柴油机缸内工作过程及低温运行排放控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境污染是当前人类所面临的两大问题。人们通过节约能源以及开发新能源来缓解能源危机,通过制定各种法律法规和采用新技术来降低污染物的排放。柴油机因其热效率高、经济性好的优点在各行业得到了广泛应用。但是柴油机在低温环境运行时,会产生功率下降、油耗上升、排放恶化等问题,加剧了能源危机和环境污染,因此对柴油机的低温性能研究显得十分必要。本文对低温环境运行柴油机进行缸内燃烧过程组织及排放控制,旨在提高柴油机的动力性及经济性,同时降低柴油机的排放。
     本文以4102ZLQ柴油机为研究对象,采用了模拟与实验相结合的研究方法,对柴油机标定工况进行实验及数值模拟,建立了柴油机喷雾、燃烧及排放生成模型,对柴油机的气相流动过程、喷雾过程和燃烧过程等缸内过程进行了模拟计算。在燃油喷雾混合模拟中,采用离散相液滴模型模拟燃油液滴的运动;实心圆锥体射流源和Rosin-Rammler分布来描述燃油的喷射,Wave Breakup模型模拟燃油液滴的破碎;O′Rourke随机碰撞模型模拟液滴的碰撞,并考虑了液滴与壁面碰撞的反弹和粘附;采用Hardenburg和Hase提出的公式计算滞燃期。湍流运动采用RNG(Renormalization Group Theory)κ-ε方程模拟,并采用壁面函数对壁面湍流进行修正。燃烧计算中,将层流有限速率模型与涡耗散模型进行结合来计算净反应速率;采用单步反应来描述柴油的燃烧;将模拟结果与实验结果进行对比,并以此为基础对柴油机低温工况进行了较好的模拟。
     模拟结果较详细地展示了缸内流场、喷雾发展形态、喷雾液滴的空间分布情况及其燃烧的温度场、压力场。着重分析了缸内流场的演变规律、流动的特点以及NO_x、Soot的生成情况。通过模拟结果与实验结果的对比表明,所建立的三维燃烧模型可以较好地模拟柴油机的燃烧过程,预测柴油机的各项性能参数。在此基础上,利用三维燃烧模型,对柴油机低温运行工况进行了模拟,分析了低温环境时柴油机动力性及排放性的下降因素并提出了改善措施。通过改变低温环境时的进气压力、喷油提前角来提高柴油机的动力性能并降低排放。研究结果表明:相对于常温而言,低温运行时柴油机缸内低温区域分布较广,不利于可燃混合气的形成,从而使柴油机功率下降。在一定范围内,提高进气压力可以改变压缩终了温度,为燃烧提供充足的氧,提高柴油机的动力性。但随着燃烧温度的提高,柴油机的NO_x排放升高,对Soot作用不显著。喷油提前角是影响滞燃期的主要因素。喷油提前角大,滞燃期长,预混合期内燃烧的混合气量多,柴油机的功率增大,预混合期内缸内温度高,生成的NO_x较多,扩散燃烧期中碳烟生成量减少。增大喷油提前角能够有效的改善柴油机在低温时运行的动力不足问题,同时NO_x排放有一定程度的上升,Soot排放下降。
Energy crisis and environmental pollution are two serious problems to human beings.Energy crisis can be alleviated by means of saving energy and developing new energy sources.The exhaust of pollutants are limited and decreased by means of legislation and developing advanced technology.Diesel engine is widely used in the world due to its high thermal efficiency and good economy.The power loses,fuel consumption and emissions increase would occurred when the diesel engine were run under cold conditions,which aggravated the energy crisis and environmental pollution.So researches on the performance of diesel engine under cold conditions were necessary.Combustion optimization and exhaustion control of diesel engine under cold conditions were done in this paper,which aims to improve the power ability,fuel consumption and to decrease emission.
     The methods that combined simulation and experimentation were used to study the 4102ZLQ diesel.The prediction model of spray、combustion and exhaustion were used to simulate the fluxion,spray and combustion.In the fuel spray and mix model,discrete phase liquid droplets model has been used to simulate the movement of fuel liquid droplets.Multi-injection solid cone injector source and Rosin-Rammler distribution have been used to distribute fuel injection.The breakup of fuel liquid droplets has been simulated by Wave Breakup model. Turbulent flow has been simulated by Renormalization Group Theory (RNG)κ-εformula and near-wall region turbulent flow has been amended by wall functions.In combustion calculation,net production rate has been gained based on combining the laminar finite-rate model and the eddy dissipation model.Diesel combustion has been described by single step reaction.The simulation of diesel engine performance under cold conditions was based on the credible results of comparison between simulation and experiment.
     Gas fluid,spray development,distribution of spray liquid, temperature field and pressure field were performed by simulation results. The regular rule of in-cylinder fluid,the features of turbulence and eddy, the features of the nitrous oxide and Soot formation were analyzed.The result that compared simulation with experimentation shown that the three-dimension combustion model can be used to simulate the combustion process of diesel engine and to evaluate performance parameters of the engine.Three-dimension combustion model were used to simulate performance of diesel engine under cold conditions.The factors of power and emissions were analyzed,and counter measures were proposed.Pressure of inlet air and fuel injection advance angle were adjusted to improve the engine performance and exhaustion.The results showed that the region of low temperature extended when the diesel engine run under cold conditions compared with normal conditions,and that the formation of combustion mixture was weaken which decreased the power.The power of engine can be enhanced by adjusting the pressure of inlet air in a certain scope.The NOx emission was increased along with the increasing of combustion temperature,but it has few effects on Soot emission.The in-cylinder temperature was increased for larger injection advance angle.And the NOx emission was increased because of the longer lag period,but the formation of Soot emission decreased.The problem of power loses in cold conditions can improved effectively by increasing the injection advance angle.In addition,NOx emission increased and Soot emission decreased.
引文
[1]史绍熙,苏万华.内燃机燃烧研究中的儿个前沿问题[J].内燃机学报,1990,2:95-104.
    [2]Bhaskar K,Sendilvelan S,Jeyachandran K.Experimental lnvestigationon Cold Start HC and CO Emissio Control Using Electrically Heated Pre-Catalyst in Mark Iv Ambassador Si Engine[C].SAE Paper 2004-02-0006.
    [3]Shen Huixian,Tarig Shamim,Subrata Sengnpta,et al.An Investigation of Catalytic Converter Performance During Cold Starts[C].SAE Paper 1999-01-3473.
    [4]夏兴兰.数值模拟方法在柴油机进气道改进中的应用[J].内燃机学报,2002,5:424-428.
    [5]Henein N A,et al.Cold start Hydrocarbon emissions in Port-Injected gasoline Engines[J].Progress in Energy and Combustion Science,1999,5:563-593.
    [6]车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量办法[C].国家环境保护总局、国家质量监督检疫检验总局,GB17691--2005.
    [7]Jeyachandran K.DI diesel engines by the introduction of a fuel cut-off system during cold start[C].SAE Paper 2001-01-3283.
    [8]G Lakshmi.Experimental Studies on the Combustion and Emission Characteristics of a Diesel Engine Fuelled with Used Cooking Oil Methyl Ester and its Diesel Blends[J].INTERNATIONAL JOURNAL OF APPLIED SCIENCE,2007.2:1307-4318.
    [9]Yao Chunde,Liu Zengyong,Gao Changqing,Sun Jiafeng.Effect of Air/Fuel Ratio on Combustion chanracteristics of N.G Engine Ignited Pilot Diesel[C].International Cortferenee on Automotive Engineering,Seoul,2001,11:9-13.
    [10]杨文.内燃机进气道稳流实验装置内三维流动特性数值模拟研究[D].武汉:华中理工大学,1998:23-26.
    [11]莫玮,鄂家强.严寒条件下车辆柴油机冷起动性能研究[J].内燃机工程,2002,5:65-67.
    [12]周乃君,裴海灵,包生重.风冷柴油机冷起动性能的研究[J].车用发动机,2006,10:16-19.
    [13]Anand H Gandhi,Corey E Weaver,Eric W Curtis,et al.Spray Characterization in a DISI Engine During Cold Start[C].SAE Paper 2006-01-1004.
    [14]蒋德明.内燃机燃烧与排放学[M].西安交通大学也版社,2001,07.
    [15]陈钊.低温对柴油机起动性能的影响与改善[J].煤矿机械,2006,7:151-153.
    [16]杨建.低环境对车辆使用的影响及对策[J].公路与汽运,2003,5:10-12.
    [17]Jeffrey S Armfield.In Situ Measurement of Fuel Absorption into the Cylinder Wall Oil Film During Engine Cold Start[C].SAE Paper 1998-98-1054.
    [18]吴宁,程勇,王建昕.电喷汽油机冷起动过程的研究[J].内燃机工程,2002,3:81-85.
    [19]Greg H,David M,Human,Keith T,Miller,et al.The Role that Mienylcycopentadienyl Manganese Tricar-bonyl(MMT)can play in improving low-temperature per-fonnance[C].SAE Paper 2002-01-2728.
    [20]李德桃.柴油机冷起动的基础研究和改善措施[M].北京:科学出版社,1998.
    [21]Liu Hengqing,Naeim A Henein,Walter Bryzik.Simulation of Diesel Engines Cold Start[C].SAE Paper 2003-01-0080.
    [22]Launder B E,Spalding D B.The Numerical Computation of Turbulent Flows[J].Computer
    [23]Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [24]Tang W K,Reitz R D.Three-Dimensional Computations of Combustion in Premixed-Charge and Direct-Injected Two-Stroke Engines[C].SAE Paper 1992-92-0425.
    [25]FLUENT Inc.FLUENT 6.1 User's Guide[M].2003,2.
    [26]Reitz R D.Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays[J].
    [27]Atomization and Spray Technology,1987,3:309-337.
    [28]O'Rourke P J.Collective Drop Effects on Vaporizing Liquid Sprays[D].Princeton:New
    [29]Jersey Princeton University,1981.
    [30]Aceves S M,Flowers D L,Martinez F J,et al.A Sequential Fluid-Mechanic-Chemical -Kinetic Model of Propane HCCI Combustion[C].SAE Paper 2001-01-1027.
    [31]Curran H J,Pitz W J,Westbrook C K,et al.A Wide Range Modeling Study of Dimethyl Ether Oxidation[J].International Journal Chemical Kinetics,1998,3:229-241.
    [32]A.D.Gosman,Chengxin Bai.Mathematical Modeling of Wall Films Formed By Impinging Sprays[C].SAE paper 960626.
    [33]Karim G A,Yan Z D.Modeling of the Combustion Process in a Dual Fuel Direct Injection
    [34]Engine[J].ASME,1990,112:254-259.
    [35]Thomas W.Ryan,Timothy J.Callahan.Homogeneous charge compression ignition of diesel fuel[C].SAE Paper 961160.
    [36]G.K.Batchelor.An Introduction to Fluid Dynamics[D].Cambridge Univ.Press,Cambridge,England,1967.
    [37]K.M.Leung,R.P.Lindsted.Detailed Kinetic Modeling of C1-C3 Alkane Diffusion Flames[J].Combustion and Flame,1995,12):129-160.
    [38]F.S.Lien,M.A.Leschziner.Assessment of Turbulent Transport Models Including Non-Linear RNG Eddy-Viscosity Formulation and Second-Moment Closure[J].Computers and Fluids,1994,8:983-1004.
    [39]R.Cao,S.B.Pope.Numerical Integration of Stochastic Differential Equations:Weak Second-Order Mid-Point Scheme for Application in the Composition PDF Method[J].Journal of Computational Physics,2003,1:194-212.
    [40]U.Tuttlies,V.Schmeiber,G.Eigenberger.Amechanistic simulation model for NOx storage catalyst dynamics[J].Chemical Engineering Science,2004,9:4731 -4738.
    [41]M.L.Pisarello,V.Milt,M.A.Peralta,C.A.Querini.Simultaneous removal of Soot and nitrogen oxides from diesel engine exhausts[J].Catalysis Today,2002,7:465-470.
    [42]A.Heyl,H.Bockhorn..Flamelet modeling of NO formation in laminar and turbulent diffusion flames[J].Chemosphere 2001(42):449-462.
    [43]蒋德明.内燃机燃烧与排放学[M].西安交通大学也版社,2001,7.
    [44]M.C.Drake,S.M.Correa,R.W.Pitz,W.Shyy,C.P.Fenimore.Superequilibrium and Thermal Nitric Oxide Formation in Turbulent Diffusion Flames[J].Combustion and Flame,1987(69):347-365.
    [45]I.M.Khan,G.Greeves.A Method for Calculating the Formation and Combustion of Soot in Diesel Engines[M].Heat Transfer in Flames,Washington DC,1994.
    [46]S.-E.Kim and D.Choudhury.A.Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient[C].Separated and Complex Flows.ASME,1995.
    [47][43]R.Siegel,J.R.Howell.Thermal Radiation Heat Transfer[C].Hemisphere Publishing Corporation,Washington D.C.,1992.
    [48][44]Liu Hengqing.Simulation Model for Steady State and Transient Cold Starting Operation of Diesel Engines[D].Wayne State University,America,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700