油菜雄性不育相关基因的表达差异及克隆与序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国重要的油料作物,在我国的油料生产和食用油供给中占有极其重要的地位。油菜也是杂种优势利用普遍的一种作物,其雄性不育的分子机理及其应用基础的研究深受人们重视。本文基于甘蓝型油菜双显性雄性核不育近等基因系材料的芯片表达谱分析结果,分别选择了与糖代谢途径相关的两个基因GAPC(glyceraldehyde-3-phosphate dehydrogenase, cytosolic)和AT2G36580 ;与脂肪酸代谢途径相关的两个基因LACS9(long-chain acyl-CoA synthetase 9)和ACAT2(acetoacetyl-COA thiolase 2)以及花药特异表达基因PABP(polyadenylate-binding protein)和LTP12(lipid transfer protein 12),采用荧光定量PCR方法对其在根、茎、叶、花、角果、雌蕊、雄蕊中的表达模式进行分析,进一步阐明了甘蓝型油菜雄性核不育的分子机理。克隆了甘蓝型油菜花药特异基因Bn_PABP,通过相关生物信息学软件对PABP家族序列进行了分析,对基因结构和功能进行了预测和探讨,以期帮助深入理解甘蓝型油菜雄性核不育的分子机理。研究获得的主要结果陈述如下:
     1.糖代谢途径相关基因GAPC和AT2G36580在甘蓝型油菜各个组织中均有表达,花蕾发育过程中它们均在可育株四分体至单核期(败育中期)表达量最高,分别是可育株减数分裂期(败育前期)的5.06倍和1.69倍,而在不育株花蕾发育前期和中期被抑制;雌雄蕊中的表达分析表明它们均在不育株雄蕊中被抑制,而在可育株雄蕊中表达量高,分别是不育株雌蕊(对照)的9.11倍和4.47倍。
     2.脂肪酸代谢途径相关基因LACS9和ACAT2在角果中高量表达,花蕾发育过程中它们在不育株花蕾发育前期和中期被抑制,在可育株花蕾发育中期表达量高,分别是可育株花蕾发育前期的3.28倍和1.39倍;雌雄蕊中的表达分析表明它们均在不育株雄蕊中被抑制,而在可育株雄蕊中表达量高,分别是不育株雌蕊的2.03倍和3.43倍。
     3.花药特异表达基因PABP和LTP12在花中特异高量表达,在不育株花蕾发育时期被抑制,在可育株花蕾发育前期和中期表达,后期略有差异。雌雄蕊中的表达分析表明它们在在不育株雄蕊中基本不表达,而在可育株雄蕊中特异表达,分别是可育株雌蕊的6.78倍和9.45倍。
     4.上述基因表达模式的分析表明这六个基因的表达模式具有一定的共性:在可育株花蕾发育过程中,它们在前期和中期表达量上升,后期表达量下降,而在不育株花蕾发育前期和中期它们都被显著抑制。雌雄蕊中的表达分析表明,它们都在可育株雄蕊中高量表达,而在不育株雄蕊中表达量低。这些结果表明,这六个基因尽管属于不同的类别,但它们都同雄性核不育表型密切相关,值得进一步对其功能进行研究。
     5.通过生物信息学及分子生物学手段对甘蓝型油菜PABP基因进行了分析。首先,克隆获得了全长DNA序列。翻译后发现其包含651个氨基酸,分子量大小约71598.4,等电点约为8.38。通过与拟南芥PABP家族基因比对作出了进化树,甘蓝型油菜Bn_PABP与拟南芥PABP家族中的PABP5最为相似,氨基酸同源性达到了76%。通过生物学软件Clone Manager5对Bn_PABP同拟南芥PABP5进行了基因结构分析,发现它们具有类似的结构,即都具有PABP家族的特征保守区域和4个RNA结合区域,三维结构模拟显示二者功能位点结构高度相似。
China is a major country for plant oil consuming and importing. Rape is the main oil-bearing crop considering its growing areas and developing speed. In addition, Rape heterosis is becoming wide accept way to research the molecular mechanism of genic male sterility. In this study, based on the results of gene expression in Brassica napus double-dominat cytoplasm male sterile line by microarrays, we select six genes, GAPC and AT2G36580 are related to glucose metabolism, LACS9 and ACAT2 are involved in fatty acid metabolism, PABP and LTP12 are anther specific genes. Our purpose is to clarify the molecular mechanism of genic male sterility of Brassica napus. So we decide to explore all the chosen genes’expression model in roots, stems, leaves, flowers, pods, pistils and stamens by realtime PCR. Bn_PABP was cloned and sequenced, then gene structure and function were analysed by bioinformatics software. In all, we expect to understand the molecular mechanism of Brassica napus genic male sterility. The results as follows:
     1. In glucose metabolism, GAPC and AT2G36580 were expressed in all organizations. in fertile buds They exhibit the highest expression level at the stage of tetrad to uninucleate, which are 5.06 and 1.69 times compared to that at the meiosis stage. Furthermore, GAPC and AT2G36580 in fertile line stamen had a higher expression levels Nearly 9.11 and 4.47 fold than in sterile line pistils.
     2. In fatty acid metabolism, LACS9 and ACAT2 were highly expressed in pods. They were strong expressed in fertile buds, uninucleate stage, which are 3.28 times and 1.39 times respectively higher than that at the meiosis stage. However, they were significantly lower expressed in sterile buds. Further analysis of LACS9 and ACAT2 in stamens and pistils showed that expression level in fertile line stamens were 2.03 and 3.43 fold higher than that in sterile line pistils.
     3. PABP and LTP12 are anther specific genes. That is to say, both of them were highest expressed in flowers especially at the stage of tetrad to uninucleate in fertile buds But they were obviously lower expressed in sterile buds. Analysis of PABP and LTP12 in stamens and pistils showed that expression levels in fertile line stamens were 6.78 and 9.45 fold higher compared to that in pistils of sterile line.
     4. Analysis of gene expression profile indicated that all six gene expression patterns have some identities, such as the expression level of fertile buds raised up from the stage of tetrad to uninucleate and declined at the trinucleate stage, while they were significantly lower expressed in sterile buds from tetrad to uninucleate stage. Further analysis of these genes in stamens and pistils suggest that all of them were highly expressed in fertile line stamens and less expressed in sterile line stamens. All the results verify that these genes are related to genic male sterility , although they belong to different types of metabolic pathway. It would be worthwhile to study more detail to identify their functions.
     5. Bn_PABP gene was analysed by bioinformation and molecular methods, total length of DNA sequences has been cloned and translated. It encods 651 amino acids, which molecular weight was 71598.4, and isoelectric point was 8.38. Bn_PABP has a high similarity with PABP5 in PABP family of Arabidopsis thaliana because Brassica Napus and Arabidopsis are phylogentically very close related. The homology of protein was 76%. Comparing these genes structures by Clone Manager 5, we found they had similar structure which had four RNA recognize motifs and a PABP superfamily motif. Simulation of three-dimension showed that they were highly similitude in function locations.
引文
[1]李泽福,夏加发,唐光勇.植物雄性不育类型及其遗传机制的研究进展.安徽农业科学,2000,28(6):742-746
    [2] Mathias R. A new dominant gene for male sterility in rapeseed Brassica napus L. Plant Breed, 1985, 94: 170-173
    [3]王道杰,郭蔼光,李殿荣,等.油菜单显性核雄性不育基因的分子标记.植物生理与分子生物学学报,2006,32(5):513-518
    [4]李树林,周熙荣,周志疆,等.显性核不育油菜的遗传研究.中国遗传学会,植物遗传理论与应用研讨会文集,1990,340-349
    [5]王通强,黄泽素,魏忠芬,等.油菜优质新不育系黔油2AB选育及遗传研究.植物遗传资源科学,2001,2(2):50-55
    [6] Hu Shengwu, Yu Chengyu, Zhao Huixian, et al. The discovery of new kind of male sterility accession“Shaan-GMS”in Brassica napus L. and genetic study. in Liu Houli and Fu Tingdong, Proceedings of international symposium on rapeseed science. New York: Science Press, 2001: 111-116
    [7]王武萍,庄顺琪,董振生.白菜型油菜细胞核雄性不育三系选育研究.西北农业学报,1992,1(1):37-40
    [8]董振生,刘创社,景军胜.白菜型油菜(B.campestrisL.)双显性核不育896AB的选育.作物学报,1998,24(2):187-192
    [9]罗鸿源,何采平,黄泽素,等.S455核不育两用系的选育.贵州农业科学,1992,5:1-4
    [10] Zuberi MIS. Zuberi. Indian J. Genet. Plant Breeding, 1983, 43, 438-440
    [11]李树林,周志疆,周熙荣,等.甘蓝型油菜隐性核不育系S45AB的遗传.上海农业学报,1993,9(4):1-7
    [12]侯国佐,王华,张瑞茂,等.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,(2):7-10
    [13]孙超才,方光华,赵华,等.甘蓝型油菜隐性核不育两型系22118AB的基因型分析及利用途径探讨.上海农业学报,1997,13(1):11-15
    [14]张瑞茂,陈大伦,汤小华,等.甘蓝型油菜细胞核雄性不育材料118A的遗传与应用研究.种子,2007,26(5):90-94
    [15]陈凤祥,胡宝成,李成,等.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    [16]孙超才,赵华,王伟荣,等.隐性核不育油菜两型系20118AB的遗传与利用.上海农业学报,2004,20(1):30-32
    [17]王华,汤晓华,赵继献.甘蓝型油菜胞核雄性不育材料H90S的遗传研究.中国油料作物学报,2001,23(4):11-15
    [18]王谋强.大白菜及近缘作物核不育两用系的育性遗传多样性探讨.遗传,2000,22(3):162-164
    [19]黄飞,王道杰,黎斌,等.油菜雄性核不育系及其等位可育系小孢子发育过程的比较研究.西北植物学报,2006,26(6):1159-1164
    [20] Paul M Sanders, Anhthu Q Bui, Koen Weterings, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex plant reproduction, 1999, 11(6): 297-322
    [21] Glover J, Grelon M, et al. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J, 1998, 15: 345-356
    [22]余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究.武汉植物学研究,1990,8(3):209-216
    [23]董军刚,董振生,刘绚霞,等.甘蓝型油菜生态雄性不育系533S花药发育的细胞学研究.西北农林科技大学学报,2004,32(7):61-66
    [24]杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999,18(5):405-408
    [25]杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,1999,18(6):520-523
    [26]甘立军,夏凯,周燮.茉莉酸对拟南芥花粉育性的调控.植物生理学通讯,2004,40(3):269-274
    [27] Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol, 2005, 56: 393-434
    [28] Wilson ZA, Morroll SM, Dawson J, et al. The Arabidopsis MALE STERILITY1(MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J, 2001, 28: 27-39
    [29] Li N, Zhang DS, Liu HS, et al. The rice Tapetum Degeneration Retardation gene is required for taperum degradation and anther development. Plant Cell, 2006, 18: 2999-3014
    [30] Jung KH, Han MJ, Lee YS, et al. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722
    [31] Lee YH, Chung KH, Kim HU, et al. Induction of male sterile cabbage using a tapetum-specific promoter from Brasscia campestris L. ssp. pekinensis. Plant Cell Rep, 2003, 22: 268-273
    [32] Luo H, Lee JY, Hu Q, et al. RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol, 2006, 62: 397-408
    [33] Zhao DZ, Wang GF, Speal B, et al. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16: 2021-2031
    [34] Canales C, Bhatt AM, Scott R, et al. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol, 2002, 12: 1718-1727
    [35] Yang SL, Jiang L, Puah CS, et al. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS. Plant Physiol, 2005, 139: 186-191
    [36] Ma L, Sun N, Liu X, et al. Organ-specific expression of Arabidopsis genome during development. Plant Physiol, 2005, 138: 80-91
    [37] Hamant O, Ma H, Cande WZ. Genetics of meiotic prophaseⅠin plants. Annu Rev Plant Biol, 2006, 57: 267-302
    [38] Ross K J, Fransz P, Armstrong S J, et al. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA transtormed lines. Chrom Res, 1997, 5: 551-559
    [39] Li W, Yang X, Lin Z, et al. The AtRAD51C gene is required for normal meiotic chromosome synapsis and double-stranded break repair in Arabidopsis. Plant Physiol, 2005, 138: 965-976
    [40] Nonomura KI, Nakano M, Eiguchi M, et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosisⅠ. J Cell Sci, 2006. 119: 217-225
    [41] Kerzendorfer C, Vignard J, Pedrosa-Harand A, et al. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci, 2006, 119: 2486-2496
    [42] Hatsugai N, Kuroyanagi M, Nishimura M, et al. A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis, 2006, 11: 905-911
    [43] Yang X, Makaroff CA, Ma H. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell, 2003b, 15: 1281-1295
    [44] Vizcay-Barrena G, Wilson ZA. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Biol, 2006, 57: 2709-2717
    [45] Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 1,2-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA, 2000, 97: 10625-10630
    [46] Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. The Plant Journal. 2006, 46: 984-1008
    [47] Clement C, Audran J C. In Anther and Pollen. From Biology to Biotechnology. Springer Herdelberg, 1999, 69-90
    [48] Goetz M, Godt D E, Guivarch A, et al. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA, 2001, 98: 6522-6527
    [49] Koes RE, Quattrocchio F, Mol JNM. The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays, 1994, 16: 123-132
    [50] Pollak PE, Hansen k, Astwood JA, et al. Conditional male fertility in maize. Sex Plant Reprod, 1995, 8: 231-241
    [51] Quattrocchio F, Wing JF, Leppen HTC, et al. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell, 1993, 5: 1497-1512
    [52] Napoli CA, Fahy D, Wang HY, et al. white anther: Petunia Mutant that Abolishes Pollen Flavonol Accumulation, Induces Male Sterility, and Is Complemented by a Chalcone Synthase Transgene. Plant Physiology, 1999, 120: 615-622
    [53] Hartley RW. Barnase and barstar: two small proteins to fold and fit together. Trends Brochem. Sci. 1989, 14: 450-454
    [54] Mariani C, Gossele V, Beuckeleer MD, et al. Achimaerie ribonuclease inhibitor gene restores fertility to male sterile plants. Nature. 1992, 357: 384-387
    [55] Denis M, Delourme R, Gourret Jean-Pierre, et al. Express of engineered nuclear male sterility in Brassica napus. Plant Physiol. 1993, 101: 1295-1304
    [56] Worrall D, Hud DL, Paul W, et al. Premature dissolution of the microsporocyle callose wall causes male sterility in transgenic tobacco. Plant Cell. 1992, 4: 759-771
    [57] Preuss D, Lemteux B, Yen G, et al. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993, 7: 974-985
    [58] Coe EH, Jr. McCormick SM, et al. White pollen in maize. J Heredity. 1981, 72: 318-320
    [59] Van der Krol AR. Mur LA, de Lange P, et al. Antisense chalcone synthase genes in petunia: visualization of variable transgene expression. Mol. Gen. Genet. 1990, 220: 204-212
    [60] Van der Meer IM, Speh CE, Mol JNM, et al. Promoter analysis of the chalcone synthase(chsA) gene of petunia hybrid: A 67-bp promoter region directs flower-specific expression. Plant ol. Biol. 1990, 15: 95-109
    [61] Mo YY, Nagel C, Taylor LP, et al. Biochemical complementation of chalcone synthase mutants defines a role fore flavonois in unetional pollen. Proc. Nat. Acad. Sci. USA. 1992, 89: 7213-7217
    [62] Higginson T, Li SF, Parish RW. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 2003, 35: 177-192
    [63] Song Feng Li, Sylvana lacuone, Roger W. Parish. Suppression and restoration of male fertility using a transcription factor. Plant Biotechnology journal. 2007, 5: 297-312
    [64] Kenneth J Livak, Thomas D Schmittgen. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. METHODS, 2001, 25: 402-408
    [65] David G Ginzinger. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream[J]. Experimental Hematology, 2002, 30: 503-512
    [66] Goidin D. Staquet MJ. Staquet MJ. Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Analytical Biochemistry. 2001, 295(01): 17-21
    [67] Christopher R, Denz, Dipak K, Dube. The benefits of 28S rRNA for standardization of reverse transcription-polymerase chain reaction for studying gene expression[J]. Analytical Biochemistry, 2005, 341: 382-384
    [68]Clement C. Audran J C. In Anther and Pollen From Biology to Biotechnology. Springer Heidelberg. 1999, 69-90
    [69] Yajing Yang, Hawk-Bin Kwon, Hsiao-Ping Peng, et al. Stress Responses and Metabolic Regulation of Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Arabidopsis. Plant Physiol, 1993, 101: 209-216
    [70] Yan H, Lou MF, Fernando MR, et al. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts. Mol Vis, 2006, 12: 1153-1159
    [71] Ferreira-da-silva F, Pereira PJ, Gales L, et al. The crystal and solution structures of glyceraldehyde-3-phosphate dehydrogenase reveal different quaternary structures. J Biol Chem, 2006, 281(44): 33433-33440
    [72] Fothergill-Gilmore LA, Michels PAM. Evolution of glycolysis. Prog Biophys Mol Biol, 1993, 59: 105-235
    [73] Nakagawa T, Hirano Y, Inomata A, et al. Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J Biol Chem, 2003, 278(22): 20395-20404
    [74] Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem, 2001, 276(4): 2480-2486
    [75] Andrade J, Pearce ST, Zhao H, et al. Interactions among p22, glyceraldehyde-3- phosphate dehydrogenase and microtubules. Biochem J, 2004, 384(Pt 2): 327-336
    [76] Raje CI, Kumar S, Harle A, et al. The Macrophage Cell Surface glyceraldehyde-3- phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem, 2007, 282(5): 3252-3261
    [77]王幼宁,刘孟雨,李霞.植物3-磷酸甘油醛脱氢酶的多维本质.西北植物学报,2005,25(3):607-614
    [78] K Govinda Rajand, E Asiddiq. Biochical characterization of normal and male sterile anthers in rice(Oryza sativa L. ). Indian J. Genet, 1986, 46(3): 541-549
    [79]夏涛,刘纪麟.玉米细胞质雄性不育系物质代谢系统的研究.华中农业大学学报,1993,12(1):1-6
    [80]王学德.棉花细胞质雄性不育花药的淀粉酶与碳水化合物.棉花学报,1999,11(3):113-116
    [81]宋宪亮,孙学振,刘英欣.棉花ms5ms6核雄性不育花药中碳水化合物和游离氨基酸的变化.棉花学报,2001,13(6):334-336
    [82] Harwood IL. Molecular Biology. 1988, 39: 101-138
    [83] Watkins. PA. Fatty acid activation. Prog Lipid Res, 1997, 36: 55-83
    [84] Eastmond PJ, Hooks MA, Williams D, et al. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem, 2000, 275: 34375-34381
    [85] Conti EFN, Brick P. Crystal structure of firefly luciferase throw lifgt on a superfamily of adenylate-forming enzyme. Structure, 1996, 4: 287-298
    [86] Conti E, Stachelhaus T, Marahiel MA, et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. Embo J, 1997, 16: 4174-4183
    [87] Black NPDC, Metzger AK, Hemert TL. Cloning, sequencing and expression of the fadD gene of Escherichia Coli encoding acyl CoA synthetase. J. Biol. Chem, 1992, 267: 25513-25520
    [88] Faergeman NJ, Black PN, Zhao XD, et al. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acidtransport system linking import, activation, and intracellular Utilization. J Biol Chem, 2001, 276: 37051-37059
    [89] Shockey JM, Fulda MS, Browse JA. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in Fatty Acid and glycerolipid metabolism. Plant Physiol, 2002, 129: 1710-1722
    [90] Schnurr JA, Shockey JM, De Boer GJ, et al. Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis. Plant Physiol, 2002, 129: 1700-1709
    [91] Fulda M, Shockey J, Werber M, et al. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J, 2002, 32: 93-103
    [92] Pongdontri P, Hills M. Characterization of a novel plant acyl-CoA synthetase that is expressed in lipogenic tissues of Brassica napus L. Plant Mol Biol, 2001, 47: 717-726
    [93] Chris Carrie, Monika W, Steven M. Nine 3-ketoacyl-CoA thiolases(KATs)and acetoacetyl-CoA thiolases(ACATs)encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol. 2007, 63: 97-108
    [94] Pereto J, Lopez-Garcia P, Moreira D. Phylogenetic analysis of eukaryotic thiolases suggests multiple proteobacterial origins. J Mol Evol. 2005, 61: 65-74
    [95] Chang TY, Chang CCY, Chen D. Acyl-Coenzyme A: cholesterol acyltransferase. Ann. Rev. Biochem. 1996, 66: 613-638
    [96] Chang TY, Chang CC, Lu X, et al. Catalysis of ACAT may be completed within the plane of the membrane: a working hypothesis. J. Lipid Res. 2002, 42: 1933-1938
    [97] Belostotsky DA, Meagher RB. A Pollen-, Ovule-, and Early Embryo-Specific Poly(A) Binding Protein from Arabidopsis Complements Essential Functions in Yeast. The Plant Cell, 1996, 8: 1261-1275
    [98]吴艳红,陈建龙,许媛媛,等.多聚腺苷酸结合蛋白的结构与功能.生命的化学,2005,25(4):301-303
    [99] Deo RC, Bonanno JB, Sonenberg N, et al. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 1999, 98(6): 835-845
    [100]Kahvejian A, Svitkin YV, Sukarieh R, et al. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev, 2005, 19(1): 104-113
    [101]Hoshino S, Imai M, Kobayashi T, et al. The Eukaryotic Polypeptide Chain Releasing Factor (eRF3/GSPT) Carrying the Translation Termination Signal to the 3'-Poly(A) Tailof mRNA. J Biol Chem, 1999, 274(24): 16677-16680
    [102]Wang Z, Day N, Trifillis P, et al. An mRNA Stability Complex Functions with Poly(A)-Binding Protein To Stabilize mRNA In Vitro. Mol Cell Biol, 1999, 19(7): 4552-4560
    [103]Seli E, Lalioti MD, Flaherty SM, et al. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc Natl Acad Sci USA, 2005, 102(2): 367-372
    [104]Sachs AB, Davis RW. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell, 1989, 5b: 857-867
    [105]Arondel V, Vergnolle C, Cantrel C, et al. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci. 2000, 157: 1-12
    [106]Hiroaki Matsuhira, Hiroshi Shinada, Rika Yui-Kurino, et al. An anther-specific lipid transfer protein gene in sugar beet:its expression is strongly reduced in male-sterile plants with Owen cytoplasm. Physiologia Plantarum. 2007, 129: 407-414
    [107]Guerbette F, Grosbois M, Jolliot-Croquin A, et al. Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry. 1999, 38: 14131-14137
    [108]Thoma S, et al. Plant Physiol, 1994, 105(1): 35-45
    [109]李诚斌,施庆珊,疏秀林,等.LTP在植物抗环境胁迫中的作用.生物技术通报.2006,6:19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700