合闸行波与变压器和应涌流特征新探及相关保护问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行波保护原理上不受过渡电阻、故障位置等影响,并具有超高速动作特性,是一种理想的保护原理。虽然已经提出了许多具体的行波保护方法,但它们主要针对正常运行线路中发生故障的情况,没有考虑断路器合闸,特别是不同期合闸对保护正确动作的影响。为完善行波保护、推进其实用化,有必要对断路器合闸产生的行波特征进行深入分析,并在此基础上提出新的行波合闸保护方法。
     近年来,国内外出现了多起空投变压器引起相邻运行变压器产生和应涌流导致差动保护误动的报道。目前,此方面的研究主要集中在和应涌流的产生及其变化特点,而分析问题所考虑的因素与实际还有一定差距,对和应涌流引起差动保护误动的内在原因认识也还不够深入。这就迫切需要进一步系统深入地研究并掌握和应涌流变化的新规律,从而由此提出完善变压器差动保护的新措施。
     本文工作主要从上述两方面展开。一是通过输电线路合闸行波特征的分析,提出考虑不同期合闸的行波保护新方法;二是通过变压器和应涌流变化规律及引起差动保护误动内在原因的探究,提出正确识别和应涌流、降低差动保护误动率的新方法。
     为能正确快速得出输电线路不同故障位置、故障类型和过渡电阻情况下合闸时正反向初始行波的极性与幅值关系,本文提出了计算输电线路不同期合闸时故障点各模量行波反射系数及相互透射系数的方法。由此方法,可分析出:当线路中部故障时,正反向初始电流行波极性相同,这与输电线路正常运行发生故障时的情况相同;当线路末端故障时,正反向初始电流行波极性关系受故障类型、过渡电阻及故障相是否先合等因素的影响,当过渡电阻较大且先合故障相时,或存在严重故障且故障相不是先合相时,将会出现正反向初始电流行波极性相反的情况,这与线路无故障时合闸的行波极性关系相同,导致现有方法出现误判。
     为考虑实际三相断路器不同期合闸的影响,并使保护能够在线路中部或末端故障时均能正确动作,本文提出了一种新的行波合闸保护方法,方法基于:当线路合闸时,若线路无故障,则电流行波在线路末端的反射系数为-1;若有故障,故障点的反射系数不是-1。仿真结果表明新的保护方法在各种情况下都能正确动作。
     变压器和应涌流的产生与变化受许多因素的影响,而现有研究对两台不同容量变压器相互作用及变压器带负荷情况分析不够,影响了对变压器和应涌流整体规律的掌握程度。针对此现状,论文比较研究了串并联和应涌流的产生过程及特点,分析了多种因素,特别是运行变压器负荷对和应涌流特征的影响,揭示了不同条件下变压器和应涌流变化的新规律,为认清和应涌流造成变压器差动保护误动的内在原因提供了基础。
     为找寻和应涌流引起变压器差动保护误动的真正原因,论文分析了和应涌流与励磁涌流的二次谐波含量关系、CT暂态饱和对和应涌流二次谐波含量与间断角的影响、CT星-三角变换对差动电流二次谐波含量的影响等。分析结果表明:变压器和应涌流与励磁涌流的二次谐波含量及间断角特征相近,但前者相对于后者,衰减缓慢,容易造成CT饱和,导致差动保护不能正确测量到和应涌流,可能引起差动保护的误动作。
     为进一步明确和应涌流引起变压器差动保护误动的内在原因,从而为解决变压器差动保护误动提供解决对策,本文分析了CT饱和对变压器差动保护差动电流二次谐波含量、间断角的影响,并结合电力系统运行实际,分析了不同情况下和应涌流导致变压器差动保护误动的可能性。研究表明,并联和应涌流不易导致变压器差动保护误动,串联和应涌流容易导致变压器差动保护误动。论文最后提出了一种识别和应涌流的新方法,用于正确闭锁变压器差动保护,以防止和应涌流引起的误动。
Travelling wave-based protection is a perfect protection principle not only for it is free from the transition resistance and fault location theoretically, but also for it has an ultra high speed operation characteristic. Many travelling wave-based protection principles have been presented. Most of these protection principles aim at the transmission line faults under normal conditions taking no account of the influence of circuit breakers closing, especially the influence of asynchronous closing on the validity of protection actions. In order to improving travelling wave-based protection and impelling its practicality, an in-depth analysis to the characteristics of travelling waves caused by breakers closing, together with new method for the travelling wave closing protection, is essential.
     Recently, a chain of differential relays mal-operation events due to transformer sympathetic inrush when a nearby transformer is energized have been reported. But up to now, the investigations about sympathetic inrush mostly focus on its generation and change characteristic. However, the factors considered are to some extent different from power system practice. Moreover, the inherent reason for the mal-operation mentioned has not been cognized thoroughly. Therefore, it is urgent to have a further research on sympathetic inrush, and to present new measure to improve transformer differential protection after mastering the new rules of sympathetic inrush.
     The paper studies the two aspects described above. By analyzing characteristics of travelling wave caused by breakers closing, a novel travelling wave protection method accounting for breakers asynchronous closing is presented. On the other hand, by researching new change rules of sympathetic inrush and inherent reason for the mal-operation of transformer differential relays, a novel method which can not only identify sympathetic inrush correctly but also reduce the mal-operation probability is presented.
     In order to obtain exactly and quickly the polarity and magnitude relationships between forward travelling waves and backward travelling waves under various conditions such as different trouble spots, different fault types and different transition resistance, a new method to calculating the reflection coefficient and the inter-refraction coefficient of every mode under different closing sequence of three-phase breakers, is proposed. Analysis results show that forward travelling waves have the same polarity as backward travelling waves if faults are at the middle of lines. However, if faults are at the end of lines, the polarity relations between forward travelling waves and backward travelling waves depend on fault type, transition resistance and trouble phase closed first or not. In the case of big transient resistance and fault phase breaker closed firstly, or in the case of small transient resistance and fault phase breaker closed secondly, the polarity of forward travelling waves is different from that of backward travelling waves. Thus, the polarity relations are the same with those caused by closing unload lines. As a result, the existing methods will be invalid.
     A new closing protection accounting for breakers asynchronous closure is presented. The new closing protection is valid not only to the faults at the middle of lines but also to the faults at the end of lines. The new method base on the theory that the reflect coefficient of current travelling wave is–1 if the transmission line is fault-free. Whereas the reflect coefficient of current travelling wave is not equal to–1 if switching into faulted line. Thus, the new method can ensure that the relays will operate correctly in any case theoretically.
     The transformer sympathetic inrush and its change are influenced by many factors. However, the change rules of sympathetic inrush are not mastered completely because the sympathetic inrush between two different capacity transformers and transformer on load are not analyzed in detail. Aiming at those problems, the characteristics of series and parallel sympathetic inrush are compared, and the effects of load on sympathetic inrush are analyzed as a keystone. As a result, the new change rules of sympathetic inrush are explored which are as the base to recognizing inherent reasons for the mal-operation of transformer differential relays caused by sympathetic inrush.
     In order to discover the real reason for mal-operation of transformer differential relays caused by sympathetic inrush, the paper analyzes the second harmonic proportion of sympathetic inrush and excitation inrush firstly. Then, the effects of CT saturation on the second harmonic proportion and dead angle of sympathetic inrush are studied. Finally, the influences of Y-delta transform by CTs are analyzed. The results show that the second harmonic proportion and dead angle of sympathetic inrush are similar to excitation inrush. But the decay of sympathetic inrush is more slowly and sympathetic inrush will lead to CT saturation more easily. Consequently, the sympathetic inrush cannot be measured correctly, and transformer differential relays would mal-operate.
     To confirm the inherent reason for mal-operation of transformer differential relays caused by sympathetic inrush and obtain a countermeasure, the influences of CT saturation on the second harmonic proportion and dead angle of differential current are investigated. Furthermore, the possibility of differential relays mal-operation caused by sympathetic inrush is analyzed accounting for power system practice. The investigation shows that parallel sympathetic inrush has a little effect on differential relays mal-operation whereas the series sympathetic inrush is easy to lead differential relays mal-operation. Finally, a new method for identifying sympathetic inrush is proposed to block differential relays correctly and avoid mal-operation caused by sympathetic inrush.
引文
1王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社, 1995
    2董新洲,葛耀中,贺家李等.输电线路行波保护的现状与展望.电力系统自动化. 2000, 24(9):56~60
    3罗四倍,段建东,张保会.基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望.电网技术. 2006, 30(22):32~41
    4葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)——理论与实现技术.电力系统自动化. 2002, 26(6):34~40
    5董杏丽,葛耀中,董新洲.测距式行波距离保护的研究(二)——原理方案与仿真试验.电力系统自动化. 2002, 26(9):53~58
    6司大军,束洪春,陈学允.一种新的相间行波距离保护方法.电力系统自动化. 2003, 27(11): 41~44, 52
    7董新洲,葛耀中,贺家李.波阻抗方向继电器的基本原理.电力系统自动化. 2001, 25(9):15~18
    8董杏丽,葛耀中,董新洲.基于小波变换的行波极性比较式方向保护.电力系统自动化. 2000, 24(14):11~15
    9董杏丽,葛耀中,董新洲.基于小波变换的行波幅值比较式方向保护.电力系统自动化. 2000, 24(17):11~15
    10董杏丽,葛耀中,董新洲.基于小波变换的行波测距式距离保护原理的研究.电网技术. 2001, 25(7): 9~13
    11周玉兰. 1990-1999年220kV及以上变压器保护运行情况分析.电力自动化设备. 2001(5):51~53
    12周玉兰,王俊永,詹荣荣. 1999-2003年220kV及以上变压器保护运行情况分析.全国电力主设备保护学术研讨会论文集.南京, 2004:18~24
    13周玉兰. 2004年全国电网元件保护运行情况分析.中国电力. 2006, 39(5): 23~26
    14 C. D. Hayward. Prolonged Inrush Current with Parallel Transformers Affect Differential Relaying. AIEE Trans., 1941, 60: 1096~1101
    15周云波,曹良.一起主变压器差动保护误动事故及防止对策.电网技术. 2001, 25(12): 71~74
    16李德佳.微机型变压器差动保护误动原因分析与对策.继电器. 2004, 32(5): 56~59
    17李德佳,王维俭,毕大强.变压器暂态饱和与和应涌流实例分析.高压电器. 2005, 41(1):12~15
    18 I. Hassan, H. V. Nguyen, R. Jamison. Analysis of Energizing a Large Transformer from a Limited Capacity Engine Generator. Proceedings of IEEE Power Enginnering Society Winter Meeting, 2000, 1: 446~451
    19 Pedro Nunes, Atef Morched, M. Teresa Correia de Barros. Analysis of Generator Tripping Incidents on Energizing Nearby Transformers. Proceedings of International Conference on Power Systems Transients, New Orleans, USA, 2003: 1~6
    20王怀智,孙显初,常林.和应涌流对变压器差动保护影响的试验研究.继电器. 2001, 29(7): 52~54
    21上官帖,谌争鸣,郭军燕.和应涌流对变压器差动保护的影响及对策.华中电力. 2004, 17(5): 50~52
    22余高旺,毕大强,王志广,吴水兰.变压器和应涌流现象及实例分析.电力系统自动化. 2005, 29(6):20~23
    23张炳如,胡丽萍.万家寨水电厂主变保护动作分析.电力学报. 2006, 21(2):210~211
    24武春菊,张学清,石凤兰.励磁涌流引起变压器差动保护误动分析及对策.华北电力技术. 2007(3):51~54
    25 R.F.Stevens, T.E.Stringfield. A Transmission Line Fault Locator Using Fault-generated Surges. AIEE Trans. 1948, 67: 1168~1179
    26 M. Vitins. Fundamental Concept for High Speed Relay. IEEE Transactions on Power Apparatus and Systems. 1981, PAS-100(1): 163~173
    27 T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Travelling Wave Theory PartⅠ: Theory. IEEE PES Summer Meeting, 1977. A77-750-3: 1~7
    28 T. Takagi, J. Baba, K. Uemura, T. Sakagushi. Fault Protection Based on Travelling Wave Theory PartⅡ: Sensitivity and Laboratory Test. IEEE PES Summer Meeting, 1977. A77-750-3: 8~14
    29 H.W. Dommal, J.M. Michels. High Speed Relay Using Travelling Wave Transient Analysis. IEEE PES Winter Meeting, New York, USA, 1978:1~7
    30 A.T. Johns. New Ultra-high-speed Directional Comparison Technique for the Protection of EHV Transmission Lines. IEE Proc. C. 1980, 127(4): 228~239
    31 M. Chamia, S. Liberman. Ultra High Speed Relay for EHV/UHV Transmission Lines—Development, Design and Application. IEEE, Trans.. 1978, PAS-97 (6): 2104~2116
    32 P.A. Crossly, P.G. McLaren. Distance Protection Based on Travelling Wave. IEEE, Trans. 1983, PAS-82 (9): 2971~2983
    33 E.H. Shehab-Eldin, P.G. Mclarren. Travelling Wave Distance Protection-Problem Areas and Solutions. IEEE Transactions on Power System. 1988, 3(3): 894~902
    34 Christos Christopoulos, D.W.P. Thomas. Scheme, Based on Travelling- waves, for the Protection of Major Transmission Lines. IEE Proceedings. 1988, 135(1): 63~73
    35 J. Liang, S. Elangovan, J.B.X. Devotta. Adaptive Travelling Wave Protection Algorithm Using Two Correlation Function. IEEE Trans on Power Delivery. 1999, 14(1): 126~131
    36史久宏,张炳惠.RALDA型行波保护的运行和改进.华中电力, 1993, 6(1): 47~54
    37 OinisC, MichelM, FrancoiseB. Wavelet: A New Tool for the Resonant Grounded Power Distribution Systems Relaying. IEEE Trans. on Power Delivery. 1996, 11(3):1301~1308
    38 Fenado H. Magnago, Ali Abur. Fault Location Using Wavelets. IEEE Trans. on Power Delivery. 1998, 13(4): 1475~1480
    39 Mallat S, Hwang W L. Singularity Detection and Processing with Wavelets. IEEE Trans. on Information Theory. 1992, 38(2): 617~634
    40苏斌,董新洲,孙元章.基于小波变换的行波差动保护.电力系统自动化. 2004,28(18):25~29,35
    41全玉生,李学鹏,马彦伟,杨俊伟.基于小波变换的HVDC线路行波距离保护.电力系统自动化. 2005,29(18):52~56
    42 X.Z. Dong, Y.Z. Ge, B.Y. Xu. Fault Position Relay based on Current Traveling Waves and Wavelets. IEEE Power Conference. 2000:1997-2003
    43 Z.J. Hang, Y.P. Chen, Q.W. Gong. A Protection and Fault Location Schemefor EHV Line with Series Capacitor Based on Travelling Waves and Wavelet Analysis. International Conference On Power System Technology Proceedings, Kunming, China, 2002: 290~294
    44白嘉,徐玉琴,王增平.基于形态学–小波综合算法的超高压输电线路单端行波保护新原理.电网技术. 2006, 30(2):66~69,86
    45程临燕,段建东,张保会,李鹏,罗四倍.基于形态梯度的输电线电流行波比较式超高速保护.西安交通大学学报. 2007, 41(4):484~488
    46张言苍,董新洲,董杏丽等. DSP及其在行波中的应用.电力系统自动化设备. 2000, 20(2):27~30
    47 G. Carati Emerson, Pinheiro Humberto, R. Pinheiro Jose, et al. Adaptive Robust DSP-based Single Phase AC Power Source. Proceedings of the 2001 IEEE International Conference on Control Applications CCA '01, Mexico City. 2001: 24-28
    48 L. Xu, V.G. Agelidis, E. Acha, et al. Development Considerations of DSP- Controlled PWM VSC-based STATCOM. IEE Proceedings: Electric Power Applications. 2001, 148(5): 449~455
    49 P.G. McLaren, R. Kuffel, R. Wierckx, et al. A Real Time Digital Simulator For Testing Relays. IEEE Transactions on Power Delivery. 1992, 7(1): 207~213
    50 A.T. Johns, R.K. Aggarwal, Z.Q. Bo. Non-unit Protection Technique for EHV Transmission System based on Fault-generated Noise Part 1, Signal Measurement. IEE Proceedings Generation, Transmission and Distribution. 1994, 141(2): 133~140
    51 A.T. Johns, R.K. Aggarwal, Z.Q. Bo. Non-unit Protection Technique for EHV Transmission System based on Fault-generated Noise Part 2, Signal Processing. IEE Proceedings Generation, Transmission and Distribution. 1994, 141(2): 141~147
    52 A.T. Johns, R.K. Aggarwal, Z.Q. Bo. Non-unit Protection Technique for EHV Transmission System based on Fault-generated Noise Part 3, Engineering and HV Laboratory. IEE Proceedings Generation, Transmission and Distribution. 1996, 143(2): 276~282
    53 J.A.S.B Jayasinghe, R.K. Aggarwal, A.T. Johns, et al. A Novel Non-unit Protection for Series Compensated EHV Transmission Lines Based on FaultGenerated High Frequency Voltage Signals. IEEE Transactions on Power Delivery. 1998, 13(3): 405~413
    54 R.K. Aggarwal. Theoretical Concept and Digital Simulation of the Pramod Scheme for UHS Protection of EHV Transmission Lines. IEEE Transactions on Power Delivery. 1992, 7(3): 1104~1111
    55 Z.Q. Bo. A New Non-communication Protection Technique for Transmission Lines. IEEE Trans on Power Delivery. 1998, 13(4): 1073~1078
    56 A.T. Johns, Z.Q. Bo, R.K. Aggarwal. A Novel Non-unit Protection Scheme Based on Fault Generated High Frequency Noise on Transmission Lines. Proceedings of the 15th International Conference on Developments in Power Protection, York, Engl. 1993: 65~68
    57 Z.Q. Bo, R.K. Aggarwal, A.T. Johns. A New Approach to Transmission Protection Using Fault Generated High Frequency Current Signals. Proceedings of the 12th Power System Computation Conference, Dresden Germany. 1996: 19~23
    58何正友,钱清泉. EHV输电线路单端量电流暂态保护探讨.电力自动化设备. 2002, 22(2): 16~19
    59哈恒会,张保会,吕志来,等.超高压输电线路新型单端超高速保护研究.电力自动化设备. 2001, 21(4): 6~9
    60董新洲,刘建政,余学文.输电线路暂态电压行波的故障特征及其小波分析.电工技术学报. 2001, 16(3):57~61,74
    61董新洲,葛耀中,徐丙垠.输电线路暂态电流行波的故障特征及其小波变换.电工技术学报. 2001, 14(1):59~62
    62张言昌,董杏丽.行波折、反射系数的实时计算方法.继电器. 2004, 32(18):10~12
    63覃剑,陈祥训,郑健超.不同故障类型情况下行波传播特点的研究.电网技术. 1999, 23(1):54~58
    64覃剑,黄震,杨华,邱宇峰.同杆并架双回线路行波传播特性的研究.中国电机工程学报. 2004, 24(5):30~34
    65束洪春,司大军,孙向飞.一种用于行波保护的电压过零附近故障检测方法.电网技术. 2005, 29(20): 73~76
    66董杏丽,葛耀中,董新洲.行波保护中雷电干扰问题的对策.中国电机工程学报. 2002, 22(9):74~78
    67李海锋,王钢,赵建仓.输电线路感应雷击暂态特征分析及其识别方法.中国电机工程学报. 2004, 24(3):114~118
    68王钢,李海锋,赵建仓等.基于小波多尺度分析的输电线路直击雷暂态识别.中国电机工程学报. 2004, 24(4):140~144
    69段建东,张保会,郝治国,等.超高压线路暂态保护中雷电干扰与短路故障的识别.电力系统自动化. 2004, 28(18):30~35
    70段建东,任晋峰,张保会.超高速保护中雷电干扰识别的暂态法研究.中国电机工程学报. 2006, 26(23): 7~13
    71司大军,束洪春,陈学允,等.输电线路雷击的电磁暂态特征分析及其识别方法研究.中国电机工程学报. 2005, 25(7):64~69
    72 Shang L, Herold G, Jaeger J. A New Approach to High-speed Protection for Transmission Line Based on Transient Signal Analysis Using Wavelets. Developments in Power System Protection IEE 2001,2001,173~176
    73董杏丽,葛耀中,董新洲.行波保护中合闸到故障线路的检测方法.中国电机工程学报. 2002, 22(10):77~80,90
    74 A.T.Johns. New Ultra-high-speed Directional Comparison Technique for the Protection of EHV Transmission Lines. IEE Proc. C. 1980, 127(4):351~357
    75 M.Chamia, S.Liberman. Ultra High Speed Relay for EHV/UHV Trans- mission Lines Development, Design and Application. IEEE, Trans. On PAS. 1978, 87(6): 2104~2116
    76史久宏. 500kV继电保护的运行和改进.华中电力, 1990, 3(1): 87~96
    77段建东,罗四倍,张保会,薛晶.超高速保护中合闸于故障线路的识别方法.中国电机工程学报. 2007, 27(10): 78~84
    78郝治国,张保会,褚云龙.变压器励磁涌流鉴别技术的现状和发展.变压器. 2005, 42(7): 23-27
    79林湘宁,刘世明,杨春明等.几种波形对称法变压器差动保护原理的比较研究.电工技术学报. 2001, 16(4): 44~49, 70
    80胡玉峰,陈德树.基于采样值差动的励磁涌流鉴别方法.中国电机工程学报. 2000, 20 (9): 55~59
    81胡玉峰,陈德树,尹项根.虚拟三次谐波制动式变压器差动保护的仿真研究.电力系统自动化. 2002, 26(2): 38~44
    82 P. L. Mao, R. K. Aggarwal. A Wavelet Transform Based Decision Making Logic Method for Discrimination between Internal Faults and InrushCurrents in Power Transformers. International Journal of Electrical Power and Energy Systems. 2000, 22 (6): 389~395
    83 M.G.Morante, D.W. Nicolett. A Wavelet-based Differential Transformer Protection. IEEE Trans. on Power Delivery, 14(4), 1999: 1351~1358
    84 S.A. Saleh, M.A.Rahman, Modeling and Protection of a Three-phase Power Transformer using Wavelet Packet Transform. IEEE Trans. on Power Delivery, 2005, 20(2): 1273~1282
    85 M.M.Eissa. A Novel Digital Directional Transformer Protection Technique Based on Wavelet Packet Transform. IEEE Trans. on Power Delivery, 2005, 20(3): 1830~1836
    86 O.A.S. Youssef. A Wavelet-based technique for Discrimination between Faults and Magnetizing Inrush Currents in Transformers. IEEE Trans. on Power Delivery, 2003, 18(1): 170~176
    87郑涛,刘万顺,刘建飞等.采用数学形态学防止变压器差动保护误动的新方法.中国电机工程学报. 2005, 25(20): 6~11
    88 M. R. Zaman, and M. A. Rahan. Experimental Testing of the Artificial Neural Network Based Protection of Power Transformer. IEEE Trans. on Power Delivery, 1998, 13(2): 510~517
    89 L. G. Perez, A. J. Flechsig, J. L. Meado, et al. Training an Artificial Neural Network to Discriminate Between Magnetizing Inrush and Internal Faults. IEEE Trans. on Power Delivery, 1994, 9(1): 434~441
    90 A. L. Orille Fernandez, N. K. I. Ghonaim, J. A. Valencia. A FIRANN as a Differential Relay for Three Phase Power Transformer Protection. IEEE Trans. on Power Delivery, 2001, 16 (2): 215~218
    91范文涛,王广延.基于模糊集理论的变压器微机差动保护新判据.中国电机工程学报. 1997, 17(6): 403~407
    92 Armando Guzman, Stanley Zocholl, et al. A Current-Based Solution for Transformer Differential Protection-Part II: Relay Description and Evaluation. IEEE Trans. on Power Delivery, 17(4), 2002: 886~894
    93 Shin Myong-Chul, Park Chul-Won, Kim Jong-hyung, Fuzzy Logic-based Relaying for Large Power Transformer Protection. IEEE Trans. on Power Delivery, 2003, 18(3): 718~724
    94 A.G.Phadke, J.S.Thorp. A New Computer-based Flux-restrained Current-differential Relay for Power Transformer Protection. IEEE Trans. on Power Apparatus and Systems, 1983, 102(11): 3624~3629
    95宗洪良,金华烽等.基于励磁阻抗变化的变压器励磁涌流判别方法.中国电机工程学报, , 2001, 21(7): 91~94
    96葛宝明,苏鹏声等.基于瞬时励磁电感频率特性判别变压器励磁涌流.电力系统自动化, 2002, 26(17 ): 35~40
    97王增平,徐岩,王雪等.基于变压器模型的新型变压器保护原理的研究.中国电机工程学报, 2003, 23(12),: 54~58
    98韩正庆,高仕斌,李群湛.基于变压器模型的新型变压器保护原理和判据.电网技术, 2005, 29(5): 67~71
    99 Keizo Inagaki, Masaru Higaki, Yoshiaki Matsui, et al .Digital Protection Method for Power Transformers Based on an Equivalent Circuit Composed of Inverse Inductance. IEEE Trans. on Power Delivery, 1988, 3(4): 1501~1510
    100 Kuniaki Yabe. Power Differential Method for Discrinnination Between Fault and Magnetizing Inrush Current in Transformers. IEEE Trans. on Power Delivery, 1997, 12(3): 1109~1118.
    101 H.S. Bronzeado, P.B.Brogan, R.Yacamini. Harmonic Analysis of Transient Currents during Sympathetic Interaction. IEEE Trans. on Power Systems, 1996, 11(4): 2051~2056
    102 H.Bronzeado, R.Yacamini. Phenomenon of Sympathetic Interaction between Transformers Caused by Inrush Transients. IEE Proceedings: Science, Measurement and Technology, 1995, 142(4): 323~329
    103 M. M. Saied. A Study on the Inrush Current Phenomena in Transformer Substations. Proceedings of Industry Applications Conference & Thirty-Sixth IAS Annual Meeting, 2001, 2: 1180~1187
    104 G. B. Kumbhar, S. V. Kulkarni. Analysis of Sympathetic Inrush Phenomena in Transformers using Coupled Field-circuit Approach. IEEE Power Engineering Society General Meeting, PES, 2007, 2: 427~432
    105毕大强,王祥珩,李德佳,余高旺,王维俭.变压器和应涌流的理论探讨.电力系统自动化. 2005, 29(6):1~8
    106吕思思,杜继伟,陈本理.基于Matlab对变压器和应涌流的仿真研究.电气开关. 2007, (2): 25~28
    107束洪春,贺勋,李立新.变压器和应涌流分析.电力自动化设备. 2006, 26(10): 7~12
    108张雪松,何奔腾,张建松.变压器和应涌流的产生机理及其影响因素研究.电力系统自动化. 2005, 29(6): 15~19
    109袁宇波,李德佳,陆于平,许杨.变压器和应涌流的物理机理及其对差动保护的影响.电力系统自动化. 2005, 29(6): 9~14
    110张雪松,何奔腾.变压器和应涌流对继电保护影响的分析.中国电机工程学报. 2006, 26(14): 12~17
    111毕大强,孙叶,李德佳,余高旺,王祥珩,王维俭.和应涌流导致差动保护误动原因分析.电力系统自动化. 2007, 31(22): 36~40
    112孙叶.和应涌流对变压器TA饱和及涌流闭锁条件影响的分析.科技资讯. 2007, (24): 21~23
    113毕大强,孙叶,李德佳,王祥珩,王维俭.变压器中性点接地方式对和应涌流产生的影响分析.继电器. 2007, 35(20): 7~12
    114谷君,郑涛,肖仕武,刘万顺.基于时差法的Y/△接线变压器和应涌流鉴别新方法.中国电机工程学报. 2007, 27(13): 6~11
    115袁宇波,陆于平,李澄,许杨.基于附加相位判别的自适应二次谐波励磁涌流制动方案研究.中国电机工程学报. 2006, 26(18): 19~24
    116赵素华,康文勇.电流互感器的现场检定.电测与仪表. 2006, 43(3): 37~39
    117中华人民共和国国家发展和改革委员会.电流互感器和电压互感器选择和计算导则. 2004: 15~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700