 2002, 149: 109-114.
    [50] Linde K, Jonsson A, Wimmerstedt R. Treatment of three types of landfill leachate with reverse osmosis [J]. Desalination, 1995, 101: 21-30.
    [51] Trebouet D, Schlumpf J P, Jaouen P, Quemeneur F. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes [J]. Water Research, 2001, 35(2): 2935-2942.
    [52] 潘终胜,汤金辉,赵文玉,杨国清,刘康怀。化学沉淀法去除垃圾渗滤液中氨氮的试验研究[J]。桂林工学院学报,2003,23(1):89-92。
    [53] Amokrane A, Comel C, Veron J. Landfill leachate pretreatment by coagulation-flocculation [J]. Water Research, 1997, 31(11): 2775-2782.
    [54]王汉道,肖继波,陈立权。磷酸铵镁-混凝深度处理垃圾渗滤液实验研究[J]。环境科学与技术,2006,29(4):84-85,102。
    [55]邓舟,蒋建国,黄中林,冯向明,周胜勇,杨国栋。渗滤液回灌对其最终处理的影响中试研究[J]。环境科学,2006,27(6):1240-1243。
    [56] Barber C, Maris P J. Recirculation of leachate management option: benefits and operational problems [J]. Engineering Geology, 1984, 17: 95-106.
    [57]罗建中,齐水冰,操洲杏,江卓锋,廖伟洪。光催化氧化法处理垃圾填埋场渗滤液的研究[J]。环境污染与防治,2001,23(2):63-65。
    [58]谭小萍,王国生,汤克敏。光催化法深度处理垃圾渗滤液的影响因素[J]。中国给水排水,1999,15(5):52-54。
    [59] Wang Z, Zhang Z, Lin Y, Deng N, Tao T, Zhuo K. Landfill leachate treatment by acoagulation-photo oxidation process [J]. Journal of hazardous materials, 2002, 95: 153-159.
    [60] Cho S, Hong S C, Hong S. Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds [J]. Applied Catalysis B: Environmental, 2002, 39: 125-133.
    [61] Ai Zhihui, Yang Peng, Lu Xiaohua. Degradation of 4-Chlorophenol by microwave irradiation enhanced advanced oxidation processes [J]. Chemosphere, 2005, 60: 824- 827.
    [62] 张翼,胡冰,张玉善,张艳丽。高级氧化技术降解水中有机磷农药的研究进展[J]。环境污染与防治,2006,28(5):361-364。
    [63] 熊忠,林衍。混凝-Fenton-SBR 处理垃圾渗滤液的影响因素研究[J]。城市环境,2002,16(4):19-20。
    [64] 程洁红,李尔炀,李定龙。Fenton-混凝法在垃圾渗滤液预处理中的试验研究[J]。江苏石油化工学院学报,2002,14(2):27-29。
    [65] Kajitvichyanukul Puangrat, Lu Ming-Chun, Liao Chih-Hsiang, Wirojanagud Wanpen, Koottatep Thammarat. Degradation and detoxification of formaline wastewater by advanced oxidation processes [J]. Journal of Hazardous Materials B, 2006, 135: 337-343.
    [66] 齐旭东,赵庆良,王琨,李钢,袁宝。腐蚀电池-Fenton 工艺用于垃圾渗滤液的预处理研究[J]。环境科学学报,2006,26(1):61-69。
    [67] 陈忠林,朱洪平,邹洪波,王海鸥,韩帮军。Fenton 试剂处理水中有机物的特性及其应用。黑龙江大学自然科学学报,2005,22(2):204-207,212。
    [68] 张德莉,黄应平,罗光富,刘德富,马万红,赵进才。Fenton 及 Photo-Fenton反应研究进展[J]。环境化学,2006,25(2):121-127。
    [69] 张徵晟,李光明,夏凤毅,王华,赵修华。高级氧化技术处理垃圾渗滤液的研究进展[J]。四川环境,2005,24(5):72-78。
    [70] 王锋。电解氧化法处理难降解工业废水工艺比较研究[D]。上海: 同济大学[硕士学位论文],2004.4-7。
    [71] 赵苏,杨合,孙晓巍。高级氧化技术机理及在水处理中的应用进展[J]。能源环境保护,2004,18 (3):6-8,13。
    [72] Gallezot Pierre, Chaumet Stéphane, Perrard Alain, Isnardy Pascal. Catalytic wet air oxidation of acetic acid on carbon-supported Ruthenium catalysts [J]. JOURNAL OF CATALYSIS, 1997, 168: 104-109.
    [73] 张世鸿,涂学炎,杨中民等。模拟废水丁二酸的催化湿式氧化处理[J]。环境科学,2003,24(1):107-112。
    [74] 方振炜,李光明,赵建夫。催化湿式氧化法处理焦化废水的分析[J]。工业水处理,2003,23(1):12-15。
    [75] Gomesa H.T., Serpb Ph., Kalckb Ph., Figueiredoa J.L., Faria J.L. Carbon supported platinum catalysts for catalytic wet air oxidation of refractory carboxylic acids [J]. Topics in Catalysis, 2005, 33(1-4): 59-68.
    [76] Minh Doan Pham, Gallezot Pierre, Besson Michèle. Degradation of olive oil mill effluents by catalytic wet air oxidation 1. Reactivity of p-coumaric acid over Pt and Ru supported catalysts [J]. Applied Catalysis B: Environmental, 2006, 63: 68-75.
    [77] Lee Dong-Keun, Kim Dul-Sun. Catalytic wet air oxidation of carboxylic acids at atmospheric pressure [J]. Catalysis Today, 2000, 63: 249-255.
    [78] 万家峰,冯玉杰,蔡伟民等。湿式氧化技术研究进展[J]。重庆环境科学,2003,25(11):170-174。
    [79] 孙珮石,原田吉明,山崎健一。高浓度有机废水的催化湿式氧化法处理试验研究[J]。环境污染与防治,1999,21(1):4-6。
    [80] Imamura S, Sakai T, Ikuyama T. Wet oxidation of acetic acid catalyzed by Coppersalts. Sekiyu Gakkaishi. 1982, 25, 74.
    [81] Akitsune, K. Catalytic wet oxidation of wastewater from Acrylonitrile manufacturing plant [J]. Nikkakyo Geppo 1976, 29, 9.
    [82] 杨少霞,冯玉杰,万家峰,蔡伟民。湿式氧化催化剂 RuO2/γ-Al2O3 的制备及降解苯酚的研究[J]。人工晶体学报,2003,32(3):242-246。
    [83] Shih Cheng-Chieh, Chang Jen-Ray. Pt/C stabilization for catalytic wet-air oxidation: Use of grafted TiO2 [J]. Journal of Catalysis, 2006, 240: 137-150.
    [84] Li Ning, Descorme Claude, Besson Michele. Ru/CexZr1-xO2, a novel and effective catalyst for the catalytic wet air oxidation of 2-chlorophenol [J]. Catalysis Communications, 2007, 8: 1815–1819.
    [85] Li Ning, Descorme Claude, Besson Michele. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts [J]. Journal of Hazardous Materials, 2007, 146: 602–609.
    [86] Wang Jianbing, Zhu Wanpeng, Yang Shaoxia, Wang Wei, Zhou Yunrui. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts [J]. Applied Catalysis B: Environmental, 2008, 78: 30–37.
    [87] Li Ning, Descorme Claude, Besson Michele. Application of Ce0.33Zr0.63Pr0.04O2-supported noble metal catalysts in the catalytic wet air oxidation of 2-chlorophenol: Influence of the reaction conditions [J]. Applied Catalysis B: Environmental, 2008, 80: 237–247.
    [88] Silva Adrián M.T., Marques Rita R.N., Quinta-Ferreira Rosa M.. Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental risks [J]. Applied Catalysis B: Environmental, 2004, 47: 269- 279.
    [89] Arena Francesco, Alongi Emanuele, Famulari Pio, Parmaliana Adolfo, Trunfio Giuseppe. Basic evaluation of the catalytic pattern of the CuCeOx system in the wetoxidation of phenol with oxygen [J]. Catalysis Letters, 2006, 107(1-2): 39-46.
    [90] Posadaa Diana, Betancourta Paulino, Liendob Fernando, Brito Joaquín L. Catalytic wet air oxidation of Aqueous solutions of substituted phenols [J]. Catalysis Letters, 2005, 106(1-2): 81- 88.
    [91] Bhargava Suresh, Jani Harit, Tardio James, Akolekar Deepak, Hoang Manh. Catalytic Wet Oxidation of Ferulic Acid (A Model Lignin Compound) Using Heterogeneous Copper Catalysts [J]. Industrial Engineering Chemical Research, 2007, 46: 8652-8656.
    [92] Quintanilla A., Casas J. A., Rodriguez J.J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts [J]. Applied Catalysis B: Environmental, 2007, 76: 135–145.
    [93] Lin Shiow Shyung, Chen Chun Liang, Chang Dong Jang, Chen Chia Chrn. Catalytic wet oxidation of phenol by various CeO2 catalysts [J]. Water Research, 2002, 36: 3009-3014.
    [94] Chen I-Pin, Lin Shiow-Shyung, Wang Ching-Huei, Chang Lizone, Chang Jing-Song. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet oxidation of phenol [J]. Applied Catalysis B: Environmental, 2004, 50: 49-58.
    [95] 蒋展鹏,付宏祥。Ti-Ce 系列催化剂上乙酸的催化湿法氧化反应[J]。环境科学,2002,23(1):54-57。
    [96] 谭亚军,蒋展鹏。废水处理催化湿法氧化法及其催化剂的研究进展[J]。环境工程,1999,17(4):14-18。
    [97] 芮玉兰,韩利华,梁英华。稀土系列催化剂对焦化废水的催化湿法氧化[J]。环境科学与技术,2002,25(3):40- 41,48。
    [98] Adrian M.T. Silva, Isabel M. Castelo-Branco. Catalytic studies in wet oxidation of effluents from formaldehyde industry [J]. Chemical Engineering Science, 2003,58(3-6):963-970。
    [99]李鱼,朱岚,刘亮,赵文晋,李海生。催化湿法氧化处理垃圾渗滤液的经济性初步分析[J]。四川环境,2006,25(2):90-93。
    [100] 李海生,刘亮,李鱼,刘光辉,王健,刘鸿亮。温度对 WAO/CWAO 处理垃圾渗滤液的影响[J]。环境科学,2004,25(4):134-138。
    [101] 李海生,刘亮,李鱼,刘光辉,王健,王月,刘鸿亮,陈复。pH 值对催化湿法氧化降解垃圾渗滤液的影响[J]。吉林大学学报(理学版),2004,42(1):147-149。
    [102] 刘光辉,李海生,李鱼,刘亮,王健,刘鸿亮。氧分压对催化湿法氧化法去除垃圾渗滤液 TOC 的影响[J]。环境污染与防治(网络版),2004,1 。
    [103] 刘亮,李鱼,刘光辉,王健,董德明,李海生。氧化剂对 CWAO 降解垃圾渗滤液中有机物的影响[J]。吉林大学学报(理学版),2005,43(4):541-545。
    [104] 李鱼,张荣,李海生,董德明,刘亮,刘光辉,刘鸿亮。Co/Bi 催化剂催化湿法氧化降解垃圾渗滤液中的氨氮[J]。高等学校化学学报,2005,26(3):430-435。
    [105] 李鱼,王健,李海生,刘亮,王月,王晓丽,张荣,刘鸿亮。催化湿法氧化处理垃圾渗滤液中 Co/Bi 催化剂的回收与再生[J]。环境污染与防治,2005,27(1):56-59。
    [106] Silva Adrián M.T., Oliveira Ana C.M., Quinta-Ferreira Rosa M..Catalytic wet oxidation of ethylene glycol: kinetics of reaction on a Mn-Ce-O catalyst [J]. Chemical Engineering Science, 2004, 59: 5291-5299.
    [107] Chen Haiyan, Sayari Abdelhamid, Adnot Alain, Larachi Fa??al.Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation [J]. Applied Catalysis B: Environmental, 2001, 32: 195-204.
    [108] Hussain Syed Tajammul, Sayari Abdelhamid, Larachi Fa??al. Enhancing the stability of Mn-Ce-O WETOX catalysts using potassium [J]. Applied Catalysis B: Environmental, 2001, 34: 1-9.
    [109] Qina Jiangyan, Aika Ken-ichi. Catalytic wet air oxidation of ammonia over alumina supported metals [J]. Applied Catalysis B: Environmental, 1998, 16: 261-268.
    [110] Bhargava Suresh K., Tardio James, Prasad Jaidev, F?ger Karl, Akolekar Deepak B., Grocott Stephen C. Wet oxidation and catalytic wet oxidation [J]. Industrial Engineering and Chemical Research, 2006, 45: 1221-1258.
    [111] Gomes Helder T., Figueiredo José L., Faria Joaquim L. Catalytic wet air oxidation of low molecular weight carboxylic acids using a carbon supported platinum catalyst [J]. Applied Catalysis B: Environmental, 2000, 27: 217- 223.
    [112] Jean-Christophe Béziat, Besson Michèle, Gallezot Pierre, Durécu Sylvain. Catalytic wet air oxidation of carboxylic acids on TiO2-Supported Ruthenium catalysts [J]. Journal of Catalysis, 1999, 182: 129 - 135.
    [113] Qina Jiangyan, Aika Ken-ichi. Catalytic wet air oxidation of ammonia over alumina supported metals [J]. Applied Catalysis B: Environmental, 1998, 16: 261-268.
    [114] 李鱼,朱岚,董国华,王健,刘亮。共沉淀法制备 Mn-Ce 复合氧化物催化剂的正交试验研究[J]。环境污染与防治(网络版),2005,9。
    [115] 韩融,赵勇胜,董军。垃圾渗滤液污染晕中污染物的衰减规律研究[J]。吉林大学学报(地球科学版),2006,36(4):578-582。
    [116] Hamoudi Safia, Larachi Fa??al. Wet oxidation of phenol catalyzed by unpromoted and platinum-promoted manganese/cerium oxide [J]. Industrial Engineering and Chemical Research, 1998, 37: 3561-3566.
    [117] Imamura Seiichiro. Catalytic and non-catalytic wet oxidation [J]. Industrial Engineering and Chemical Research, 1999, 38: 1743-1753.
    [118] Larachi Fa??al, Pierre Jerome, Adnot Alain. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts [J]. Applied Surface Science, 2002, 195: 236-250.
    [119] Ding Zhongyi, Li Lixiong, Wade Daniel. Supercritical water oxidation of NH3 over an MnO2/CeO2 catalyst [J]. Industrial Engineering and Chemical Research, 1998, 37: 1707-1716.
    [120] Qi Gongshin, Yang Ralph T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst [J]. Journal of Catalysis, 2003, 217: 434-441.
    [121] Jacques Barbier Jr, Oliviero Laetitia, Renard Benoist, et al. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants [J]. Catalysis Today, 2002, 75: 29-34.
    [122] 刘钰,杨向光,刘玉敏。La2CuO4的制备及其对催化消除NO活性的影响[J]。物理化学学报,1999,15(6): 506-511。
    [123] 杜柯,张宏。柠檬酸络合无焰燃烧法制备尖晶石型LiMn2O4[J]。功能材料与器件学报,2002,8(1): 31-34。
    [124] Yang Wensheng, Liu Qingguo, Qiu Weihua, et al. A citric acid method to prepare LiMn2O4 for lithium-ion batteries [J]. Solid State Ionics, 1999, 121: 79-84.
    [125] Qi Gongshin, Yang Ralph T, Chang Ramsay. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B: Environmental, 2004, 51: 93-106.
    [126] Cao Shengli, Chen Guohua, Hu Xijun, et al. Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts [J]. Catalysis Today, 2003, 88: 37-47.
    [127] Tajammul Hussain Syed, Abdelhamid Sayari, Larachi Fa??al. Research note novel K-doped Mn-Ce-O wet oxidation catalysts with enhanced stability [J]. Journal of Catalysis, 2001, 201: 153-157.
    [128] Imamura Seiichiro, Nakamura Minoru, Kawabata Nariyoshi, Yoshida Jun-ichi. WetOxidation of Poly(ethylene glycol) Catalyzed by Manganese-Cerium Composite Oxide [J]. Industrial Engineering Chemistry Product Research and Development, 1986, 25: 34-37.
    [129] Leitenburg Carla de, Goi Daniele, Primavera Alessandra, Trovarelli Alessandro, Dolcetti Giuliano. Wet oxidation of acetic acid catalyzed by doped ceria [J]. Applied Catalysis B: Environmental, 1996, 11: L29-L35.
    [130] Chedly Tizaoui, Latifa Bouselmi, Loubna Mansouri, Ahmed Ghrabi. Landfill leachate treatment with ozone and ozone/ hydrogenperoxide systems [J]. Journal of Hazardous Materials, 2007, 140: 316-324.
    [131] Imanura S, Hirano A, Kawabata N. Wet oxidation of acetic acid catalyzed by Co/Bi complex oxides [J]. Industrial Engineering Chemistry Product Research and Development, 1982, 21: 570-575.
    [132] Jiang Pengbo, Cheng Tiexin, Liu Yan, Cui Xianghao, Bi Yingli, Zhen Kaiji. The effect of micro-morphology of Bi2O3 on catalytic properties of Co/Bi catalyst for wet air oxidation of acetic acid [J]. Reaction Kinetics and Catalytic Letter, 2004, 82(1): 49-56.
    [133] Maugans C., Kumfer B. The use of catalyst to enhance the wet oxidation process [J]. Water Science & Technology, 2007, 55(12): 189-193.
    [134] Li Y., Liu L., Huang G.H., Zhu L. Ammonia removal in the catalytic wet air oxygen process of landfill leachates with Co/Bi catalyst [J]. Water Science & Technology, 2006, 54(8): 147-154.
    [135] Wu Xiaodong, Liang Qing, Weng Duan, Fan Jun, Ran Rui. Synthesis of CeO2-MnOx mixed oxides and catalytic performance under oxygen-rich condition [J]. Catalysis Today, 2007, 126: 430-435.
    [136] Abecassis-Wolfovich M., Landau M.V., Brenner A., Herskowitz M..Low-temperature combustion of 2, 4, 6-trichlorophenol in catalytic wet oxidation with nanocasted Mn-Ce-oxide catalyst [J]. Journal of Catalysis, 2007, 247: 201-213.
    [137] Lopes Rodrigo J.G., Silva Adrián M.T., Quinta-Ferreira Rosa M.. Screening of catalysts and effect of temperature for kinetic degradation studies of aromatic compounds during wet oxidation [J]. Applied Catalysis B: Environmental, 2007, 73: 193-202.
    [138] 孙英杰,徐迪民,张隽超。生活垃圾填埋场渗滤液中氨氮的脱除[J]。给水排水,2002,28(7):35-37。
    [139] 李平,韦朝海,吴超飞,梁世中。厌氧/好氧生物流化床耦合处理垃圾渗滤液的新工艺研究[J]。高校化学工程学报,2002,16(3):345-350。
    [140] 韦朝海,吴锦华,慎义勇,盛国英,傅家谟。优势菌种与三重环流三相流化床耦合处理油制气厂废水[J]。环境科学学报,2002,22(2):171~176。
    [141] 胡孙林,钟理。氨氮废水处理技术。现代化工,2001,21(6),47-50。
    [142] Hung C. M., Lou J. C., Lin C. H.. Removal of ammonia solutions used in catalytic wet oxidation processes [J]. Chemosphere, 2003, 52: 989~995.
    [143] Qin Jiangyan, Aika Ken-ichi. Catalytic wet air oxidation of ammonia over alumina supported metals [J]. Applied Catalysis B: Environmental, 1998, 16: 261-268.
    [144] Verenich S, Laari A, Kallas J. Wet oxidation of concentrated wastewaters of paper mills for water cycle closing [J]. Waste management, 2000, 20: 287-293.
    [145] Lei L, Hu X, Chu H. P, Yue P. Catalytic wet air oxidation of dyeing and printing wastewater [J]. Water science and technology, 1997, 35(4): 311-319.
    [146] Andersen R, Munek J, Knudsen L. Treatment of paper mill sludges by low temperature wet oxidation [J]. Water science and technology, 1994, 29(5-6): 447-452.
    [147] Santos A., Yustos P., Quintanilla A., Ruiz G., Garcia-Ochoa F. Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects[J]. Applied Catalysis B: Environmental, 2005, 61(3-4): 323-333.
    [148] Stüber F, Fonta J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater [J]. Topics in Catalysis. 2005, 33 (1–4): 3-48.
    [149] Larachi F. Catalytic wet oxidation: micro-meso-macro methodology from catalyst synthesis to reactor design [J]. Topics in catalysis, 2005, 33(1-4): 109-134.
    [150] Masende Z.P.G, Kuster B.F.M, Ptasinski K.J. Kinetics of malonic acid degradation in aqueous phase over Pt/graphite catalyst [J]. Applied Catalysis B: Environmental, 2005, 56: 189-199.
    [151] Guo J, Al-Dahhan M. Kinetics of wet air oxidation of phenol over a novel catalyst [J]. Industrial Engineering Chemistry Research, 2003, 42, 5473-5481.
    [152] Zhang S, Tu X, Wang W. Reactivity and kinetic study on catalytic wet oxidation of succinic acid over Ru/Mn-Ce/TiO2 catalysts [J]. Journal of Molecular Catalysis (China), 2005, 19(1): 31-35.
    [153] Barbier Jr J, Oliviero L, Renard B. Role of ceria-supported noble metal catalysts (Ru, Pd, Pt) in wet air oxidation of nitrogen and oxygen containing compounds [J]. Topics in Catalysis, 2005, 33(1-4): 77-86.
    [154] Wu Q, Hu X, Yue P. Kinetics study on catalytic wet air oxidation of phenol [J]. Chemical Engineering Science, 2003, 58: 923- 928.
    [155] 方开泰。均匀设计与均匀设计表[M]。北京:科学出版社,1994。
    [156] 汪荣鑫。数理统计[M]。西安:西安交通大学出版社,1986。
    [157] 史建公,洪定一,韩国春。均匀设计及其在化工中的应用[J]。石油化工,1995,24 (4):264-269。
    [158] 郑建东,廖丹葵,韦藤幼。均匀设计法在制备吗啉合成催化剂中的应用[J]。工业催化,2006,14 (5):39-41。
    [159] 郭晓昱,白庚辛,黄凤兴。均匀设计在制备加氢镍催化剂中的应用[J]。石油化工,2000,29:184-187。
    [160] 冯长根,王亚军,王丽琼。均匀设计法在汽车催化剂制备工艺研究中的应用[J]。现代化工,2000,20 (9):38- 41。
    [161] 张淑华,李涛,王弘轼。新型催化剂 C302-2 作用下的三相床甲醇合成过程 III. 本征反应动力学。华东理工大学学报,2004,30 (2):219-222。
    [162] 苏保林,王建平,贾海峰。密云水库流域非点源模型系统[J]。清华大学学报(自然科学版),2006,46(3):355-359。
    [163] Ka?ar Y, Alpay E, Ceylan V.K. Pretreatment of Afyon alcaloide factory's wastewater by wet air oxidation (CWO) [J]. Water Research, 2003, 37: 1170-1176.
    [164] 宾月景,祝万鹏,蒋展鹏。催化湿式氧化处理 H-酸溶液的反应动力学[J]。环境科学,2000,27(3):77-80。
    [165] Tang Wenwei, Zeng Xinping, Zhao Jianfu. The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics [J]. Separation and Purification Technology, 2003, 31: 77-82.
    [166] Pinard L., Mijoin J., Ayrault P., Canaff C., Magnoux P.. On the mechanism of the catalytic destruction of dichloromethane over Pt zeolite catalysts [J]. Applied Catalysis B: Environmental, 2004, 51: 1-8.
    [167] Santosa Aurora, Yustosa Pedro, Gomisa Sara, Ruizb Gema, Garcia-Ochoaa Felix. Reaction network and kinetic modeling of wet oxidation of phenol catalyzed by activated carbon [J]. Chemical Engineering Science, 2006, 61: 2457-2467.
    [168] 吉林大学化学系《催化作用基础》编写组。催化作用基础[M]( 第一版),北京:科学出版社,1980。
    [169] 黄开辉,万惠霖。催化原理[M]( 第一版),北京:科学出版社,1983。
    [170] 孙培石,原田吉明。催化湿法氧化法处理高浓度有机废水的动力学模型[J]。环境科学,1999,5:42-45。
    [171] 杨琦,赵建夫,汪立忠。催化湿法氧化处理香料废水[J]。中国环境科学,1998,18(2),170-172。
    [172] Deuk Ki Lee, Jeong Shik Cho, Wang Lai Yoon. Catalytic wet oxidation of ammonia: Why is N2 formed preferentially against NO3- ? [J]. Chemosphere, 2005, 61: 573-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700