汽车EHB液压系统动态特性仿真与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前车辆对制动性能的要求越来越高,电子液压制动系统EHB (Electro Hydraulic Brake)作为一种新型的线控制动系统,弥补了传统制动系统的不足,提高了车辆的制动性能。汽车EHB液压系统作为汽车EHB系统的执行机构,其动态特性直接影响轮缸制动压力控制算法的设计,对其工作特性的研究是开发汽车EHB系统的基础。因此,对汽车EHB液压系统的研究具有重要的研究意义与工程应用价值。本文完成的主要工作如下:
     (1)基于AMESim和Matlab/Simulink联合仿真平台,对汽车EHB液压系统的动态特性进行了仿真研究,得到了电磁阀的响应特性以及汽车EHB液压系统的增压特性和减压特性,为汽车EHB液压系统的动态特性试验提供了理论依据;
     (2)搭建了汽车EHB系统试验平台,试验平台包括汽车EHB液压系统试验台和汽车EHB液压系统的动态特性测试系统,测试系统包括硬件设计和软件设计。汽车EHB液压系统的动态特性测试系统实现了基于CAN总线的上位机(PC)和下位机(单片机)的通讯和电磁阀的控制以及轮缸制动压力数据的采集;
     (3)基于汽车EHB液压系统试验平台,对汽车EHB液压系统的动态特性进行了试验研究,试验结果验证了基于AMESim所建立的汽车EHB液压系统仿真模型的正确性,得到了电磁阀的开关响应时间以及汽车EHB系统轮缸制动压力控制的MAP图。
At present, the requirements of the brake performance become higher and higher. The deficiency in traditional brake system can be made up by EHB(Electronic Hydraulic Brake System)as one of the new-boomed system, and the braking ability can be improved. The design for the control algorithm of brake chamber pressure is affected by the dynamic characteristic of hydraulic system, which is the executive part of automobile EHB. So the research on the dynamic characteristic of hydraulic system is basis for the design of automobile EHB system. Therefore the research on hydraulic system is significant and indispensable. The main work contents are as follows:
     (1) The simulation research on the dynamic characteristic of hydraulic system is carried out by the co-simulation platform which is based on AMESim and Matlab/Simulink. The response characteristic of solenoid valves, the pressure growth characteristic and the pressure drop characteristic of hydraulic system are successfully gained. The theoretical basis will be provided to the experiment research on the dynamic characteristic of hydraulic system.
     (2) The testing platform including the testing flat for hydraulic system and the testing system for the dynamic characteristic of hydraulic system are set up. The hardware and software are designed in the testing system. In this system, the communication between host computer and slave computer by CAN, the controlling of solenoid valves and data collecting of brake chamber pressure are achieved.
     (3) The experiment research on the dynamic characteristic of hydraulic system is carried out by the testing platform. In the result, the model of automobile EHB, which is built in AMESim, is proved to be right, meanwhile the response time of solenoid valves and the MAP for the control of brake chamber pressure are successfully gained.
引文
[1]杨秀芳,张新,常桂秀.汽车主动安全技术的发展现状及趋势[J].重庆工学院学报,2008,22,(4):15~17.
    [2]袁晓红,钟伟,何耀华.线控技术在汽车ABS中的应用[J].拖拉机与农用运车,2007,34,(3):61~62.
    [3]曲万达.汽车线控制动系统之硬件系统研究[D],[硕士学位论文].武汉:武汉理工大学,2006:1~6.
    [4]林逸,沈沉,王军.汽车线控制动技术及发展[J].汽车技术, 2005,(12):1~3.
    [5]赵春花.汽车电子机械制动系统执行机构的设计研究[D],[硕士学位论文].南京:南京理工大学,2009:1~10.
    [6]吴会军.汽车电子线控制动系统的研究[J].机械与电子,2007,(18):330~331.
    [7]韩龙.乘用车EHB液压特性建模及车辆稳定性控制算法研究[D],[硕士学位论文].长春:吉林大学,2008:3~9.
    [8] Zhu Tianjun, Zong Changfu. Research on Electro-Hydraulic Brake System for Vehicle Stability[C]. 2009 International Conference on Industrial and Information Systems. 2009:344~347.
    [9]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D],[博士学位论文].长春:吉林工业大学,2000:11~16.
    [10] C.-Y. LU and M.-C. SHIH. Design of a hydraulic anti-lock braking modulator and an intelligent brake pressure controller for a light motorcycle[J]. Vehicle System Dynamics[J],2005,43(3):217~232.
    [11] Strickland, A., and Dagg, K., 1998, ABS braking performance and steering input[C]. SAE Paper 980240.
    [12] Mike Donnelly, Craig Siegel, Dale Witt. Design Analysis of an Electronically-Controlled Hydraulic Braking System Using the Saber Simulator[C]. SAE Paper 940182.
    [13] Wolf-Dieter Jonner, Hermann Winner, Ludwig Dreilich. Electrohydraulic Brake System-The First Approach to Brake-By-Wire Technology[C]. SAE Paper 960991.
    [14]刘凯.基于EHB的制动防抱和稳定性控制研究[D],[硕士学位论文].长春:吉林大学,2006:1~30.
    [15]曲再鹏.依维柯汽车均一路面EHB控制系统的研究[D],[硕士学位论文].长春:吉林大学,2005:1~17.
    [16]韩龙.乘用车EHB液压特性建模及车辆稳定性控制算法研究[D],[硕士学位论文].长春:吉林大学,2008:1~12.
    [17]赵双.汽车电子感应制动控制系统SBC的研制[D],[硕士学位论文].成都:西华大学,2006:1~30.
    [18]付永领,祁晓野. AMESim系统建模和仿真[M].北京:北京航空航天大学出版社,2006:1~67.
    [19]黎启柏.液压元件手册[M].北京:冶金工业出版社,1999:442~448.
    [20]苗建中,郑云川.螺纹插装式高速电磁阀[J].液压与气动,1993,(6):22~24.
    [21]杜巧连,陈旭辉,吴文山. PWM高速开关阀的特性分析与应该研究[J].液压气动与密封,2002,(3):10~11.
    [22]张彪,刘绍度,崔海峰.基于PWM控制的轮缸压力精细调节试验[J].农业机械学报,2007,38,(7):58~61.
    [23]郑长鉴.电磁阀动作时间分析[J].机床电器,1996,(2):3~5.
    [24]苏明,陈伦金.基于AMESim的电磁高速开关阀动静态特性研究[J].液压与气动,2010(2):68~71.
    [25]郭孔辉,刘溧,丁海涛.汽车防抱制动系统的液压特性[J].吉林工业大学自然科学学报,1999,(4):1-5.
    [26] Anton T. van Zanten. ESP Systems Development and Perspective1RobertBosch GmbH[C]. SAE paper 9802351.
    [27]谢建辉.汽车ESP液压调节器建模与控制策略分析[D],[硕士学位论文].长春:吉林大学,2008:11~29.
    [28] Xuele Qi, J ian Song, HuiyiWang1 Influence of Hydraulic ABS Parameters on Response Time and Braking Effect[C]. SAE paper 2005-01–15901.
    [29]陈铁民,荆宝德.皮囊式液压蓄能器的选择与计算[J].建筑机械,1995,(8):21~22.
    [30]祁雪乐,宋健,王会义.基于AMESim的汽车ESP液压控制系统建模与分析[J].机床与液压,2005,(8):115~116.
    [31] Andrea Fortina, Mauro Velardocchia, Aldo Sorniotti. Braking System Components Modeling[C]. SAE Paper 2003-01-3335.
    [32]高涵文,黄蕾,王国林.基于AMESim与Matlab/Simulink的汽车ESP液压电磁阀动态响应联合仿真研究[J].车辆与动力技术,2008,(2):1~4.
    [33]江玲玲,张俊俊.基于AMESim与Matlab /Simulink联合仿真技术的接口与应用研究[J].机床与液压,2008,36,(1):148~149.
    [34]王康康,唐岚,黎长青.基于AMESim和Simulink的汽车电动助力转向系统的联合仿真[J].机床与液压,2008,36,(6):127~128.
    [35] Lee J C. Hardware-in-the-loop Simulation for ABS[C]. SAE 980244.
    [36] Hansel mann H. Hardware-in-the-loop Simulation as a Standard Approach for Development, Customization and Production Test of ECU[C].SAE 931953.
    [37]盛敬超.液压流体力学[M].北京:机械工业出版社,1980:10~40.
    [38]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社,2003:137~203.
    [39]孙鑫,余安萍. VC++详解[M].北京:电子工业出版社,2006:1~23.
    [40] N. D’ALFIO, A. MORGANDO and A. SORNIOTTI. Electro-hydraulic brake systems: design and test through hardware-in-the-loop simulation[J]. Vehicle System Dynamics,2006,(44):378~392.
    [41] Mauro Velardocchia. A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units[C]. SAE paper 2006-01-1281.
    [42]孙永泰.汽车制动液的类型与选用[J].汽车运用,2006,(12):31~32.
    [43]李明城,王同海.液压制动系统空气的排除[J].农机维修,1996,(4):33.
    [44]施云翔.液压ABS仿真试验台的开发[D],[硕士学位论文].北京:清华大学,2004:58~61.
    [45]陈光,任志良,孙海柱.最小二乘曲线拟合及Matlab实现[J].兵工自动化,2005,24,(3):107~108.
    [46]吴诰,王圭,刘绍辉.汽车ABS制动轮缸压力函数的试验研究[J].机床与液压,2001,(3):25~26.
    [47] Seung-Han You, Jin-Oh Hahn, Hwa Soo Kim. Modeling and Control of a Hydraulic Unit for Direct Yaw Moment Control in an Automobile[C]. 43rd IEEE Conference on Decision and Control. December 14-17, 2004,5216~5221.
    [48] Seung-Han You, Jin-Oh Hahn, Young Man Cho. Modeling and control of a hydraulic unit for direct yaw moment control in an automobile[J]. Control Engineering Practice, 2006,(14):1011~1022.
    [49] Shou-tao Li, Li-shu Guo, Hui Xu. Research on the EHB System Control Method Base on Identification of Drivers’Braking Intentions[C]. Proceedings of the 7th Asian Control Conference, Hong Kong, China, August 27-29, 2009:1439~1443.
    [50] Hui Xu and Chuan-xue Song. Fuzzy Logic Control Method of EHB System Based on Braking Intention Pattern Identification[C]. Proceedings of the IEEE International Conference on Automation and Logistics, Shenyang, China August 2009:1243~1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700