聚(3-羟基丁酸3-羟基戊酸3-羟基己酸)生物相容性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三聚物P(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate)(PHBVHHx)是通过重组菌Aeromonas hydrophila发酵获得的,其包括5.3 mol%3-hydroxyvalerate(3-HV)和10.2 mol%3-hydroxyhexanoate(3-HHx)。本文第一次在体外通过与poly(L-lactic acid)(PLA),poly(3-hydroxybutyrate)(PHB),poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBHHx)的对比研究三聚物PHBVHHx的生物相容性。扫描电镜结果表明只有在PHBVHHx上才具有螺纹状的形态结构。噻唑蓝检测证明三聚物PHBVHHx在促进小鼠成纤维细胞L929和成骨细胞MC3T3的粘附和繁殖方面都分别比其他四种多聚物材料强。兔子体内组织学研究表明PHBVHHx是一个温和无伤害的生物植入材料。因此,PHBVHHx其可塑的物化性质和其生物相容性都使它可能成为新一代的生物植入材料。
Terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoat)(PHBVHHx) containing 5.3 tool% 3-hydroxyvalerate (3-HV) and 10.2 tool%3-hydroxyhexanoate (3-HHx) was obtained via microbial synthesis using recombinantAeromonas hydrophila. For the first time in vitro biocompatibility of the terpolyesterwas evaluated in comparison with poly(L-lactic acid) (PLA), poly (3-hydroxybutyrate)(PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) andpoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Scanning electronmicroscopy (SEM) showed whorls-like morphology only on PHBVHHx film surface.Methylthiazol tetrazolium (MTT) assay demonstrated that PHBVHHx was better thanthe above four materials in promoting cell attachment and proliferation of fibroblastcell line L929 and osteoblast cell line MC3T3, respectively. Histological study usingrabbits proved that PHBVHHx was a fairly harmless implantable biomaterial. Thus,PHBVHHx with an adjustable mechanical property, combined with itsbiocompatibility, are in the process of developing into a new generation of bioimplantmaterial.
引文
[1] Lee S Y. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnol. 1996, 14: 431~438.
    [2] Amos D A. Mclerney M J. Poly-β-hydroxyalkanoates in Syntrophomonas wolfei. Arch. Microbiol. 1989, 151: 172~177.
    [3] Reusch R N. Sparrow A W. Gardiner J. Transport of poly-β-hydroxybutyrate in human plasma. Biochem. Biophysics. Acta. 1992, 1123: 33~40.
    [4] Seebach D. Brunner A., Burger H M., Reusch R N. and Bramble L L. Channel-forming activity of 3-hydroxybutanoic-acid oligomers in plannar lipid bilayers. Helv. Chim. Acta. 1996, 79: 507~517.
    [5] Reusch R N. and Sadoff H L. D-(-)-Poly-b-hydroxybutyrate in membranes of genetically competent bacteria. J. Bacteriol. 1983, 156: 778~788.
    [6] Anderson A J, Hayward G W, Williams D R and Dames E A. The production of poly hydroxyalkanoates from unrelated carbon sources. Dawes(ed), Novel biodegradable Microbial Polymetrs, Kluwer Acadimic Publisher. 1990, 119~129.
    [7] Heywood G W, Anderson A J, Williams D R and Dawes E A. Accumulation of poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int. J Biol Macromol. 1991, 13: 72~83.
    [8] Caballero K P, Karel S F, Register R. A. Biosynthesis and characterizations of hydroxybutyrate-hydroxycaproate copolymers. Int. J. Biol. Macromol. 1995, 17: 86-92.
    [9] Doi Y, Kitamura S and Abe H. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-s-hydroxyhexanoate). Macromolecules. 1995, 23: 4822~4828.
    [10] Shimamuna E, Shima Y, Doi Y. Physical properties and biodegradability of Microbial Poly(3-hydroxybutyrate-co-hydroxycaproate). Macromolecules. 1994, 27: 878~880.
    [11] Lara L. Madison, Gjalt W. HUISMAN. Metabolic engineering of Poly(3-hydroxyalkanoates): from DNA to plastic. Microbiology and Molecular Biology Reviews. 1999, 63: 21~53.
    [12] Lee S Y, Lee Y, Wang F L. Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnology and bioengineering. 1999, 65: 363~368.
    [13] Anderson A J, & Dawes E A. Occurrence, Metabolism, Metabolic Role and Industrial Use of Bacterial Polyhydroxyalkanoates. Microb. Rev. 1990, 54: 450~472.
    [14] Lee S Y. Bacterial Polyhydroxyalkanoates. Biotechnol and Bioeng. 1996, 49: 1~14.
    [15] Page W J. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol. Rev. 1992, 103: 149-158.
    [16] Hazenberg W, Witholt B. Efficient production of medium-chain-length poly(3-hydroxyalkanoate) from octane by Pseudomonas oleovorans: economical considerations. Appl. Microbiol. Biotechnol. 1997, 48: 588-596.
    [17] James B W, Mauchline W S, Dennis P J, Keevil C W, Wait R. Poly-3-Hydroxybutyrate in Legionella-Pneumophila, an Energy-Source for Survival in Low-Nutrient Environments. Applied and Environmental Microbiology. 1999, 65: 822-827.
    [18] Lee S Y. Bacterial Polyhydroxyalkanoates. Biotechnol and Bioeng. 1996., 49: 1-14.
    [19] Timm A, Byrom D, and Steinbuchel A. Formation of blends of various poly(3-hydroxyalkanoic acid) by a recombinant strain of Pseudomonas oleovorans. Appl. Microbiol. Biotechnol.. 1990, 33: 296-301.
    [20] Katoh T, Yuguchi D, Yoshii H, Shi H D, Shimizu K Dynamics and Modeling on Fermentative Production of Poly (Beta-Hydroxybutyric Acid) from Sugars via Lactate by a Mixed Culture of Lactobacillus-Delbrueckii and Alcaligenes-eutrophus.J. Biotechnol. 1999, 67: 113-134.
    [21] Olivier V, Faucheux N, Hardouin P. Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery. Drug. Discov. Today. 2004, 9: 803-11
    [22] Santerre J P, Woodhouse K, Laroche G, Labow R S. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials. 2005, 26(35): 7457-70.
    [23] Moore T, Adhikari R, Gunatillake P. Chemosynthesis of bioresorbable poly(gamma-butyrolactone) by ring-opening polymerisation: a review. Biomaterials. 2005, 26: 3771-82
    [24] Yang C, Hillas P J, Baez J A, Nokelainen M, Balan J, Tang J, Spiro R, Polarek J W. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004, 18: 103-19.
    [25] Dai N T, Williamson M R, Khammo N, Adams E F, Coombes A G, Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004, 25: 4263-71.
    [26] Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24: 4833-41.
    [27] Beckstead B L, Pan S, Bhrany A D, Bratt-Leal AM, Ratner B D, Giachelli C M. Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials. 2005, 26: 6217-28.
    [28] Robinson B P, Hollinger J O, Szachowicz E H. Calvarial bone repair with porous D.L-Polylactide. Otalaryngol Head Neck Surg. 1995, 112: 707-713.
    [29] Qiu Q Q, Ducheyne P, Ayyaswamy P S. New bioactive, degradable composite microspheres as tissue engineering substrates. J. Biomed. Mater. Res. 2000, 52: 66-76.
    [30] Mathieu L M, Mueller T L, Bourban P E, Pioletti D P, Muller R, Manson J A. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials.2006, 27: 905-916.
    [31] Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, Ota H, Nozaki K, Takaoka K. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 2001, 19: 332-5
    [32] Lobler M, Sass M, Kunze C, Schmitz K P, Hopt U T. Biomaterial implants induce the inflammation marker CRP at the site of implantation. J. Biomed. Mater. Res. 2002,61:165-7
    [33] Du C, Cui F Z, Feng Q L, zhu C D, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res. 1998, 42: 540-548
    [34] Zinn, M., Witholt, B. and Egli, T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoates. Adv. Drug Delivery Rev. 2001, 53: 5-21.
    [35] Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990, 54: 450-472
    [36] Korsatko W. Retard implantation tablets on a matrix base with Eudragit as a structural substance. Pharmazie 1982,37: 272-3
    [37] Laffferty R M, Korsatko B, Korsatko W. Microbial production of poly-3-hydroxybutyric acid. Biotechnology: A comprehensive treatise, special microbial processes, VCH Verlagsgesellschaft, Weinhheim.1988,6: 135-176
    [38] 王常勇,袁晓辉 刘爽等.聚羟基丁酸酯载体人工软骨体内培育的实验研究.中华外科杂志,2000,38:269-271.
    [39] Sevastianov V I, Perova N V, Shishatskaya E I, Kalacheva G S, Volova T G. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J. Biomater. Sci. Polym. Ed. 2003,14: 1029-42
    [40] Mosahebi A, Fuller P, Wiberg M, Terenghi G. Effect of allergenic Schwann cell transplantation on peripheral nerve regeneration. Exp. Neurol. 2002, 173:213-23
    [41] Gerlach K L and Pesch H J. In vivo evaluation of a copolymer of polyhydroxybutyrate and polyhydroxyvalerate. Abstracts of the 8th European Conference on Biomaterials. Heidelberg. 1989, B3-1:79.
    [42] Leenstra T S, Kuijpers-Jagtman A M, Maltha J C. The healing process of palatal tissues after palatal surgery with and without implantation of membranes: an experimental study in dogs. J. Mater. Sci. Mater. Med. 1998, 9:249-55
    [43] Rivard C H, Chaput C, Rhalmis. Bioabsorbable synthetic polyesters and tissue regeneration. A study of three-dimensional proliferation of ovin chondrocytes and psteoblasts. Ann. Chir. 1996, 50: 651-658.
    [44] Sevastianov V I, Perova N V, Shishatskaya E I, Kalacheva G S, Volova T G. Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J. Biomater. Sci. Polym. Ed. 2003, 14:1029-42.
    [45] Shishatskaya E I, Volova T G. A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. J. Mater. Sc.i. Mater. Med. 2004, 15: 915-923
    [46] Williams S F, Martin. Therapeutic uses of polymers and oligomers comprising gamma-hydroxybutyrate. US Patent Appl. 661948, 2000.
    [47] Engelmayr G C, Hildebrand D K, Sutherland F W H. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Bimaterials 2003, 24: 2523-2532.
    [48] Sodian R, Loebe M, Hein A, Martin D P, Hoerstrup S P, Potapov E V, Hausmann H, Lueth T, Hetzer R. Application of stereo lithography for scaffold fabrication for tissue engineered heart valves. Asaio. J. 2002, 48: 12-6.
    [49] Opitz F, Schenke-Layland K, Cohnert T U, Starcher B, Halbhuber K J, Martin D P, Stock U A. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 2004, 63: 719-30.
    [50] Sodian R, Hoerstrup S P, Sperling J S. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation. 2000, 102: 22-29.
    [51] Sodian R, Hoerstrup S P, Sperling J S. Tissue engineering of heart valves: In vitro experiences. Ann. Thorac. Surg. 2000, 70: 140-144.
    [52] Perry T E, Kaushal S, Sutherland F W H. Bone marrow as a cell source for tissue engineering heart valves. Ann. Thorac. Surg. 2003, 75: 761-767.
    [53] Wallen L L, Rohwedder W K. Poly-β-hydroxyalkanoate from activated sludge. Environ. Sci. Technol. 1974, 8: 576-579Findlay R H, White D C. Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl. Environ. Microbiol. 1983, 45: 71-78.
    [54] Yoshie N, Saito M, Inoue Y. Structural transition of lamella crystals in a isomorphous copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules. 2001, 34: 8953-8960.
    [55] Kumarasuriyar A, Jackson RA, Grondahl L. Poly(hydroxybutyrate-co-hydroxyvalerate) supports in vitro osteogenesis. Tissue Eng. 2005, 11: 1281-1295.
    [56] Fischer D, Li Y, Ahlemeyer B 1. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003, 24:1121-31
    [57] Benjamin G K, Collard D M, Garcia A J. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials.2004, 25: 5947-5954
    [58] Qu XH, Wu Q, Liang J, Chen G Q. Enhanced vascular-related cellular affinity on surface modifiedcopolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials. 2005, 26: 6991-7001
    [59] Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. J, Biomed Mater Res. 1994, 24: 783-790
    [60] Dee K C, Puleo D A, Biaios R. Blood-biomaterial interaction and couagulation. In: Wiley J, editor. An introduction to tissue-biomaterial interaction. New York: Wiley.2002, p. 37-87
    [61] Ugarova T, Zamarron C, Veklich Y. Conformational transitions in cell-binding domain of fibronectin. Biochemisitry. 1995, 34: 4457-4466.
    [62] Barbucci R, Lamponi S, Aloisi A M. Platelat adhesion to commercial and modified polymer materials in animals under psychological stress and in a no-stress condition. Biomaterials. 2002, 23: 1967-1973
    [63] Zhao C S, Liu X D, Motoyoshi N. Blood compatible aspects of DNA-modified polysulfone membrane-protein adsorption and platelet adhesion. Biomaterials. 2003, 24:3747-3755
    [64] Garrido L. Nondestructive evaluation of biodegradable porous matrices for tissue engineering, In: Methods in molecular medicine,38: Tissue engineering methods and protocols. Morgan JR, Yarmush ML Ed. Totowa NJ: Human press. 1999,35-45
    [65] Belanger M C, Marois Y. 2001. Hemcompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethysiloxane: a review. J Biomed Mater Res. 2001, 58:467-477
    [66] Rivaton A, Gardette J L, Mailhot B. Basic aspects of polymer degradation. Macromol.Symp. 2005, 225:129-146
    [67] Bellenger V, Ganem M, Mortaigne B. Lifetime prediction in the hydrolytic ageing of polyesters. Polymer.degradation and stabilily. 1995,49:91-97
    [68] Qu X H, Wu Q, Zhang K Y, Chen G Q. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: Biodegradation and tissue reactions. Biomaterials. 2006, 27: 3540-3548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700