R22替代及工质泄漏扩散危险性理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的R22替代物存在诸多缺点,开发拥有自主知识产权新型环保节能R22替代物,研究替代物泄漏、扩散、安全及其它相关特性有重大意义,本文主要研究内容如下:
     基于CSD状态方程编制了替代工质最优化选择与计算程序,模拟计算、分析、比较多种混合工质后,确定RTJU3和RTJU4为R22替代物。和R407C相比,新替代工质具有绿色环保、滑移温度低、中高温变工况性能好等优点。实验测试和理论分析结果表明新工质RTJU3具有较高安全性能,适合用于中高温热泵中替代R22。建立储罐瞬间泄漏模型,分析了常温纯可燃工质发生瞬间泄漏条件以及发生瞬间泄漏最低条件等问题。考虑制冷剂与环境的温差换热,建立了更能反映实际储罐泄漏过程的纯工质和混合工质气液相空间动态泄漏模型,推导了判别泄漏过程中混合工质燃烧爆炸危险性增减的公式,分析了各主要内外因素对纯工质气相空间动态泄漏以及泄漏对混合工质可燃性的影响。针对储罐制冷剂质量泄漏速率变化的特点,建立了新的储罐制冷剂大空间非稳态扩散模型,通过求解模型解析解和数值解两种手段解决有限时间泄漏扩散浓度分布问题,为克服假设条件偏离实际情况的缺点修正了新扩散模型,提出一种新的重气效应修正方法,结合实例研究了新工质泄漏扩散后各种危险性以及地面火灾爆炸危险范围影响因素。研究了可燃制冷剂层流预混火焰、火焰传播机理、传播速度主要影响因素,改进了现有可燃气体爆炸极限测定试验台,测试了多种工质在常温常压空气中火焰传播速度和燃爆极限,分析了实验误差来源并提出减小误差的方法,研究了可燃纯工质和混合工质层流预混火焰传播特性与规律,提出一种新的综合评价工质燃爆危险性的方法。
     本文以实验和计算机仿真为手段研究开发了新型环保节能R22替代物,并开展了制冷工质泄漏扩散等其它相关研究,所用方法和得出结论可供制冷剂生产和销售厂商参考。
Current substitutes for R22 have many shortcomings. It’s important to develop new environment-friendly and energy-saving R22 replacements that have self-owned intellectual property rights, and to study the leakage, diffusion, safety and other relative traits of substitutes. The main contents of this paper are as follows.
     Based on the CSD equation of state, a software package developed for optimal choice of alternative refrigerants is worked out. Some possible environmentally friendly alternatives for R22 were selected, and their performances were simulated. Finally, RTJU3 and RTJU4 are selected to replace R22. Compared to R407C, new refrigerants have such advantages as environmentally friendly, low slide temperature, good performances in moderately high temperature heat pump working conditions. Experimental and theoretical analyses show that RTJU3 have high security and is fit for replacing R22 in moderate-high temperature heat pumps. To obtain the instantaneous release condition of pure flammable refrigerants in tanks, an instantaneous release model is established. Considering the heat exchange between the refrigerant and environment, dynamic models of pure and mixed refrigerants leaking from vapor and liquid space were established to describe actual release processes better. A formula of judging the burnable fatalness of mix-refrigerant increase or decrease in the process of leakage is deduced.The main interior and exterior factors influencing pure refrigerants releasing from the vapor space, and the leakage’s effect on the flammability of mix-refrigerants are analyzed. Aiming at the characteristic of varied mass flow rate of refrigerants leaking from tanks, a new unsteady big-space diffusing model is put forward. The concentration of refrigerants after finite-time release and diffusion was gained by the numerical and analytical solutions of the model. To improve application value, the new diffusion model is modified, and a new modifying heavy gas effect method is set up. Through application and analyse on instance, the dangerous area of burning and blasting of new refrigerants, the factors affecting the dangerous area are investigated. Besides, this work studies the laminar premixed flame of flammable refrigerants, the mechanism of flame propagation, the main factors influencing the flame propagation velocity, improving the existed test-bed that tests the flammable limits of gas, testing the flame propagation velocity and flammable limits of many refrigerants in normal temperature and pressure air, analyzing the source of experimental error and putting forward a method to reduce it, investigating the laminar premixed flame propagation specialty and regular of flammable refrigerants, bringing forward a method to comprehensively evaluate flammable fatalness of refrigerants.
     New environment-friendly and energy-saving replacements for R22 are developed and the leakage, diffusion, safety and other relative characteristics of refrigerants are studied in this paper with the experiment and computer simulation as main tools. The methods and conclusions may be helpful for the producer and seller of refrigerants.
引文
[1]Molina M.J and Rowland F.S. Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom Catalyzed Destruction of Ozone, Nature 249, 1974. 810~812.
    [2]刘圣春,CFCs、HCFCs 性能及其替代物的研究[硕士学位论文],天津:天津 大学,2003.
    [3]Ross J.Salawitch. Ozone depletion: A greenhouse warming connection. NATURE, 1998, 392. 551~552.
    [4]James M.Calm and David A.Didion. Trade-offs in refrigerants selections: past, present and future. Int.J.Refrig, 1998, 21(4). 308~321.
    [5]刘德顺,《联合国气候变化框架公约》波恩大会观察,国际学术动态,2005.5:61~65.
    [6]姜达洋,简析《京都议定书》对我国经济的影响,能源与环境,2005.3: 53~54.
    [7]Dr. F. BILLIARD,制冷与可持续发展,制冷学报,2003,2:22~26.
    [8] http://www.mep.tno.nl/homepage_eng_mep.html.
    [9]http://news.eastday.com/epublish/gb/paper148/20020716/class014800012/hwz717433.htm.
    [10]http://news.0937.net/gansu/qingyang/2005-11/16/0511161246255082_255.htm.
    [11]www.csb.gov/completed_investigations/docs/CSB_HerrigFinaldigest.pdf.
    [12]http://www.uneptie.org/pc/apell/disasters/lists/disastercat.html.
    [13]将世亮,选择纯耐强 AZ-20 作为 R22 的替代物,家电科技,2002,9:56.
    [14]曾辉祥,制冷空调用 CFCs 替代物的研究近况,制冷,1993,4:32~35.
    [15]R-22 Alternative Refrigerants Evaluation Program (AREP). A program status report by the AREP Technical Committee, 1994.9.
    [16]J.M.Calm and P.A.Domanski. R22 repacement status. ASHRAE Journal, 2004, 46(8). 29~39.
    [17]Dipl.-lng. Christoph Meurer, R22 Substitution in der Warmepoumpenindustrie.
    [18]节能环保制冷剂进入中国,家电科技,2001.1:5.
    [19] http://www.refsols.com/index.html.
    [20]http://www.clemson.edu/research/ottSite/techs/patent/130.htm.
    [21]Kul l., D.D.DesMarteau, and A.L.Beyerlein, 2004, Coefficient of performance of fluorinated ether and fluorinated ether mixtures, paper 4711, ASHRAE Transactions 110(2).
    [22]Klein, S.A., et al.. Refrigeration system performance using Liquid-suction heat exchangers. International Joural of Refrigeration, 2000, 23(8). 588~596.
    [23]S. Wellsandt and L. Vamling. Evaporation of R407C and R410A in a horizontal herringbone microfin tube: heat transfer and pressure drop. International Journal of Refrigeration, 2005, 28. 901~911.
    [24]Hyung Yoon, Todor Sheiretov, Cris Cusano. Tribological evaluation of some aluminum-based materials in lubricant/refrigerant mixtures. Wear 218 (1998). 54~45.
    [25]J.T. McMullan, N.J. Hewitt, M.G. McNerlin et al.. Component separation in refrigerant equipment using HFC mixtures. Fluid Phase Equilibria,2000, 174. 133~141.
    [26]S. G. Kim, M. S. Kim1, S. T. Ro. Experimental investigation of the performance of R22, R407C and R410A in several capillary tubes for air-conditioners. International Journal of Refrigeration, 2002, 25. 521~531.
    [27]C. Meurer a, G. Pietsch b, M. Haacke. Electrical properties of CFC- and HCFC-substitutes, International Journal of Refrigeration. 2001, 24. 171~175.
    [28]Helena Montiel, Juan A.Vílchez, Joaquim Casal, etc.. Mathematical modeling of accidental gas release[J]. Journal of Hazardous Materials, 1998, 59(2.3).211~233.
    [29]J.D.Young, Bum Jong Ahn. A simple model for the release rate of hazardous gas from a hole on high-pressure pilelines[J]. Journal of Hazardous materials 2003, A97(1.3).31~46.
    [30]O.Levenspiel, Engineering flow and heat exchange, Plenum, New York, 1984.
    [31]蔡凤英,谈宗山,孟赫等,化工安全工程,北京:科学出版社,2001: 176~202
    [32]魏利军,张政,胡世明,重气扩散的数值模拟,中国安全科学学报,2000,10(2):26~34.
    [33]陈先斌,费锡仙,杨守生,液化石油气泄漏事故的数学模拟研究,消防技术与产品信息,2003,12:41~44.
    [34]http://www.mep.tno.nl/software/MilieuIV/Uitgebreid/FRIENDSuitgebreiden.
    [35]http://www.frperc.bris.ac.uk/home/news/items/item0019.htm.
    [36]T.JABBOUR, D.CLODIC. Ignition tests of flammable refrigerant leaks in ventilated and unventilated rooms, A report from Center for Energy studies.
    [37]D.Colbourne, K.O.Suen. Appraising the flammability hazards of hydrocarbon refrigerants using quantitative risk assessment model Part I:modelling approach,2004, 27.774~783.
    [38]D.Colbourne and K.O.Sue. Appraising the flammability hazards of hydrocarbon refrigerants using quantitative risk assessment model Part II:Model evaluation and analysis, 2004, 27:784~793.
    [39]D. Colbourne, K.O. Suen. Equipment design and installation features to disperse refrigerant releases in rooms—part I:experiments and analysis, International Journal of Refrigeration, 2003 ,26:667~673
    [40]D. Colbourne, K.O. Suen. Equipment design and installation features to disperse refrigerant releases in rooms—part II: determination of procedures, International Journal of Refrigeration, 2003, 26:674~680.
    [41]James R.W., Missenden, J.F., The use of propane in domestic refrigerators, International Journal of Refrigeration, 1992, (15).95~100.
    [42]I.L. Maclaine-cross. Usage and risk of hydrocarbon refrigerants in motor cars for Australia and the United States. International Journal of Refrigeration, 2007,7.339~345.
    [43]Shigeo Kondo, Akifumi Takahashi, Kazuaki Tokuhashi. RF number as a new index for assessing combustion hazard of flammable gases. Journal of Hazardous Materials, 2002, A93. 259~267.
    [44]Shigeo Kondo, Youkichi Urano, Kazuaki Tokuhashi. Prediction of flammability of gases by using F-number analysis. Journal of Hazardous Materials, 2001, A82. 113~128.
    [45]Tony Jabbour, Denis F. Clodic. Burning velocity and Refrigerant flammability classification. ASHRAE, 2004. 522~533.
    [46]史琳等,HCFC22 替代制冷剂 THR03 的试验研究,暖通空调,2000,30(2):1~4.
    [47]苗展丽,刘志刚,何茂刚,冰淇淋机制冷系统性能及新型环保制冷剂热力学分析,制冷与空调,2003,3(1):15~20.
    [48]刘志刚,吴江涛,褚英杰,制冷剂 HFC32/HFC125/HFC152a 的热力学性能分析,西安交通大学学报,2005,39(1):1~5.
    [49]杨昭,刘志刚,吕灿仁等,空调热泵系统 R22 替代的理论分析及试验研究,工程热物理学报,1996,17(2):141~145.
    [50]宣永梅,陈光明,陈斌等,一种 HCFC-22 新型替代制冷剂的实验研究,工程热物理学报,2004,25(2):201~204.
    [51]郭智恺,郭心正,替代 HCFC~22 的新型环保型制冷剂,第二届中国制冷空调行业信息大会,2004.11:77~83.
    [52]王兆华,沈永年,宋世亮,含 R227ea 的混合制冷剂替代 R22 研究,能源工程,2005.2:35~39.
    [53]胡芃,赵涛,陈则韶,HFC125/HCs 二元混合工质理论制冷循环性能分析,制冷学报,2004,2:35~38.
    [54]王向岩,马伟斌,龚宇烈等,氟化醚类共沸混合物 RE143a/RE218 作为制冷剂与其他几类 R22 替代物的分析比较,制冷学报,2004,4:35~39.
    [55]刘志刚,吴江涛,陈圣坤,冰箱空调替代制冷剂的研究进展,中国教育学会工程热物理专业委员会第十一届全国学术会议,哈尔滨,2005:100~109.
    [56]赵振东,于世舟,钟江荣,地震次生毒气泄漏与扩散的数值模拟与动态仿真,地震工程与工程振动,2002,22(5):137~142.
    [57]王淑兰,喻健良,丁信伟等,易燃气和毒气泄放扩散浓度计算,化工装备技术,2001,22(4):22~25
    [58]张武,宇德明,可燃气体储罐区泄漏危险性定量分析,安全与环境学报,2002,2(1):14~16.
    [59]田贯三,杨昭,马一太等,制冷系统可燃工质泄漏喷射过程的模拟研究,工程热物理学报,2000,21(4):401~404.
    [60]杨昭,童春荣,张世刚等,低沸点可燃组元混合物贮运过程动态可燃特性,燃烧科学与技术,2001,7(3):254~257.
    [61]杨昭,田贯三,李汛等,含 R227ea 制冷剂燃爆特性的研究,工程热物理学报,2001,22(4):420~422.
    [62]田贯三,杨昭,刘万福等,可燃制冷剂泄漏及爆炸危害评价的危害,安全与环境学报,2001,1(6):39~43.
    [63]杨昭,马一太,赵三元等,逆循环系统混合物不燃初始充灌浓度区预测,工程热物理学报,1998,19(4):401~405.
    [64]杨昭,张启,马一太等,热泵空调系统可燃混合物的安全环境预测,太阳能学报,1999,20(2):156~161.
    [65]杨昭,马一太,顾惠军等,热泵空调系统含可燃组元混合物的最危险泄漏工况和泄漏点,太阳能学报,1999,20(1):81~86.
    [66]段远源,史琳,朱明善等,三氟碘甲烷(CF3I)的热物理性质,清华大学学报(自然科学版),2000,40(6):60~63.
    [67]鞠飈,何茂刚,刘志刚,可燃性混合工质制冷剂的爆炸极限研究[J],工程热物理学报,2000,21(6):680-682
    [68]曹锋,陈芝久,赵薰,制冷系统中 R407C 替代 R22 技术研究综述,制冷与空调,2002,2(1):61~63.
    [69]徐砾,制冷空调行业替代制冷剂的选择,武汉科技学院学报,2003,16(3):62~66.
    [70]刘忠民,R22 制冷剂的替代技术,制冷与空调,2001,1(3):47~53.
    [71]陈九法, 关于 R407C 用于替代 R22 的研究, 流体机械,2004,32(8): 69~72.
    [72]曾冬改,江燕涛, 混合工质 R407C 替代 R22 的房间空调器性能试验, 湛江海洋大学学报,2004,24(3):42~46.
    [73]吴加生,R407C 在家用房间空调器上的应用探讨,制冷,2003,23(2): 26~28.
    [74]Robin K.S.Hankin. Shallow layer simulation of heavy gas released on a slope in a calm ambient Part II: Instantaneous releases. Journal of Hazardous Materials 2003, A103, 217~229.
    [75]Robin K.S.Hankin. Major hazard risk assessment over non-flat terrain Part II: Instantaneous release. Atmospheric Environment 2004, 38 (5). 707~714.
    [76]Robin K.S. Hankin. Risk assessment of major hazards: the effect of ground slope. Journal of Loss Prevention in the Process Industries, 2003, 16. 305~311.
    [77]Vladimir Gorsky Tatiana Shvetzova-Shilovskaya and Alexander Voschinim. Risk assessment of accidents involving environmental high-toxicity substances, Journal of Hazardous Materials, 2000, 78. 173~190.
    [78]Ashok Kumar, Abjheet Mahurkar and Amit Joshi. Study of the spread of a cold instantaneous heavy gas release with surface heat transfer and variable entrainment. Journal of Hazardous Materials, 2003, B101. 157~177.
    [79]Fauske, H. and Epstein, M.. Source term considerations in connection with chemical accidents and vapor cloud modeling. International Conf. on vapor cloud modeling, ed. J. Woodward, AICHE, 1987.
    [80]Huang-Ming Sung and John G. Wheeler. Source characterization of ammonia accidental release for various storage and process conditions, for presentation at the air & waste management association’s 90th annual meeting & exhibition, June 8-13, 1997, Toronto, Ontatio, Canada.
    [81]D.M. Deaves, S. Gilham, B.H. Mitchell, P. Woodburn, A.M. Shepherd. Modelling of catastrophic flashing releases. Journal of Hazardous Materials, 2001, A88. 1~32.
    [82]P. Kathirgamanathan, R. Mckibbin and R.I. McLachlan. Source term estimation of pollution from an instantaneous point source. Rs. Lett. Inf. Math. Sci., 2002, 3. 59~67.
    [83]吴之春,吕灿仁,马一太,混合制冷工质在储槽内泄漏的理论分析,天津大学学报,1995,28(1):39~43.
    [84]顾惠军,高志明,马一太,非共沸混合工质泄漏拓展模型的理论分析,制冷学报,1998.1:6~10.
    [85]A.G.Venetsanos, Bartzis J.G., Wurtz J., Papailiou D.D.. Display-2: a two dimensional shallow layer model for dense gas dispersion including complex features. Journal of Hazardous Materials, 2003, A99. 111~144.
    [86]杨昭,刘志刚,赵三元等,新型 HCFCs 替代物筛选及性能试验,太阳能学报,1998,19(2):133~139.
    [87]杨昭,刘志刚,马一太等,七种新的 R22 替代物的变工况性能分析及试验,1997,1:7~12.
    [88]张石,氟利昂(CFC)的替代品方案,中外轻工科技,2000,4:16~17
    [89]许慧英,ODS 替代品的开发进展,浙江树人大学学报,2002,2(2): 79~82.
    [90]毛雯萍,船用制冷装置制冷剂替代,机电设备,2002,6:17~21.
    [91]高祖锟,制冷剂CFCs替代物选择的方法,制冷,1994,4:30~35.
    [92]J.M.Calm and G.C.Hourahan. Refrigerant data summary. Engineered systems, 2001, 18(11). 74~88.
    [93]梁燕波,童景山,液体燃料替代物――二甲醚(DME)热力学性质的研究, 化学工程,2003,31(1):60~62.
    [94]贾明生,凌长明,二甲醚的物化特性和国内应用前景分析,石油与天然气 化工,2003,32(6):336~338.
    [95]何茂刚,李惠珍,李铁辰等,三氟甲醚作为冰箱制冷剂的理论分析,西安交 通大学学报,2003,37(1):10~14.
    [96]段远源,朱明善,史琳等,绿色制冷剂三氟碘甲烷和二氟甲烷的热物理性质 研究,中国科学基金,2001,4:215~218.
    [97]倪子璀, 卤系阻燃剂阻燃机理的探讨及应用,广东化工,2003,3:27~29.
    [98]Gary J.Zyhowski. Summarization of properties and application of HFC-245fa. science and technology of home electrical appliances, 2003, 8. 59~62.
    [99]刘志刚,傅秦生,焦平坤等,CFCs替代工质筛选的热力学原则,全国高等学 校工程热物理第四界学术会议论文集,杭州:浙江大学出版社,1992:73~76.
    [100]童景山,李敬,流体热物理性质的计算,北京:清华大学出版社,1982.
    [101]刘晓斌,用 HFC32/HFC125/HFC134a 替代 HCFC22 的理论计算与分析,华东工业大学学报,1996,18(3):56~62.
    [102]D. R. Defibaugh and G. Mottison. Interaction coefficients for 15 mixtures of flammable and ono-flammable components. Int J. Refrig. 1995, 18(8). 518~523.
    [103]张世刚,燃气机热泵仿真与优化匹配研究[博士学位论文],天津:天津大学,2003.
    [104]姚寿广,王俊,小型空调装置中 R22 与替代工质 R290 的性能对比研究,华东船舶工业学院学报(自然科学版),2002,16(5):67~71.
    [105]张增禧,王曙,顾伯勤等,垫片密封泄漏模型研究,压力容器,2001,18(2):4~6.
    [106]顾伯勤,多孔介质气体流动模型在垫片密封中的应用,南京化工大学学报,1999,21(1):19~23.
    [107]顾伯勤,螺栓法兰连接系统泄漏率计算,石油化工设备,1999,28(3):30~34.
    [108]田贯三,可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究[博士学位论文],天津:天津大学,2000.
    [109]董玉华,周敬恩,高惠临等,长输管道稳态气体泄漏率的计算,油气储运,2002,12(5):11~15.
    [110]Dong Yuhua Gao Huilin, Zhou Jing’en etc.. Evaluation of gas release rate thorugh holes in pipelines. Journal of loss prevention in the process industries, 2002, 15. 423~428.
    [111]Dong Yuhua Gao Huilin, Zhou Jing’en etc.. Mathematical modeling of gas release thorugh holes in pipelines. Chemical engineering journal, 2003, 92. 237~241.
    [112]杜建科,毒气泄漏过程及其危险区域分析,中国安全科学学报,2002,12(6):55~58.
    [113]王炜,吴德荣,管壳式换热器中管子断裂泄放量的计算,化工设计,2002,12(3):16~18.
    [114]潘旭海,蒋军成,事故泄漏源模型研究与分析,南京工业大学学报,2002,24(1):105~110.
    [115]宇德明,易燃、易爆、有毒危险品储运过程定量风险评价. 北京:中国铁道出版社,2000.
    [116]A.Johansson, P.Lundqvist. A method to estimate the circulated composition in refrigeration and heat pump systems using zeotropic refrigerant mixtures. International Journal of Refrigeration, 2001, 24. 798~808.
    [117]Coker A K. Understand two-phase flow in process piping. Chemical Engineering Progress, 1990, 11. 60~65.
    [118]Daniel A Crowl, Joseph F Louvar. Chemical process safety-fundamentals with application. New Jersey: Prentice-Hall, 1990. 82~120.
    [119]谭周芳,R32/R134a 混合工质泄漏对系统性能的影响,制冷,2000,19(1):26~29.
    [120] A.Johansson, P.Lundqvist. A method to estimate the circulated composition in refrigeration and heat pump systems using zeotropic refrigerant mixtures. International Journal of Refrigeration, 2001, 24. 798~808.
    [121]徐敬东,家用制冷器具使用可燃性制冷剂的危险性分析和安全标准,四川制冷,1991,1:25~30.
    [122]Peter Montague. Reducing the harms associated with risk assessments. Environmental Impact Assessment Review, 2004, 24. 733~748.
    [123]B.R.Gurjar and Manju Mohan. Integrated risk analysis for acute and chronic exposure to toxic chemicals. Journal of Hazardous Materials,2003,A103. 25~40.
    [124]潘旭海,蒋军成,危险品罐区突发性泄漏事故实时环境风险模拟分析,环境科学学报,2004,24(3):539~544.
    [125]何文平,侯威,封国林,指数形式下的对流扩散方程的数值求解,扬州大学学报(自然科学版),2004,7(3):14~18.
    [126]梁昆淼,数学物理方法,北京:高等教育出版社,2000.
    [127]郭少为,吴文权,建筑物对空气污染物扩散影响的研究,城市环境与城市生态,1997,10(1):54~58.
    [128]李宗恺,潘云仙,孙润桥,空气污染气象学原理及应用,北京:气相出版社,1985.1.
    [129]谷清,李云生,大气环境模式计算方法,北京:气象出版社,2002.3.
    [130]蒲恩奇,大气污染治理工程,北京:高等教育出版社,1999.6.
    [131]谷清,风速与烟源有效高度、地面浓度的关系,伤害环境科学,1988,7(6):16~19.
    [132]王宏谟,大气扩散模式及其应用,包钢科技,2000,26(4):81~83.
    [133]李又绿,姚安林,李永杰,天然气管道泄漏扩算模型研究,天然气工业,2004,24(8):102~104.
    [134]蔡增基,流体力学泵与风机(第四版),北京:中国建筑工业出版社出版,1999.
    [135]Center for Chemical Process Safety of the American Institute of Chemical Engineers, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosion, Flash Fires and BLEVE. New York, AICHE, 1994. 117~155.
    [136]Center for Chemical Process Safety of the American Institute of Chemical Engineers, Guidelines for Chemical Transportation Risk Analysis. New York, AICHE, 1995. 111~120.
    [137]刘茂,余素林,李学良等,闪火灾害的后果分析,安全与环境学报,2001,1(4):28~31.
    [138]Software training course. DNV risk management software, 16340 park ten place, suttee 100, Houston, TX77084, USA.
    [139]刘诗飞,詹予忠,重大危险源辨识及危害后果分析,北京:化学工业出版社,2004.5.
    [140]汪元辉,安全系统工程,天津:天津大学出版社,1999.10.
    [141]郑津洋,马夏康,尹谢平,长输管道安全风险辨识、评价、控制,北京:化学工业出版社,2004.5.
    [142]王立群,姚丹丹,赵纯柏,二氯乙烷(EDC)生产事故后果分析,化工安全与环境,2004,720(8):19~20.
    [143]刘春祥,蔡凤英,谈宗山,某液氨储罐泄漏的后果分析及对策,工业安全与环保,2004,30(10):18~20.
    [144]欧文?格拉斯曼(美),燃烧学,北京:科学出版社,1983.9,74~96.
    [145]傅维标,卫景彬,燃烧物理学基础,北京:机械工业出版社,1984.4,111~148
    [146]王方,火焰学,北京:中国科学技术出版社,1994.12,34~52.
    [147]赵衡阳编著,气体和粉尘爆炸原理,北京:北京理工大学出版社,1996.
    [148]鞠飙,可燃性环保制冷剂的爆炸极限研究[博士学位论文],西安:西安交通大学,1999.4.
    [149]中华人民共和国标准,空气中可燃气体爆炸极限测定方法:GB/T12474-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700