沸石分子筛协同生长机理及其多级孔结构的制备新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口增长和生活水平的提高,化石资源不断消耗,环境污染,人类健康是全球面临的问题,如何在不断推进人类物质文明进步和社会发展的同时仍保证生态的可持续发展是我们面临的任务和挑战。沸石分子筛由于具有规则的孔道结构,其孔径大小与一般分子相近和表面性质可修饰的特点,已被广泛应用于工业催化、吸附、分离等领域,徽地提高了相关过程的效率,减少了对环境的污染。同时近年来,新型沸石分子筛的设计和制备,如多级孔道、纳米晶体、整体型多级孔及空心球形等,进一步提高了其应用效率,已成为合成新沸石分子筛材料的新趋势。然后,由于人们对沸石分子筛内在生长机理认识仍存在不足,至今虽已有不少合成这些新结构沸石分子筛的方法,但其制备步骤多、外加结构导向剂多,如何简化制备工艺、减少污染是当前沸石分子筛制备领域的研究热点。
     沸石分子筛生长机理的深入理解对设计及合成性能优异的沸石材料是必不可少的。为了揭示沸石成核及生长机理,本文选择富碱-凝胶作为模型体系,采用SEM和TEM等表征技术结合AFM, XRD,27A1-MAS NMR,氮、氩吸附及因素分析等方法对沸石晶体形成与生长机理进行系统表征。研究表明沸石的成核是在平衡凝胶相中发生的,这些平衡凝胶相为溶解的铝硅根离子沉淀成缩聚初级聚集。晶核在平衡凝胶相中形成可以扩散到液相和平衡凝胶的液-固界面。因此,沸石晶体的形成遵循了一种“液相转变”和“固相转变”的协同生长机理。在液相和平衡凝胶的液-固界面里,在沸石生长的前期,取向聚集起决定作用,而这些聚集的驱动力是在带正电荷的活化Na+与生长的晶体或晶核表面的TO-负电荷之间的静电力。在沸石晶体生长的后期,和并和Ostwald熟化生长占主导地位。
     尽管小分子和超分子模板剂分别在微孔和介孔分子筛合成方面都非常成功,但由于在介孔材料与沸石相之间存在相分离,通过两种不同模板体系的共组装,将分子筛的微孔引入有序介孔网络是一个富有挑战性的研究课题。本文为了解决上述的问题,提出了一种简单的、碱辅助的双模板新方法。从而成功地制备出二维六方对称的有序介孔MFI沸石。采用该方法也可以制备介孔取向的ZSM-5沸石以及整体型多级孔沸石分子筛。
     通过纳米沸石分子筛的组装形成多级孔材料是一种克服沸石微孔孔道对大分子扩散及传质限制的有效手段。到目前止,纳米沸石分子筛组装合成方法需要使用至少一种(微孔或介孔)有机结构导向剂,即模板剂。而有机模板剂的使用后又需要用煅烧或溶剂去除,这样不仅增加成本还会造成环境污染。因此,本文依据沸石分子筛的协同生长机理,成功研发了既无有机模板剂又无沸石晶种条件下直接法合成纳米棒组装的沸石晶体及空心球的整体型多级孔MOR沸石的新方法。这种合成方法不但步骤简单,而且完全避免了有机模板剂的使用,对环境友好,并且还可以成功应用于其它整体型多级孔ZSM-5沸石分子筛的合成。
     为了更好地测定分子筛晶体的结构,认识反应物分子在微孔分子筛中的吸附、扩散和反应规律,大晶粒分子筛的合成一直以来受到广泛关注。目前大晶粒沸石分子筛的合成方法一般是通过采用有毒的氟化物抑制沸石成核来控制晶体缓慢地生长。这样往往需要几天甚至几周的晶化时间,而且产品的晶粒大小往往不均匀。本论文提出了一种既简洁又无氟化物和有机模板剂直接合成均匀大晶粒的GIS、ANA和MOR晶粒沸石分子筛的新方法。此方法通过富碱快速溶解硅铝凝胶到液相可促进成核及晶体生长,这不仅消除了晶化过程的凝胶溶解形成的第二的晶核,还缩短了晶化时间,从而得到了均匀晶粒的沸石分子筛。另外我们发现ANA沸石的大晶体是从GIS型沸石晶体的转变而形成。ANA沸石的晶体生长遵循“液相转变”和“固相转变”的协同机理。
     具有有序介孔或大孔沸石材料不仅在先进的催化及分离领域,还在如药物、光电子学及其他的纳米技术领域有广阔的应用前途。目前有序介孔沸石分子筛合成方法是模板法。本文提出了一种导向大孔沸石合成的新路线---沸石building block的分解路线。此路线是采用NaOH直接分解晶体生长过程形成的沸石building block,合成的取向有序的大孔MOR和Na-P1沸石具有良好水热稳定。
How to promote the economic, social and human development while ensuring ecosystem sustainability are the emerging tasks and challenges we faced. Characterized by a regular channel system of interconnected micropores with molecular dimensions below2nm and tailorability of pore size and surface functional groups, as well as framework stability, zeolites have been widely applied in industry as catalysts, adsorbents and ion exchangers. To meet the growing demand for ecologically sustainable solutions to global issues such as enhancing energy demand, reduction of resources, environmental protection, and human health improvement, new zeolite architectures such as hierarchically porous structures, nanosized crystals, self-standing monoliths, membranes and hollow microspheres have become one of new trends in the synthesis of zeolite materials. Although there have been many routes suitable to obtain the new architectures with novel advanced properties, rational synthesis strategies still remain a great challenge due to unclear understanding their formation mechanism.
     Understanding of zeolite crystal growth mechanism is essential for designing and producing better zeolite materials with desired physical and chemical properties, but still remains elusive. To uncover the zeolite nucleation and growth mechanisms, we chose a sodium-rich dense hydrogel system, used the synthesis of ZSM-5zeolite monolith mentioned above, as a model system and conducted SEM and TEM studies in combination with AFM, XRD,27Al-MAS NMR, N2and Ar adsorption measures and element analysis of the samples collected at different synthesis times. Experimental findings of zeolite crystal evolution from sodium-rich hydrogel revealed that the zeolite nucleation occurs at the equilibrated gel phase of the condensed primary aggregates precipitated from the dissolved (alumio)silicate species. The nuclei produced from the nucleation could be diffused into the liquid-solid interface of the equilibrated gel phase and the liquid phase. The zeolite growth therefore occurs through a synergistic mechanism of two growth processes:a solution-mediated process and a solid-state transformation. In the liquid phase and the liquid-gel (equilibrated gel) interface, the oriented aggregation governs in early stages of the zeolite growth. The major driving force for the aggregation is electrostatic force between the positively charged active Na+and the negative charges of the (T)O groups on the surface of the nuclei and growing nanocrystals. In the last steps the crystal growth by the coalescence and the Ostwald rule becomes predominant.
     Although assemblies of molecular and supramolecular templates have proven very successful for fabricating both zeolites and mesoporous molecular sieves, the combination of crystalline zeolite micropores into an ordered mesopore network by cooperative assembly of two different templating systems is challenging because of the phase separation between the mesoporous material and zeolite phases. Here, we designed a simple and general alkali-assisted template strategy which allows to solve this problem. With this strategy, we have successfully synthesized the highly ordered mesoporous zeolite with the2D hexagonal symmetry mesospores and MFI zeolitic framework walls. This strategy also allows to prepare the oriented mesoporous ZSM-5as well as self-standing hierarchical zeolite monoliths composed of the MFI nanosheet. The materials are believed to have promising catalytic activities for organic reactions involving bulky molecules.
     An efficient way to overcoming the diffusion and mass transfer limitations of the zeolite microporous network system for bulky molecules is to assemble nanosized zeolites into hierarchical materials. The existing strategies for the synthesis of such hierarchical materials require the use of at least one organic structure-directing agent. Designing and developing new more environmentally-friendly and more economical synthesis routes to assemble the nanocrystals into mechanically stable, hierarchical monoliths are thus significantly important for the hierarchical zeolite materials to be applied in heterogeneous catalysis and separation processes on an industrial scale. On the basis of our proposed synergistic mechanism, we designed successfully an organic-template-free, zeolite-seed-free direct route for the first synthesis of self-standing hierarchical zeolite monoliths composed of nanorod assembled mordenite (MOR) zeolites and hollow nanorod MOR zeolite assembled spheres. This route also is used successfully for the synthesis of the self-standing hierarchical ZSM-5zeolite monoliths.
     In order to effectively utilizezeolite micropores for the special applications as host materials for guest molecules in optical, magnetic, and electronic devices as well as fundamental studies such as precise crystal structure determination and the measurements of intracrystalline adsorption, diffusion and reactivity of guest molecules, the synthesis of large single crystals is required. To date, most existing methods for fabricating large zeolite crystals are based on repressing the zeolite nucleation and controlling the slow growing rate using toxic fluorine species. These require longer crystallization time from days to weeks and difficultly avoids the crystal growth of the second nuclei resulting in the uniformity of the crystals is difficultly obtained. Furthermore the negative effects of the use of fluorine on environment is unavoidably. We have proposed a new simple, rapid, fluorine-free, organic-template-free strategy for the synthesis of the large and uniform crystals of Na-P1(GIS), MOR and analcime (ANA) zeolites. This strategy is based on catalyzing simultaneously both the zeolite nucleation and crystal growth processes by NaOH with a high content. This rout allows saving time and energy consumption and avoiding the use of toxic fluorine species as well as organic templates. In addition, we found that the formation of ANA zeolite is result from the transformation of GIS zeolite and the mechanism of the transformation is the combination of the solid-state and solution-mediated transformations. The mechanism allows us design the hierarchical hollow or yolk@shell structures without template.
     Zeolite materials with ordered macroporous and/or mesoporous structures hold promise not only for advanced catalysis and separation but also advanced applications such as medicines, photonics, photoelectronics, and other emerging nanotechnologies. The existing methods of synthesis of ordered mesoporous zeolites are based on assembly of structure-directing agents. Here we demonstrated a disassembly route to generating the oriented macropores in zeolite crystals. Our route is based on the direct disassembly of zeolitic building blocks formed during the crystal growth process by NaOH. The orientation of the ordered mesopores in the crystals of fabricated MOR and Na-P1(GIS) zeolites with their good hydrothermal stability could make them interesting material platforms for fundamental studies of the structure-properties correlation and the special applications.
引文
[1]Cronstedt A K. Observation and Description of an Unknown Kind of Rock to Be Named Zeolites[J]. Kongl. Vetenskaps Acad. Handl. Stockholm.,1756,17: 120-123.
    [2]International Zeolite Association. Database of Zeolite Structures. Http://Www.Iza-Structure.Org/Databases/.
    [3]Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:History and Development from the Earliest Days to the Present Time[J]. Chem. Rev.,2003, 103(3):663-702.
    [4]H. Van Bekkum E M F a J C J. Introduction to Zeolite Science and Practice, Stud. Surf. Sci. Catal, Elsevier Science Publishers,the Netherlands,1991, Vol. 58.[J].
    [5]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis[J]. Chem. Rev.,1997,97(6):2373-2420.
    [6]Davis M E. Ordered Porous Materials for Emerging Applications[J]. Nature, 2002,417(6891):813-821.
    [7]Corma A. State of the Art and Future Challenges of Zeolites as Catalysts[J]. J. Catal.,2003,216(1-2):298-312.
    [8]Rinaldi R, Schuth F. Design of Solid Catalysts for the Conversion of Biomass[J]. Energy & Environmental Science,2009,2(6):610-626.
    [9]Perez-Ramirez J, Christensen C H, Egeblad K, et al. Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design[J]. Chem. Soc. Rev.,2008,37(11):2530-2542.
    [10]Blasco T, Corma A, Diaz-Cabanas M J, et al. Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite[J]. J. Phys. Chem. B,2002, 106(10):2634-2642.
    [11]Corma A, Diaz-Cabanas M J, Jorda J L, et al. High-Throughput Synthesis and Catalytic Properties of a Molecular Sieve with 18-and 10-Member Rings[J]. Nature,2006,443(7113):842-845.
    [12]Corma A, Diaz-Cabanas M J, Martinez-Triguero J, et al. A Large-Cavity Zeolite with Wide Pore Windows and Potential as an Oil Refining Catalyst[J]. Nature, 2002,418(6897):514-517.
    [13]Corma A, Diaz-Cabanas M J, Rey F, et al. ITQ-15:The First Ultralarge Pore Zeolite with a Bi-Directional Pore System Formed by Intersecting 14-and 12-Ring Channels, and Its Catalytic Implications[J]. Chem. Commu.,2004(12): 1356-1357.
    [14]Corma A, Navarro M T, Rey F, et al. Synthesis of Pure Polymorph C of Beta Zeolite in a Fluoride-Free System[J]. Chem. Commu.,2001(16):1486-1487.
    [15]Davis M E, Saldarriaga C, Montes C, et al. A Molecular Sieve with Eighteen-Membered Rings[J]. Nature,1988,331(6158):698-699.
    [16]Freyhardt C C, Tsapatsis M, Lobo R F, et al. A High-Silica Zeolite with a 14-Tetrahedral-Atom Pore Opening[J]. Nature,1996,381(6580):295-298.
    [17]Jiang J, Yu J, Corma A. Extra-Large-Pore Zeolites:Bridging the Gap between Micro and Mesoporous Structures[J]. Angew. Chem. Int. Ed.,2010,49(18): 3120-3145.
    [18]Sastre G, Pulido A, Castaneda R, et al. Effect of the Germanium Incorporation in the Synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 Zeolites[J]. J. Phys. Chem. B,2004,108(26):8830-8835.
    [19]Strohmaier K G, Vaughan D E W. Structure of the First Silicate Molecular Sieve with 18-Ring Pore Openings, ECR-34[J]. J. Am. Chem. Soc,2003, 125(51):16035-16039.
    [20]Sun J, Bonneau C, Cantin A, et al. The ITQ-37 Mesoporous Chiral Zeolite[J]. Nature,2009,458(7242):1154-1157.
    [21]Tosheva L, Valtchev V P. Nanozeolites:Synthesis, Crystallization Mechanism, and Applications[J]. Chem. Mater.,2005,17(10):2494-2513.
    [22]Mintova S, Gilson J-P, Valtchev V. Advances in Nanosized Zeolites[J]. Nanoscale,2013,5(15):6693-6703.
    [23]Janssen A H, Koster A J, De Jong K P. Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y[J]. Angew. Chem. Int. Ed.,2001,40(6):1102-1104.
    [24]Cartlidge S, Nissen H U, Wessicken R. Ternary Mesoporous Structure of Ultrastable Zeolite CSZ-1[J]. Zeolites,1989,9(4):346-349.
    [25]Janssen A H, Koster A J, De Jong K P. On the Shape of the Mesopores in Zeolite Y:A Three-Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis[J]. J. Phys. Chem. B,2002,106(46): 11905-11909.
    [26]Lynch J, Raatz F, Dufresne P. Characterization of the Textural Properties of Dealuminated Hy Forms[J]. Zeolites,1987,7(4):333-340.
    [27]Sasaki Y, Suzuki T, Takamura Y, et al. Structure Analysis of the Mesopore in Dealuminated Zeolite Y by High Resolution Tem Observation with Slow Scan Ccd Camera[J]. J. Catal.,1998,178(1):94-100.
    [28]Zecevic J, Gommes C J, Friedrich H, et al. Mesoporosity of Zeolite Y: Quantitative Three-Dimensional Study by Image Analysis of Electron Tomograms[J]. Angew. Chem. Int. Ed.,2012,51(17):4213-4217.
    [29]Lee K M, Dill J A, Chou B J, et al. Physiologically Based Pharmacokinetic Model for Chronic Inhalation of 2-Butoxyethanol[J]. Toxicology Appl. Pharmacology,1998,153(2):211-226.
    [30]Nesterenko N S, Thibault-Starzyk F, Montouillout V, et al. Accessibility of the Acid Sites in Dealuminated Small-Port Mordenites Studied by Ftir of Co-Adsorbed Alkylpyridines and Co[J]. Microporous Mesoporous Mater.,2004, 71(1-3):157-166.
    [31]Dutartre R, De Menorval L C, Di Renzo F, et al. Mesopore Formation During Steam Dealumination of Zeolites:Influence of Initial Aluminum Content and Crystal Size[J]. Microporous Mater.,1996,6(5-6):311-320.
    [32]Mcqueen D, Chiche B H, Fajula F, et al. A Multitechnique Characterization of the Acidity of Dealuminated Mazzite[J]. J. Catal.,1996,161(2):587-596.
    [33]Perez-RamiRez J, Kapteijn F, Groen J C, et al. Steam-Activated FeMFI Zeolites. Evolution of Iron Species and Activity in Direct N2O Decomposition[J]. J. Catal.,2003,214(1):33-45.
    [34]Rozwadowski M, Kornatowski J, Wloch J, et al. Attempt to Apply the Fractal Geometry for Characterisation of Dealuminated ZSM-5 Zeolite[J]. Appl. Surf. Sci.,2002,191(1-4):352-361.
    [35]Dessau R M, Valyocsik E W, Goeke N H. Aluminum Zoning in ZSM-5 as Revealed by Selective Silica Removal[J]. Zeolites,1992,12(7):776-779.
    [36]Groen J C, Jansen J C, Moulijn J A, et al. Optimal Aluminum-Assisted Mesoporosity Development in MFI Zeolites by Desilication[J]. J. Phys. Chem. B,2004,108(35):13062-13065.
    [37]Groen J C, Peffer L a A, Perez-RamiRez J. Pore Size Determination in Modified Micro-and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis[J]. Microporous Mesoporous Mater.,2003,60(1-3): 1-17.
    [38]Groen J C, Moulijn J A, Perez-Ramirez J. Decoupling Mesoporosity Formation and Acidity Modification in ZSM-5 Zeolites by Sequential Desilication-Dealumination[J]. Microporous Mesoporous Mater.,2005,87(2): 153-161.
    [39]Groen J C, Bach T, Ziese U, et al. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals[J]. J. Am. Chem. Soc., 2005,127(31):10792-10793.
    [40]Ogura M, Shinomiya S-Y, Tateno J, et al. Alkali-Treatment Technique—New Method for Modification of Structural and Acid-Catalytic Properties of ZSM-5 Zeolites[J]. Appl. Catal. A,2001,219(1-2):33-43.
    [41]Groen J C, Abello S, Villaescusa L A, et al. Mesoporous Beta Zeolite Obtained by Desilication[J]. Microporous Mesoporous Mater.,2008,114(1-3):93-102.
    [42]Groen J C, Peffer L a A, Moulijn J A, et al. Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication:The Role of Aluminium as a Pore-Directing Agent[J]. Chem.-A Eur. J.,2005,11(17):4983-4994.
    [43]Groen J C, Peffer L a A, Moulijn J A, et al. Mesoporosity Development in ZSM-5 Zeolite Upon Optimized Desilication Conditions in Alkaline Medium [J]. Colloids Surfaces A:Phys. Engin.Aspects,2004,241(1-3):53-58.
    [44]Groen J C, Zhu W, Brouwer S, et al. Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained Via Controlled Desilication[J]. J. Am. Chem. Soc.,2006,129(2):355-360.
    [45]Mitchell S, Michels N-L, Kunze K, et al. Visualization of Hierarchically Structured Zeolite Bodies from Macro to Nano Length Scales[J]. Nat. Chem., 2012,4(10):825-831.
    [46]Lopez-Orozco S, Inayat A, Schwab A, et al. Zeolitic Materials with Hierarchical Porous Structures[J]. Adv. Mater.,2011,23(22-23):2602-2615.
    [47]Jacobsen C J H, Madsen C, Houzvicka J, et al. Mesoporous Zeolite Single Crystals[J]. J. Am. Chem. Soc.,2000,122(29):7116-7117.
    [48]Janssen A H, Schmidt I, Jacobsen C J H, et al. Exploratory Study of Mesopore Templating with Carbon During Zeolite Synthesis[J]. Microporous Mesoporous Mater.,2003,65(1):59-75.
    [49]Schmidt I, Boisen A, Gustavsson E, et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals[J]. Chem. Mater.,2001,13(12): 4416-4418.
    [50]Tao Y, Kanoh H, Hanzawa Y, et al. Template Synthesis and Characterization of Mesoporous Zeolites[J]. Colloids Surf. A:Phys. Engin. Aspects,2004, 241(1-3):75-80.
    [51]Wei X, Smirniotis P G. Synthesis and Characterization of Mesoporous ZSM-12 by Using Carbon Particles[J]. Microporous Mesoporous Mater.,2006,89(1-3): 170-178.
    [52]Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template[J]. Adv. Mater.,2004, 16(8):727-732.
    [53]Zhu K, Egeblad K, Christensen C H. Mesoporous Carbon Prepared from Carbohydrate as Hard Template for Hierarchical Zeolites[J]. Eur. J. Inorg. Chem.,2007,2007(25):3955-3960.
    [54]Fan W, Snyder M A, Kumar S, et al. Hierarchical Nanofabrication of Microporous Crystals with Ordered Mesoporosity[J]. Nat. Mater.,2008,7(12): 984-991.
    [55]Fang Y, Hu H. An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure[J]. J. Am. Chem. Soc,2006,128(33): 10636-10637.
    [56]Sakthivel A, Huang S-J, Chen W-H, et al. Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMS) with Zeolite Framework from Mesoporous Carbons (CMKs)[J]. Chem. Mater.,2004,16(16):3168-3175.
    [57]Tao Y, Kanoh H, Kaneko K. Uniform Mesopore-Donated Zeolite Y Using Carbon Aerogel Templating[J]. J. Phys. Chem. B,2003,107(40):10974-10976.
    [58]Fang Y, Hu H, Chen G. Zeolite with Tunable Intracrystal Mesoporosity Synthesized with Carbon Aerogel as a Secondary Template[J]. Microporous Mesoporous Mater.,2008,113(1-3):481-489.
    [59]Tao Y, Kanoh H, Kaneko K. ZSM-5 Monolith of Uniform Mesoporous Channels[J]. J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [60]Tao Y, Kanoh H, Kaneko K. Synthesis of Mesoporous Zeolite a by Resorcinol-Formaldehyde Aerogel Templating[J]. Langmuir,2004,21(2): 504-507.
    [61]Xiao F-S, Wang L, Yin C, et al. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers[J]. Angew. Chem. Int. Ed.,2006,45(19): 3090-3093.
    [62]Tosheva L, Valtchev V, Sterte J. Silicalite-1 Containing Microspheres Prepared Using Shape-Directing Macro-Templates[J]. Microporous Mesoporous Mater., 2000,35-36(0):621-629.
    [63]Zhu H, Liu Z, Wang Y, et al. Nanosized CaCO3 as Hard Template for Creation of Intracrystal Pores within Silicalite-1 Crystal[J]. Chem. Mater.,2007,20(3): 1134-1139.
    [64]Dong A, Wang Y, Tang Y, et al. Zeolitic Tissue through Wood Cell Templating[J]. Adv. Mater.,2002,14(12):926-929.
    [65]Zhang B, Davis S A, Mann S. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films[J]. Chem. Mater., 2002,14(3):1369-1375.
    [66]Na K, Choi M, Ryoo R. Recent Advances in the Synthesis of Hierarchically Nanoporous Zeolites[J]. Microporous Mesoporous Mater.,2013,166(0):3-19.
    [67]Karlsson A, Stocker M, Schmidt R. Composites of Micro-and Mesoporous Materials:Simultaneous Syntheses of MFI/MCM-41 Like Phases by a Mixed Template Approach[J]. Microporous Mesoporous Mater.,1999,27(2-3): 181-192.
    [68]Vernimmen J, Meynen V, Herregods S J F, et al. New Insights in the Formation of Combined Zeolitic/Mesoporous Materials by Using a One-Pot Templating Synthesis[J]. Eur. J. Inorg. Chem.,2011,2011(27):4234-4240.
    [69]Wang H, Pinnavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores[J]. Angew. Chem. Int. Ed.,2006,45(45):7603-7606.
    [70]Choi M, Cho H S, Srivastava R, et al. Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity[J]. Nat. Mater., 2006,5(9):718-723.
    [71]Liu Y, Zhang W, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds[J]. J. Am. Chem. Soc.,2000,122(36): 8791-8792.
    [72]Liu Y, Zhang W, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds[J]. Angew. Chem. Int. Ed.,2001,40(7):1255-1258.
    [73]Song K, Guan J, Wu S, et al. Synthesis and Characterization of Strong Acidic Mesoporous Alumino-Silicates Constructed of Zeolite MCM-22 Precursors[J]. Catal. Commu.,2009,10(5):631-634.
    [74]Naik S P, Chiang A S T, Thompson R W. Synthesis of Zeolitic Mesoporous Materials by Dry Gel Conversion under Controlled Humidity[J]. J. Phys. Chem. B,2003,107(29):7006-7014.
    [75]Xia Y, Mokaya R. On the Synthesis and Characterization of ZSM-5/MCM-48 Aluminosilicate Composite Materials[J]. J. Mater. Chem.,2004,14(5):863-870.
    [76]Guo W, Xiong C, Huang L, et al. Synthesis and Characterization of Composite Molecular Sieves Comprising Zeolite Beta with MCM-41 Structures[J]. J. Mater. Chem.,2001,11(7):1886-1890.
    [77]Guo W, Huang L, Deng P, et al. Characterization of Beta/MCM-41 Composite Molecular Sieve Compared with the Mechanical Mixture[J]. Microporous Mesoporous Mater.,2001,44-45(0):427-434.
    [78]Choi M, Na K, Kim J, et al. Stable Single-Unit-Cell Nanosheets of Zeolite MFI as Active and Long-Lived Catalysts[J]. Nature,2009,461(7261):246-249.
    [79]Na K, Choi M, Park W, et al. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness[J]. J. Am. Chem. Soc.,2010,132(12):4169-4177.
    [80]Na K, Park W, Seo Y, et al. Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores[J]. Chem. Mater.,2011,23(5): 1273-1279.
    [81]Na K, Jo C, Kim J, et al. Directing Zeolite Structures into Hierarchically Nanoporous Architectures [J]. Science,2011,333(6040):328-332.
    [82]Dong A, Wang Y, Tang Y, et al. Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres[J]. Adv. Mater.,2002,14(20):1506-1510.
    [83]Wang Y, Caruso F. Macroporous Zeolitic Membrane Bioreactors[J]. Adv. Funct. Mater.,2004,14(10):1012-1018.
    [84]Petkov N, Holzl M, Metzger T H, et al. Ordered Micro/Mesoporous Composite Prepared as Thin Films[J]. J. Phys. Chem. B,2005,109(10):4485-4491.
    [85]Huang Y, Dong D, Yao J, et al. In Situ Crystallization of Macroporous Monoliths with Hollow Nap Zeolite Structure[J]. Chem. Mater.,2010,22(18): 5271-5278.
    [86]Lei Q, Zhao T, Li F, et al. Catalytic Cracking of Large Molecules over Hierarchical Zeolites[J]. Chem. Commu.,2006(16):1769-1771.
    [87]Mori H, Aotani K, Sano N, et al. Synthesis of a Hierarchically Micro-Macroporous Structured Zeolite Monolith by Ice-Templating[J]. J. Mater. Chem.,2011,21(15):5677-5681.
    [88]Sachse A, Galarneau A, Di Renzo F, et al. Synthesis of Zeolite Monoliths for Flow Continuous Processes. The Case of Sodalite as a Basic Catalyst[J]. Chem. Mater.,2010,22(14):4123-4125.
    [89]Tong Y, Zhao T, Li F, et al. Synthesis of Monolithic Zeolite Beta with Hierarchical Porosity Using Carbon as a Transitional Template[J]. Chem. Mater.,2006,18(18):4218-4220.
    [90]Tokudome Y, Nakanishi K, Kosaka S, et al. Synthesis of High-Silica and Low-Silica Zeolite Monoliths with Trimodal Pores[J]. Microporous Mesoporous Mater.,2010,132(3):538-542.
    [91]Cho S I, Choi S D, Kim J H, et al. Synthesis of ZSM-5 Films and Monoliths with Bimodal Micro/Mesoscopic Structures [J]. Adv. Funct. Mater.,2004,14(1): 49-54.
    [92]Wang D, Liu Z, Wang H, et al. Shape-Controlled Synthesis of Monolithic ZSM-5 Zeolite with Hierarchical Structure and Mechanical Stability[J]. Microporous Mesoporous Mater.,2010,132(3):428-434.
    [93]Yang X-Y, Tian G, Chen L-H, et al. Well-Organized Zeolite Nanocrystal Aggregates with Interconnected Hierarchically Micro-Meso-Macropore Systems Showing Enhanced Catalytic Performance[J]. Chem.-A Eur. J.,2011, 17(52):14987-14995.
    [94]Yang H, Liu Z, Gao H, et al. Synthesis and Catalytic Performances of Hierarchical SAPO-34 Monolith[J]. J. Mater. Chem.,2010,20(16):3227-3231.
    [95]Ocampo F, Yun H S, Pereira M M, et al. Design of MFI Zeolite-Based Composites with Hierarchical Pore Structure:A New Generation of Structured Catalysts[J]. Cryst. Growth & Design,2009,9(8):3721-3729.
    [96]Lee Y J, Lee J S, Park Y S, et al. Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures [J]. Adv. Mater.,2001,13(16): 1259-1263.
    [97]Li W-C, Lu A-H, Palkovits R, et al. Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime[J]. J. Am. Chem. Soc., 2005,127(36):12595-12600.
    [98]Rhodes K H, Davis S A, Caruso F, et al. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks[J]. Chem. Mater.,2000,12(10):2832-2834.
    [99]Saini V K, Pires J. Synthesis of Foam-Shaped Nanoporous Zeolite Material:A Simple Template-Based Method[J]. J. Chem. Edu.,2011,89(2):276-279.
    [100]Yoo W C, Kumar S, Penn R L, et al. Growth Patterns and Shape Development of Zeolite Nanocrystals in Confined Syntheses[J]. J. Am. Chem. Soc.,2009, 131(34):12377-12383.
    [101]Wang X D, Yang W L, Tang Y, et al. Fabrication of Hollow Zeolite Spheres[J]. Chem. Commu.,2000(21):2161-2162.
    [102]Shi J, Ren N, Zhang Y H, et al. Studies on Formation of Hollow Silicalite-1 Microcapsules[J]. Microporous Mesoporous Mater.,2010,132(1-2):181-187.
    [103]Valtchev V, Mintova S. Layer-by-Layer Preparation of Zeolite Coatings of Nanosized Crystals[J]. Microporous Mesoporous Mater.,2001,43(1):41-49.
    [104]Valtchev V. Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities[J]. Chem. Mater.,2002,14(10):4371-4377.
    [105]Chu N B, Wang J Q, Zhang Y, et al. Nestlike Hollow Hierarchical MCM-22 Microspheres:Synthesis and Exceptional Catalytic Properties[J]. Chem. Mater., 2010,22(9):2757-2763.
    [106]Dong A G, Ren N, Yang W L, et al. Preparation of Hollow Zeolite Spheres and Three-Dimensionally Ordered Macroporous Zeolite Monoliths with Functionalized Interiors[J]. Adv. Funct. Mater.,2003,13(12):943-948.
    [107]Wang Z, Liu Y, Jiang J-G, et al. Synthesis of ZSM-5 Zeolite Hollow Spheres with a Core/Shell Structure[J]. J. Mater. Chem.,2010,20(45):10193-10199.
    [108]Dong A G, Wang Y J, Wang D J, et al. Fabrication of Hollow Zeolite Microcapsules with Tailored Shapes and Functionalized Interiors[J]. Microporous Mesoporous Mater.,2003,64(1-3):69-81.
    [109]Xiong C R, Coutinho D, Balkus K J. Fabrication of Hollow Spheres Composed of Nanosized ZSM-5 Crystals Via Laser Ablation[J]. Microporous Mesoporous Mater.,2005,86(1-3):14-22.
    [110]Ren N, Wang B, Yang Y H, et al. General Method for the Fabrication of Hollow Microcapsules with Adjustable Shell Compositions [J]. Chem. Mater.,2005, 17(10):2582-2587.
    [111]Dong A G, Wang Y J, Tang Y, et al. Hollow Zeolite Capsules:A Novel Approach for Fabrication and Guest Encapsulation [J]. Chem. Mater.,2002, 14(8):3217-+.
    [112]Cheng J, Pei S, Yue B, et al. Synthesis and Characterization of Hollow Zeolite Microspheres with a Mesoporous Shell by O/W/O Emulsion and Vapor-Phase Transport Method[J]. Microporous Mesoporous Mater.,2008,115(3):383-388.
    [113]Wang D J, Zhang Y H, Dong A G, et al. Conversion of Fly Ash Cenosphere to Hollow Microspheres with Zeolite/Mullite Composite Shells[J]. Adv. Funct. Mater.,2003,13(7):563-567.
    [114]Vereshchagina T A, Vereshchagin S N, Shishkina N N, et al. One-Step Fabrication of Hollow Aluminosilicate Microspheres with a Composite Zeolite/Glass Crystalline Shell[J]. Microporous Mesoporous Mater.,2013,169: 207-211.
    [115]Wang D J, Zhu G B, Zhang Y H, et al. Controlled Release and Conversion of Guest Species in Zeolite Microcapsules[J]. New J. Chem.,2005,29(2): 272-274.
    [116]Zhou J, Hua Z L, Wu W, et al. Hollow Mesoporous Zeolite Microspheres: Hierarchical Macro-/Meso-/Microporous Structure and Exceptionally Enhanced Adsorption Properties[J]. Dalton Transactions,2011,40(47):12667-12669.
    [117]Zhao J J, Hua Z L, Liu Z C, et al. Direct Fabrication of Mesoporous Zeolite with a Hollow Capsular Structure[J]. Chem. Commu.,2009(48):7578-7580.
    [118]Wang L, Yang W Y, Ling F X, et al. A Facile Method for the Fabrication of Im-5 Hollow Zeolite Sphere in Emulsion System[J]. Microporous Mesoporous Mater.,2012,163:243-248.
    [119]Yue N L, Xue M, Qiu S L. Fabrication of Hollow Zeolite Spheres Using Oil/Water Emulsions as Templates[J]. Inorg. Chem. Commu.,2011,14(8): 1233-1236.
    [120]Shi Y, Li X, Hu J K, et al. Zeolite Microspheres with Hierarchical Structures: Formation, Mechanism and Catalytic Performance[J]. J. Mater. Chem.,2011, 21(40):16223-16230.
    [121]Snyder M A, Tsapatsis M. Hierarchical Nanomanufacturing:From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes[J]. Angew. Chem. Int. Ed.,2007,46(40):7560-7573.
    [122]Serrano D P, Van Grieken R. Heterogenous Events in the Crystallization of Zeolites[J]. J. Mater. Chem.,2001,11(10):2391-2407.
    [123]De Moor P-P E A, Beelen T P M, Komanschek B U, et al. Imaging the Assembly Process of the Organic-Mediated Synthesis of a Zeolite[J]. Chem.-A Eur. J.,1999,5(7):2083-2088.
    [124]Nikolakis V, Kokkoli E, Tirrell M, et al. Zeolite Growth by Addition of Subcolloidal Particles:Modeling and Experimental Validation[J]. Chem. Mater., 2000,12(3):845-853.
    [125]Schoeman B J. Analysis of the Nucleation and Growth of TPA-Silicalite-1 at Elevated Temperatures with the Emphasis on Colloidal Stability [J]. Microporous Mesoporous Mater.,1998,22(1-3):9-22.
    [126]Ren N, Subotic B, Bronic J, et al. Unusual Pathway of Crystallization of Zeolite ZSM-5 in a Heterogeneous System:Phenomenology and Starting Considerations[J]. Chem. Mater.,2012,24(10):1726-1737.
    [127]Mintova S, Olson N H, Senker J, et al. Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite[J]. Angew. Chem.,2002, 114(14):2670-2673.
    [128]Mintova S, Olson N H, Valtchev V, et al. Mechanism of Zeolite a Nanocrystal Growth from Colloids at Room Temperature[J]. Science,1999,283(5404): 958-960.
    [129]Cubillas P, Stevens S M, Blake N, et al. Afm and Hrsem Invesitigation of Zeolite a Crystal Growth. Part 1:In the Absence of Organic Additives[J]. J. Phys. Chem. C.,2011,115(25):12567-12574.
    [130]Itani L, Liu Y, Zhang W, et al. Investigation of the Physicochemical Changes Preceding Zeolite Nucleation in a Sodium-Rich Aluminosilicate Gel[J]. J. Am. Chem. Soc.,2009,131(29):10127-10139.
    [131]Valtchev V, Rigolet S, Bozhilov K N. Gel Evolution in a FAU-Type Zeolite Yielding System at 90℃[J]. Microporous Mesoporous Mater.,2007,101(1-2): 73-82.
    [132]Valtchev V P, Bozhilov K N. Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature[J]. J. Phys. Chem. B, 2004,108(40):15587-15598.
    [133]Valtchev V P, Bozhilov K N. Evidences for Zeolite Nucleation at the Solid-Liquid Interface of Gel Cavities[J]. J. Am. Chem. Soc.,2005,127(46): 16171-16177.
    [134]Watson J N, Iton L E, Keir R I, et al. TPA-Silicalite Crystallization from Homogeneous Solution:Kinetics and Mechanism of Nucleation and Growth[J]. J. Phys. Chem. B,1997,101(48):10094-10104.
    [135]Kirschhock C E A, Ravishankar R, Looveren L V, et al. Mechanism of Transformation of Precursors into Nanoslabs in the Early Stages of MFI and MEL Zeolite Formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O Mixtures[J]. J. Phys. Chem. B,1999,103(24):4972-4978.
    [136]Kirschhock C E A, Ravishankar R, Verspeurt F, et al. Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH-TEOS-H2O System[J]. J. Phys. Chem. B,1999,103(24):4965-4971.
    [137]Liang D, Follens L R A, Aerts A, et al. Tem Observation of Aggregation Steps in Room-Temperature Silicalite-1 Zeolite Formation[J]. J. Phys. Chem. C,2007, 111(39):14283-14285.
    [138]Dokter W H, Van Garderen H F, Beelen T P M, et al. Homogeneous Versus Heterogeneous Zeolite Nucleation[J]. Angew. Chem. Int. Ed.1995,34(1): 73-75.
    [139]Kirschhock C E A, Ravishankar R, Jacobs P A, et al. Aggregation Mechanism of Nanoslabs with Zeolite MFI-Type Structure[J]. J. Phys. Chem. B, 1999,103(50):11021-11027.
    [140]Davis T M, Drews T O, Ramanan H, et al. Mechanistic Principles of Nanoparticle Evolution to Zeolite Crystals[J]. Nat. Mater.,2006,5(5):400-408.
    [141]Kumar S, Davis T M, Ramanan H, et al. Aggregative Growth of Silicalite-1 [J]. J. Phys. Chem. B,2007,111(13):3398-3403.
    [142]Kumar S, Penn R L, Tsapatsis M. On the Nucleation and Crystallization of Silicalite-1 from a Dilute Clear Sol[J]. Microporous Mesoporous Mater.,2011, 144(1-3):74-81.
    [143]Kumar S, Wang Z, Penn R L, et al. A Structural Resolution Cryo-Tem Study of the Early Stages of MFI Growth[J]. J. Am. Chem. Soc.,2008,130(51): 17284-17286.
    [1]International Zeolite Association. Database of Zeolite Structures. Http://Www.Iza-Structure.Org/Databases/.
    [2]Snyder M A, Tsapatsis M. Hierarchical Nanomanufacturing:From Shaped Zeolite Nanoparticles to High-Performance Separation Membranes[J]. Angew. Chem. Int. Ed.,2007,46(40):7560-7573.
    [3]Serrano D P, Van Grieken R. Heterogenous Events in the Crystallization of Zeolites[J]. J. Mater. Chem.,2001,11(10):2391-2407.
    [4]Mintova S, Olson N H, Valtchev V, et al. Mechanism of Zeolite a Nanocrystal Growth from Colloids at Room Temperature[J]. Science,1999,283(5404): 958-960.
    [5]Mintova S, Olson N H, Bein T. Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids[J]. Angew. Chem. Int. Ed., 1999,38(21):3201-3204.
    [6]Mintova S, Olson N H, Senker J, et al. Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite[J]. Angew. Chem.,2002, 114(14):2670-2673.
    [7]Tsapatsis M, Lovallo M, Davis M E. High-Resolution Electron Microscopy Study on the Growth of Zeolite L Nanoclusters[J]. Microporous Mater.,1996, 5(6):381-388.
    [8]Cubillas P, Stevens S M, Blake N, et al. AFM and HRSEM Invesitigation of Zeolite a Crystal Growth. Part 1:In the Absence of Organic Additives[J]. J. Phys. Chem. C,2011,115(25):12567-12574.
    [9]Davis T M, Drews T O, Ramanan H, et al. Mechanistic Principles of Nanoparticle Evolution to Zeolite Crystals[J]. Nat. Mater.,2006,5(5):400-408.
    [10]Kumar S, Penn R L, Tsapatsis M. On the Nucleation and Crystallization of Silicalite-1 from a Dilute Clear Sol[J]. Microporous Mesoporous Mater.,2011, 144(1-3):74-81.
    [11]Kumar S, Davis T M, Ramanan H, et al. Aggregative Growth of Silicalite-1 [J]. J. Phys. Chem. B,2007,111(13):3398-3403.
    [12]Kumar S, Wang Z, Penn R L, et al. A Structural Resolution Cryo-TEM Study of the Early Stages of MFI Growth[J]. J. Am. Chem. Soc.,2008,130(51): 17284-17286.
    [13]Greer H, Wheatley P S, Ashbrook S E, et al. Early Stage Reversed Crystal Growth of Zeolite a and Its Phase Transformation to Sodalite[J]. J. Am. Chem. Soc.,2009,131(49):17986-17992.
    [14]Itani L, Liu Y, Zhang W, et al. Investigation of the Physicochemical Changes Preceding Zeolite Nucleation in a Sodium-Rich Aluminosilicate Gel[J]. J. Am. Chem. Soc.,2009,131(29):10127-10139.
    [15]Valtchev V, Rigolet S, Bozhilov K N. Gel Evolution in a FAU-Type Zeolite Yielding System at 90℃[J]. Microporous Mesoporous Mater.,2007,101(1-2): 73-82.
    [16]Valtchev V P, Bozhilov K N. Evidences for Zeolite Nucleation at the Solid-Liquid Interface of Gel Cavities[J]. J. Am. Chem. Soc.,2005,127(46): 16171-16177.
    [17]Valtchev V P, Bozhilov K N. Transmission Electron Microscopy Study of the Formation of FAU-Type Zeolite at Room Temperature[J]. J. Phys. Chem. B, 2004,108(40):15587-15598.
    [18]Ren N, Subotic B, Bronic J, et al. Unusual Pathway of Crystallization of Zeolite ZSM-5 in a Heterogeneous System:Phenomenology and Starting Considerations[J]. Chem. Mater.,2012,24(10):1726-1737.
    [19]Kosanovic C, Havancsak K, Subotic B, et al. A Contribution to Understanding the Mechanism of Crystallization of Silicalite-1 in Heterogeneous Systems (Hydrogels)[J]. Microporous Mesoporous Mater.,2009,123(1-3):150-159.
    [20]De Moor P-P E A, Beelen T P M, Komanschek B U, et al. Imaging the Assembly Process of the Organic-Mediated Synthesis of a Zeolite[J]. Chem.-A Eur. J.,1999,5(7):2083-2088.
    [21]Nikolakis V, Kokkoli E, Tirrell M, et al. Zeolite Growth by Addition of Subcolloidal Particles:Modeling and Experimental Validation[J]. Chem. Mater., 2000,12(3):845-853.
    [22]Schoeman B J. Analysis of the Nucleation and Growth of TPA-Silicalite-1 at Elevated Temperatures with the Emphasis on Colloidal Stability[J]. Microporous Mesoporous Mater.,1998,22(1-3):9-22.
    [23]Watson J N, Iton L E, Keir R I, et al. TPA-Silicalite Crystallization from Homogeneous Solution:Kinetics and Mechanism of Nucleation and Growth[J]. J. Phys. Chem. B,1997,101(48):10094-10104.
    [24]Kirschhock C E A, Ravishankar R, Looveren L V, et al. Mechanism of Transformation of Precursors into Nanoslabs in the Early Stages of MFI and Mel Zeolite Formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O Mixtures[J]. J. Phys. Chem. B,1999,103(24):4972-4978.
    [25]Kirschhock C E A, Ravishankar R, Verspeurt F, et al. Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH-TEOS-H2O System[J]. J. Phys. Chem. B,1999,103(24):4965-4971.
    [26]Liang D, Follens L R A, Aerts A, et al. TEM Observation of Aggregation Steps in Room-Temperature Silicalite-1 Zeolite Formation[J]. J. Phys. Chem. C,2007, 111(39):14283-14285.
    [27]Dokter W H, Van Garderen H F, Beelen T P M, et al. Homogeneous Versus Heterogeneous Zeolite Nucleation[J]. Angew. Chem. Int. Ed. in English,1995, 34(1):73-75.
    [28]Kirschhock C E A, Ravishankar R, Jacobs P A, et al. Aggregation Mechanism of Nanoslabs with Zeolite MFI-Type Structure[J]. J. Phys. Chem. B,1999, 103(50):11021-11027.
    [29]Erdem-Senatalar A, Thompson R W. Observations on Clear Solution Silicalite-1 Growth by Nanoslabs[J]. J. Colloid Interf.Science,2005,291(2): 396-404.
    [30]Ramanan H, Kokkoli E, Tsapatsis M. On the TEM and AFM Evidence of Zeosil Nanoslabs Present During the Synthesis of Silicalite-1 [J]. Angew. Chem.,2004, 116(35):4658-4661.
    [31]Kirschhock C E A, Liang D, Aerts A, et al. Reply [J]. Angew. Chem.,2004, 116(35):4662-4664.
    [32]Knight C T G, Kinrade S D. Comment on "Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH-TEOS-H2O System"[J]. J. Phys. Chem. B,2002,106(12):3329-3332.
    [33]Yuk J M, Park J, Ercius P, et al. High-Resolution Em of Colloidal Nanocrystal Growth Using Graphene Liquid Cells[J]. Science,2012,336(6077):61-64.
    [34]John N S, Stevens S M, Terasaki O, et al. Evolution of Surface Morphology with Introduction of Stacking Faults in Zeolites[J]. Chem.-A Eur. J.,2010, 16(7):2220-2230.
    [35]Ferdov S. Organic-Free and Selectively Oriented Recrystallization for Design of Natisite Microstructures[J]. Cryst. Growth & Design,2011,11(10):4498-4504.
    [36]Holden M A, Cubillas P, Anderson M W. In Situ Crystal Growth of Nanoporous Zincophosphate Observed by Atomic Force Microscopy[J]. Chem. Commu.,2010,46(7):1047-1049.
    [37]Cubillas P, Castro M, Jelfs K E, et al. Spiral Growth on Nanoporous Silicoaluminophosphate STA-7 as Observed by Atomic Force Microscopy [J]. Cryst. Growth & Design,2009,9(9):4041-4050.
    [38]Holden M A, Cubillas P, Attfield M P, et al. Growth Mechanism of Microporous Zincophosphate Sodalite Revealed by in Situ Atomic Force Microscopy[J]. J. Am. Chem. Soc.,2012,134(31):13066-13073.
    [39]Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:Precursors, Intermediates and Reaction Mechanism[J]. Microporous Mesoporous Mater., 2005,82(1-2):1-78.
    [40]Choi M, Cho H S, Srivastava R, et al. Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity[J]. Nat. Mater., 2006,5(9):718-723.
    [41]Do T-O, Nossov A, Springuel-Huet M-A, et al. Zeolite Nanoclusters Coated onto the Mesopore Walls of SBA-15[J]. J. Am. Chem. Soc.,2004,126(44): 14324-14325.
    [42]Treacy M M J, Higgins J B. in Collection of Simulated XRD Powder Patterns for Zeolites (Fifth Edition), Elsevier Science B.V., Amsterdam,2007, pp. 276-279.
    [43]Burkett S L, Davis M E. Mechanisms of Structure Direction in the Synthesis of Pure-Silica Zeolites.1. Synthesis of TPA/Si-ZSM-5[J]. Chem. Mater.,1995, 7(5):920-928.
    [44]Padovan M, Leofanti G, Solari M, et al. Studies on the ZSM-5 Zeolite Formation[J]. Zeolites,1984,4(3):295-299.
    [45]Burkett S L, Davis M E. Mechanism of Structure Direction in the Synthesis of Pure-Silica Zeolites.2. Hydrophobic Hydration and Structural Specificity[J]. Chem. Mater.,1995,7(8):1453-1463.
    [46]Brunner G O. A Proposal for a Mechanism of Nucleation in Zeolite Synthesis[J]. Zeolites,1992,12(4):428-430.
    [47]Nagy J B, Bodart P, Collette H, et al. Characterization of Crystalline and Amorphous Phases During the Synthesis of (TPA, M)-ZSM-5 Zeolites (M= Li, Na, K)[J]. J. Chem. Soc, Faraday Trans.1,1989,85(9):2749-2769.
    [48]Schoeman BJ. A spectroscopic study of the initial stage in the crystallization of TPA-silicalite-1 from clear solutions. In:Hakze Chon S-KI, Young Sun U, editors. Stud. Surf. Sci. Catal.1997,105:647-54.
    [49]Dokter W H, Beelen T P M, Van Garderen H F, et al. The Hydrothermal Synthesis of Silicalite—an in Situ Small-Angle Neutron Scattering Study[J]. Colloids Surf. A,1994,85(1):89-95.
    [50]Moor P-P E a D. The Mechanism of Organic-Mediated Zeolites Crystallization[D]. Ph.D. Thesis; Eindhoven, The Netherlands:Technical University of Eindhoven,1998.
    [51]Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:History and Development from the Earliest Days to the Present Time[J]. Chem. Rev.,2003, 103(3):663-702.
    [52]Walton R I, O'hare D. An in Situ Energy-Dispersive X-Ray Diffraction Study of the Hydrothermal Crystallization of Zeolite A.2. Effect of Deuteration on Crystallization Kinetics[J]. J. Phys. Chem. B,2000,105(1):91-96.
    [53]Sub-otic, B.; Bronic J.; Antonic Jelic, T.Theoretical and Practical Aspects of Zeolite Nucleation, in Ordered Porous Materials; Valtchev, V.; Mintova S.; Tspatsis, M. Eds.; Elsevier,2009, pp127.
    [54]Thomas J M, Bursill L A. Amorphe Zeolithe[J]. Angewandte Chemie,1980, 92(9):755-756.
    [55]Suboti B. Influence of Autocatalytic Nucleation on Zeolite Crystallization Processes. ACS Symp. Ser.,1989,398:110-23.
    [56]Subotic B, Graovac A. Kinetic Analysis of Autocatalytic Nucleation During Crystallization of Zeolites. In:B. Drzaj SH, Pejovnik S, editors. In Stud. Surf. Sci. Catal.,1985,24:199-206.
    [57]Thompson R W. Comments on the Autocatalytic Nucleation of (Na, TPA)-ZSM-5[J]. Zeolites,1992,12(7):837-840.
    [58]Gonthier S, Gora L, Guray I, et al. Further Comments on the Role of Autocatalytic Nucleation in Hydrothermal Zeolite Syntheses[J]. Zeolites,1993, 13(6):414-418.
    [59]Penn R L, Banfield J F. Formation of Rutile Nuclei at Anatase (112) Twin Interfaces and the Phase Transformation Mechanism in Nanocrystalline Titania[J]. Am. Miner.,1999,84(5-6):871-876.
    [60]Penn R L, Banfield J F. Oriented Attachment and Growth, Twinning, Polytypism, and Formation of Metastable Phases; Insights from Nanocrystalline TiO2[J]. Am. Miner.,1998,83(9-10):1077-1082.
    [61]Penn R L, Banfield J F. Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals[J]. Science,1998,281(5379):969-971.
    [62]Penn R L, Banfield J F. Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions:Insights from Titania[J]. Geochimica et Cosmochimica Acta,1999,63(10):1549-1557.
    [63]Banfield J F, Welch S A, Zhang H, et al. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products[J]. Science,2000,289(5480):751-754.
    [64]Lee E J H, Ribeiro C, Longo E, et al. Oriented Attachment:An Effective Mechanism in the Formation of Anisotropic Nanocrystals[J]. J. Phys. Chem. B, 2005,109(44):20842-20846.
    [65]Li D, Nielsen M H, Lee J R I, et al. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment[J]. Science,2012,336(6084): 1014-1018.
    [66]Zheng H, Smith R K, Jun Y-W, et al. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories[J]. Science,2009,324(5932):1309-1312.
    [67]Kremer S P B, Kirschhock C E A, Aerts A, et al. Tiling Silicalite-1 Nanoslabs into 3D Mosaics[J]. Adv. Mater.,2003,15(20):1705-1707.
    [68]Kirschhock C E A, Kremer S P B, Vermant J, et al. Design and Synthesis of Hierarchical Materials from Ordered Zeolitic Building Units[J]. Chem.-A Eur. J.,2005,11(15):4306-4313.
    [69]Bals S, Batenburg K J, Liang D, et al. Quantitative Three-Dimensional Modeling of Zeotile through Discrete Electron Tomography [J]. J. Am. Chem. Soc.,2009, 131(13):4769-4773.
    [70]Reichinger M, Schmidt W, Narkhede V V, et al. Ordered Mesoporous Materials with MFI Structured Microporous Walls-Synthesis and Proof of Wall Microporosity[J]. Microporous Mesoporous Mater.,2012,164(0):21-31.
    [1]Davis M E. Ordered Porous Materials for Emerging Applications[J]. Nature, 2002,417(6891):813-821.
    [2]Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:History and Development from the Earliest Days to the Present Time[J]. Chem. Rev.,2003, 103(3):663-702.
    [3]Corma A. State of the Art and Future Challenges of Zeolites as Catalysts[J]. J. Catal.,2003,216(1-2):298-312.
    [4]Perez-Ramirez J, Christensen C H, Egeblad K, et al. Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design[J]. Chem. Soc. Rev.,2008,37(11):2530-2542.
    [5]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature,1992, 359(6397):710-712.
    [6]Beck J S, Vartuli J C, Roth W J, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J]. J. Am. Chem. Soc.,1992, 114(27):10834-10843.
    [7]Yanagisawa T, Shimizu T, Kuroda K, et al. The Preparation of Alkyltriinethylaininonium&Ndash;Kaneinite Complexes and Their Conversion to Microporous Materials[J]. Bull. Chem. Soc. Ja.,1990,63(4):988-992.
    [8]Inagaki S, Fukushima Y, Kuroda K. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate[J]. J. Chem. Soc, Chem. Commu.,1993, 0(8):680-682.
    [9]Janssen A H, Koster A J, De Jong K P. Three-Dimensional Transmission Electron Microscopic Observations of Mesopores in Dealuminated Zeolite Y[J]. Angew. Chem. Int. Ed.,2001,40(6):1102-1104.
    [10]Janssen A H, Koster A J, De Jong K P. On the Shape of the Mesopores in Zeolite Y:A Three-Dimensional Transmission Electron Microscopy Study Combined with Texture Analysis[J]. J. Phys. Chem. B,2002,106(46): 11905-11909.
    [11]Sazama P, Sobalik Z, Dedecek J, et al. Enhancement of Activity and Selectivity in Acid-Catalyzed Reactions by Dealuminated Hierarchical Zeolites[J]. Angew. Chem.,2013,125(7):2092-2095.
    [12]Groen J C, Abello S, Villaescusa L A, et al. Mesoporous Beta Zeolite Obtained by Desilication[J]. Microporous Mesoporous Mater.,2008,114(1-3):93-102.
    [13]Groen J C, Bach T, Ziese U, et al. Creation of Hollow Zeolite Architectures by Controlled Desilication of Al-Zoned ZSM-5 Crystals [J]. J. Am. Chem. Soc., 2005,127(31):10792-10793.
    [14]Groen J C, Peffer L a A, Moulijn J A, et al. Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication:The Role of Aluminium as a Pore-Directing Agent[J]. Chem.-A Eur. J.,2005,11(17):4983-4994.
    [15]Groen J C, Zhu W, Brouwer S, et al. Direct Demonstration of Enhanced Diffusion in Mesoporous ZSM-5 Zeolite Obtained Via Controlled Desilication[J]. J. Am. Chem. Soc.,2006,129(2):355-360.
    [16]De Jong K P, Zecevic J, Friedrich H, et al. Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts[J]. Angew. Chem. Int. Ed.,2010, 49(52):10074-10078.
    [17]Mitchell S, Michels N-L, Kunze K, et al. Visualization of Hierarchically Structured Zeolite Bodies from Macro to Nano Length Scales [J]. Nat. Chem., 2012,4(10):825-831.
    [18]Zhang Z, Han Y, Xiao F-S, et al. Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures[J]. J. Am. Chem. Soc.,2001,123(21):5014-5021.
    [19]Liu Y, Zhang W, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds[J]. J. Am. Chem. Soc.,2000,122(36): 8791-8792.
    [20]Gu F N, Wei F, Yang J Y, et al. New Strategy to Synthesis of Hierarchical Mesoporous Zeolites[J]. Chem. Mater.,2010,22(8):2442-2450.
    [21]Zhu Y, Hua Z, Zhou J, et al. Hierarchical Mesoporous Zeolites:Direct Self-Assembly Synthesis in a Conventional Surfactant Solution by Kinetic Control over the Zeolite Seed Formation[J]. Chem.-A Eur. J.,2011,17(51): 14618-14627.
    [22]Egeblad K, Christensen C H, Kustova M, et al. Templating Mesoporous Zeolites(?)[J]. Chem. Mater.,2007,20(3):946-960.
    [23]Choi M, Na K, Kim J, et al. Stable Single-Unit-Cell Nanosheets of Zeolite MFI as Active and Long-Lived Catalysts[J]. Nature,2009,461(7261):246-249.
    [24]Na K, Choi M, Park W, et al. Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness[J]. J. Am. Chem. Soc.,2010,132(12):4169-4177.
    [25]Na K, Park W, Seo Y, et al. Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores[J]. Chem. Mater.,2011,23(5): 1273-1279.
    [26]Zhang X, Liu D, Xu D, et al. Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching[J]. Science,2012,336(6089):1684-1687.
    [27]Cho K, Na K, Kim J, et al. Zeolite Synthesis Using Hierarchical Structure-Directing Surfactants:Retaining Porous Structure of Initial Synthesis Gel and Precursors[J]. Chem. Mater.,2012,24(14):2733-2738.
    [28]Moller K, Bein T. Pores within Pores—How to Craft Ordered Hierarchical Zeolites[J]. Science,2011,333(6040):297-298.
    [29]Choi M, Cho H S, Srivastava R, et al. Amphiphilic Organosilane-Directed Synthesis of Crystalline Zeolite with Tunable Mesoporosity[J]. Nat. Mater., 2006,5(9):718-723.
    [30]Schmidt I, Boisen A, Gustavsson E, et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals[J]. Chem. Mater.,2001,13(12): 4416-4418.
    [31]Tao Y, Kanoh H, Kaneko K. ZSM-5 Monolith of Uniform Mesoporous Channels[J]. J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [32]Xiao F-S, Wang L, Yin C, et al. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers[J]. Angew. Chem.,2006,118(19): 3162-3165.
    [33]Zhou X, Chen H, Zhu Y, et al. Dual-Mesoporous ZSM-5 Zeolite with Highly B-Axis-Oriented Large Mesopore Channels for the Production of Benzoin Ethyl Ether[J]. Chem.-A Eur. J.,2013:n/a-n/a.
    [34]Chaikittisilp W, Suzuki Y, Mukti R R, et al. Formation of Hierarchically Organized Zeolites by Sequential Intergrowth[J]. Angew. Chem. Int. Ed.,2013, 52(12):3355-3359.
    [35]Moller K, Yilmaz B, Jacubinas R M, et al. One-Step Synthesis of Hierarchical Zeolite Beta Via Network Formation of Uniform Nanocrystals[J]. J. Am. Chem. Soc.,2011,133(14):5284-5295.
    [36]Liu F, Willhammar T, Wang L, et al. ZSM-5 Zeolite Single Crystals with B-Axis-Aligned Mesoporous Channels as an Efficient Catalyst for Conversion of Bulky Organic Molecules[J]. J. Am. Chem. Soc.,2012,134(10):4557-4560.
    [37]Wang H, Pinnavaia T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores[J]. Angew. Chem. Int. Ed.,2006,45(45):7603-7606.
    [38]Liu B, Tan Y, Ren Y, et al. Fabrication of a Hierarchically Structured Beta Zeolite by a Dual-Porogenic Surfactant[J]. J. Mater. Chem.,2012,22(35): 18631-18638.
    [39]Na K, Jo C, Kim J, et al. Directing Zeolite Structures into Hierarchically Nanoporous Architectures[J]. Science,2011,333(6040):328-332.
    [40]Fan W, Snyder M A, Kumar S, et al. Hierarchical Nanofabrication of Microporous Crystals with Ordered Mesoporosity[J]. Nat. Mater.,2008,7(12): 984-991.
    [41]Chen H, Wydra J, Zhang X, et al. Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure[J]. J. Am. Chem. Soc.,2011,133(32):12390-12393.
    [42]Sakthivel A, Huang S-J, Chen W-H, et al. Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMS) with Zeolite Framework from Mesoporous Carbons (CMKs)[J]. Chem. Mater.,2004,16(16):3168-3175.
    [43]Fang Y, Hu H. An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure[J]. J. Am. Chem. Soc.,2006,128(33): 10636-10637.
    [44]Cho H S, Ryoo R. Synthesis of Ordered Mesoporous MFI Zeolite Using CMK Carbon Templates[J]. Microporous Mesoporous Mater.,2012,151(0):107-112.
    [45]Kremer S P B, Kirschhock C E A, Aerts A, et al. Tiling Silicalite-1 Nanoslabs into 3d Mosaics[J]. Adv. Mater.,2003,15(20):1705-1707.
    [46]Kirschhock C E A, Kremer S P B, Vermant J, et al. Design and Synthesis of Hierarchical Materials from Ordered Zeolitic Building Units[J]. Chem.-A Eur. J.,2005,11(15):4306-4313.
    [47]Bals S, Batenburg K J, Liang D, et al. Quantitative Three-Dimensional Modeling of Zeotile through Discrete Electron Tomography [J]. J. Am. Chem. Soc.,2009,131(13):4769-4773.
    [48]Liu Y, Zhang W, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds[J]. Angew. Chem. Int. Ed.,2001,40(7):1255-1258.
    [49]Reichinger M, Schmidt W, Narkhede V V, et al. Ordered Mesoporous Materials with MFI Structured Microporous Walls-Synthesis and Proof of Wall Microporosity[J]. Microporous Mesoporous Mater.,2012,164(0):21-31.
    [50]Song K, Guan J, Wu S, et al. Synthesis and Characterization of Strong Acidic Mesoporous Alumino-Silicates Constructed of Zeolite MCM-22 Precursors [J]. Catal. Commu,2009,10(5):631-634.
    [51]Serrano D P, Garcia R A, Vicente G, et al. Acidic and Catalytic Properties of Hierarchical Zeolites and Hybrid Ordered Mesoporous Materials Assembled from MFI Protozeolitic Units[J]. J. Catal.,2011,279(2):366-380.
    [52]Karlsson A, Stocker M, Schmidt R. Composites of Micro-and Mesoporous Materials:Simultaneous Syntheses of MFI/MCM-41 Like Phases by a Mixed Template Approach[J]. Microporous Mesoporous Mater.,1999,27(2-3): 181-192.
    [53]Vernimmen J, Meynen V, Herregods S J F, et al. New Insights in the Formation of Combined Zeolitic/Mesoporous Materials by Using a One-Pot Templating Synthesis[J]. Eur. J. Inorg. Chem.,2011,2011(27):4234-4240.
    [54]Zhao J, Hua Z, Liu Z, et al. Direct Fabrication of Mesoporous Zeolite with a Hollow Capsular Structure[J]. Chem. Commu.,2009,0(48):7578-7580.
    [55]Chal R, Gerardin C, Bulut M, et al. Overview and Industrial Assessment of Synthesis Strategies Towards Zeolites with Mesopores[J]. ChemCatChem,2011, 3(1):67-81.
    [56]Na K, Choi M, Ryoo R. Recent Advances in the Synthesis of Hierarchically Nanoporous Zeolites[J]. Microporous Mesoporous Mater.,2013,166(0):3-19.
    [57]Serrano D P, Escola J M, Pizarro P. Synthesis Strategies in the Search for Hierarchical Zeolites[J]. Chem. Soc. Rev.,2013.
    [58]Schoeman B J, Regev O. A Study of the Initial Stage in the Crystallization of TPA-Silicalite-1[J]. Zeolites,1996,17(5-6):447-456.
    [59]Fedeyko J M, Rimer J D, Lobo R F, et al. Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations[J]. J. Phys. Chem. B,2004,108(33):12271-12275.
    [60]Davis T M, Drews T O, Ramanan H, et al. Mechanistic Principles of Nanoparticle Evolution to Zeolite Crystals[J]. Nat. Mater.,2006,5(5):400-408.
    [61]Provis J L, Vlachos D G. Silica Nanoparticle Formation in the TPAOH-TEOS-H2O System:A Population Balance Model[J]. J. Phys. Chem. B,2006,110(7):3098-3108.
    [62]Jin L, Auerbach S M, Monson P A. Modeling Nanoparticle Formation During Early Stages of Zeolite Growth:A Low-Coordination Lattice Model of Template Penetration[J]. J. Phys. Chem. C,2010,114(34):14393-14401.
    [63]Cundy C S, Cox P A. The Hydrothermal Synthesis of Zeolites:Precursors, Intermediates and Reaction Mechanism[J]. Microporous Mesoporous Mater., 2005,82(1-2):1-78.
    [64]Treacy M M J, Higgins J B. in Collection of Simulated XRD Powder Patterns for Zeolites (Fifth Edition), Elsevier Science B.V., Amsterdam,2007, pp. 276-279.
    [1]Wang H, Holmberg B A, Yan Y. Synthesis of Template-Free Zeolite Nanocrystals by Using in Situ Thermoreversible Polymer Hydrogels[J]. J. Am. Chem. Soc.,2003,125(33):9928-9929.
    [2]Perez-Ramirez J, Christensen C H, Egeblad K, et al. Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design[J]. Chem. Soc. Rev.,2008,37(11):2530-2542.
    [3]Egeblad K, Christensen C H, Kustova M, et al. Templating Mesoporous Zeolites[J]. Chem. Mater.,2007,20(3):946-960.
    [4]Zhan B-Z, White M A, Lumsden M, et al. Control of Particle Size and Surface Properties of Crystals of NaX Zeolite[J]. Chem. Mater.,2002,14(9): 3636-3642.
    [5]Yoo W C, Kumar S, Penn R L, et al. Growth Patterns and Shape Development of Zeolite Nanocrystals in Confined Syntheses [J]. J. Am. Chem. Soc.,2009, 131(34):12377-12383.
    [6]Huang Y, Wang K, Dong D, et al. Synthesis of Hierarchical Porous Zeolite Nay Particles with Controllable Particle Sizes[J]. Microporous Mesoporous Mater., 2010,127(3):167-175.
    [7]Petushkov A, Merilis G, Larsen S C. From Nanoparticles to Hierarchical Structures:Controlling the Morphology of Zeolite Beta[J], Microporous Mesoporous Mater.,2011,143(1):97-103.
    [8]Moller K, Bein T. Mesoporosity-a New Dimension for Zeolites[J]. Chem. Soc. Rev.,2013,42(9):3689-3707.
    [9]Gu F N, Wei F, Yang J Y, et al. New Strategy to Synthesis of Hierarchical Mesoporous Zeolites[J]. Chem. Mater.,2010,22(8):2442-2450.
    [10]Kang Y, Shan W, Wu J, et al. Uniform Nanozeolite Microspheres with Large Secondary Pore Architecture[J]. Chem. Mater.,2006,18(7):1861-1866.
    [11]Moller K, Yilmaz B, Jacubinas R M, et al. One-Step Synthesis of Hierarchical Zeolite Beta Via Network Formation of Uniform Nanocrystals[J]. J. Am. Chem. Soc.,2011,133(14):5284-5295.
    [12]Moller K, Yilmaz B, Miiller U, et al. Hierarchical Zeolite Beta Via Nanoparticle Assembly with a Cationic Polymer[J]. Chem. Mater.,2011,23(19):4301-4310.
    [13]Yang X, Feng Y, Tian G, et al. Design and Size Control of Uniform Zeolite Nanocrystals Synthesized in Adjustable Confined Voids Formed by Recyclable Monodisperse Polymer Spheres[J]. Angew. Chem. Int. Ed.,2005,44(17): 2563-2568.
    [14]Li C, Wang Y, Shi B, et al. Synthesis of Hierarchical MFI Zeolite Microspheres with Stacking Nanocrystals[J]. Microporous Mesoporous Mater.,2009, 117(1-2):104-110.
    [15]Lee P-S, Zhang X, Stoeger J A, et al. Sub-40 Nm Zeolite Suspensions Via Disassembly of Three-Dimensionally Ordered Mesoporous-Imprinted Silicalite-1[J]. J. Am. Chem. Soc.,2010,133(3):493-502.
    [16]Chen H, Wydra J, Zhang X, et al. Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure[J]. J. Am. Chem. Soc.,2011,133(32):12390-12393.
    [17]Tang T, Zhang L, Fu W, et al. Design and Synthesis of Metal Sulfide Catalysts Supported on Zeolite Nanofiber Bundles with Unprecedented Hydrodesulfurization Activities [J]. J. Am. Chem. Soc.,2013,135(31): 11437-11440.
    [18]Ren L, Guo Q, Zhang H, et al. Organotemplate-Free and One-Pot Fabrication of Nano-Rod Assembled Plate-Like Micro-Sized Mordenite Crystals[J]. J. Mater. Chem.,2012,22(14):6564-6567.
    [19]Dong A, Wang Y, Tang Y, et al. Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres[J]. Adv. Mater.,2002,14(20):1506-1510.
    [20]Wang Y, Caruso F. Macroporous Zeolitic Membrane Bioreactors[J]. Adv. Funct. Mater.,2004,14(10):1012-1018.
    [21]Petkov N, Holzl M, Metzger T H, et al. Ordered Micro/Mesoporous Composite Prepared as Thin Films[J]. J. Phys. Chem. B,2005,109(10):4485-4491.
    [22]Huang Y, Dong D, Yao J, et al. In Situ Crystallization of Macroporous Monoliths with Hollow NaP Zeolite Structure[J]. Chem. Mater.,2010,22(18): 5271-5278.
    [23]Lei Q, Zhao T, Li F, et al. Catalytic Cracking of Large Molecules over Hierarchical Zeolites[J]. Chem. Commu.,2006(16):1769-1771.
    [24]Mori H, Aotani K, Sano N, et al. Synthesis of a Hierarchically Micro-Macroporous Structured Zeolite Monolith by Ice-Templating[J]. J. Mater. Chem.,2011,21(15):5677-5681.
    [25]Sachse A, Galarneau A, Di Renzo F, et al. Synthesis of Zeolite Monoliths for Flow Continuous Processes. The Case of Sodalite as a Basic Catalyst[J]. Chem. Mater.,2010,22(14):4123-4125.
    [26]Tong Y, Zhao T, Li F, et al. Synthesis of Monolithic Zeolite Beta with Hierarchical Porosity Using Carbon as a Transitional Template[J]. Chem. Mater.,2006,18(18):4218-4220.
    [27]Cho S I, Choi S D, Kim J H, et al. Synthesis of ZSM-5 Films and Monoliths with Bimodal Micro/Mesoscopic Structures[J]. Adv. Funct. Mater.,2004,14(1): 49-54.
    [28]Wang D, Liu Z, Wang H, et al. Shape-Controlled Synthesis of Monolithic ZSM-5 Zeolite with Hierarchical Structure and Mechanical Stability [J]. Microporous Mesoporous Mater.,2010,132(3):428-434.
    [29]Yang X-Y, Tian G, Chen L-H, et al. Well-Organized Zeolite Nanocrystal Aggregates with Interconnected Hierarchically Micro-Meso-Macropore Systems Showing Enhanced Catalytic Performance[J]. Chem.-A Eur. J.,2011, 17(52):14987-14995.
    [30]Yang H, Liu Z, Gao H, et al. Synthesis and Catalytic Performances of Hierarchical SAPO-34 Monolith[J]. J. Mater. Chem.,2010,20(16):3227-3231.
    [31]Ocampo F, Yun H S, Pereira M M, et al. Design of MFI Zeolite-Based Composites with Hierarchical Pore Structure:A New Generation of Structured Catalysts[J]. Cryst. Growth & Design,2009,9(8):3721-3729.
    [32]Tokudome Y, Nakanishi K, Kosaka S, et al. Synthesis of High-Silica and Low-Silica Zeolite Monoliths with Trimodal Pores[J]. Microporous Mesoporous Mater.,2010,132(3):538-542.
    [33]Lee Y J, Lee J S, Park Y S, et al. Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures[J]. Adv. Mater.,2001,13(16): 1259-1263.
    [34]Li W-C, Lu A-H, Palkovits R, et al. Hierarchically Structured Monolithic Silicalite-1 Consisting of Crystallized Nanoparticles and Its Performance in the Beckmann Rearrangement of Cyclohexanone Oxime[J]. J. Am. Chem. Soc., 2005,127(36):12595-12600.
    [35]Rhodes K H, Davis S A, Caruso F, et al. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks[J]. Chem. Mater.,2000,12(10):2832-2834.
    [36]Saini V K, Pires J. Synthesis of Foam-Shaped Nanoporous Zeolite Material:A Simple Template-Based Method[J]. J. Chem. Edu.,2011,89(2):276-279.
    [37]Tao Y, Kanoh H, Kaneko K. ZSM-5 Monolith of Uniform Mesoporous Channels[J]. J. Am. Chem. Soc.,2003,125(20):6044-6045.
    [38]Wang X D, Yang W L, Tang Y, et al. Fabrication of Hollow Zeolite Spheres[J]. Chem. Commu,2000(21):2161-2162.
    [39]Shi J, Ren N, Zhang Y H, et al. Studies on Formation of Hollow Silicalite-1 Microcapsules[J]. Microporous Mesoporous Mater.,2010,132(1-2):181-187.
    [40]Valtchev V, Mintova S. Layer-by-Layer Preparation of Zeolite Coatings of Nanosized Crystals[J]. Microporous Mesoporous Mater.,2001,43(1):41-49.
    [41]Valtchev V. Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities[J]. Chem. Mater.,2002,14(10):4371-4377.
    [42]Chu N B, Wang J Q, Zhang Y, et al. Nestlike Hollow Hierarchical MCM-22 Microspheres:Synthesis and Exceptional Catalytic Properties[J]. Chem. Mater., 2010,22(9):2757-2763.
    [43]Dong A G, Ren N, Yang W L, et al. Preparation of Hollow Zeolite Spheres and Three-Dimensionally Ordered Macroporous Zeolite Monoliths with Functionalized Interiors[J]. Adv. Funct. Mater.,2003,13(12):943-948.
    [44]Wang Z, Liu Y, Jiang J-G, et al. Synthesis of ZSM-5 Zeolite Hollow Spheres with a Core/Shell Structure[J]. J. Mater. Chem.,2010,20(45):10193-10199.
    [45]Dong A G, Wang Y J, Wang D J, et al. Fabrication of Hollow Zeolite Microcapsules with Tailored Shapes and Functionalized Interiors[J]. Microporous Mesoporous Mater.,2003,64(1-3):69-81.
    [46]Xiong C R, Coutinho D, Balkus K J. Fabrication of Hollow Spheres Composed of Nanosized ZSM-5 Crystals Via Laser Ablation[J]. Microporous Mesoporous Mater.,2005,86(1-3):14-22.
    [47]Ren N, Wang B, Yang Y H, et al. General Method for the Fabrication of Hollow Microcapsules with Adjustable Shell Compositions[J]. Chem. Mater.,2005, 17(10):2582-2587.
    [48]Dong A G, Wang Y J, Tang Y, et al. Hollow Zeolite Capsules:A Novel Approach for Fabrication and Guest Encapsulation [J]. Chem. Mater.,2002, 14(8):3217-+.
    [49]Cheng J, Pei S, Yue B, et al. Synthesis and Characterization of Hollow Zeolite Microspheres with a Mesoporous Shell by O/W/O Emulsion and Vapor-Phase Transport Method[J]. Microporous Mesoporous Mater.,2008,115(3):383-388.
    [50]Wang D J, Zhang Y H, Dong A G, et al. Conversion of Fly Ash Cenosphere to Hollow Microspheres with Zeolite/Mullite Composite Shells[J]. Adv. Funct. Mater.,2003,13(7):563-567.
    [51]Vereshchagina T A, Vereshchagin S N, Shishkina N N, et al. One-Step Fabrication of Hollow Aluminosilicate Microspheres with a Composite Zeolite/Glass Crystalline Shell[J]. Microporous Mesoporous Mater.,2013,169: 207-211.
    [52]Wang D J, Zhu G B, Zhang Y H, et al. Controlled Release and Conversion of Guest Species in Zeolite Microcapsules[J]. New J. Chem.,2005,29(2): 272-274.
    [53]Zhou J, Hua Z L, Wu W, et al. Hollow Mesoporous Zeolite Microspheres: Hierarchical Macro-/Meso-/Microporous Structure and Exceptionally Enhanced Adsorption Properties[J]. Dalton Transactions,2011,40(47):12667-12669.
    [54]Zhao J J, Hua Z L, Liu Z C, et al. Direct Fabrication of Mesoporous Zeolite with a Hollow Capsular Structure[J]. Chem. Commu.,2009(48):7578-7580.
    [55]Wang L, Yang W Y, Ling F X, et al. A Facile Method for the Fabrication of IM-5 Hollow Zeolite Sphere in Emulsion System[J]. Microporous Mesoporous Mater.,2012,163:243-248.
    [56]Yue N L, Xue M, Qiu S L. Fabrication of Hollow Zeolite Spheres Using Oil/Water Emulsions as Templates[J]. Inorg. Chem. Commu.,2011,14(8): 1233-1236.
    [57]Shi Y, Li X, Hu J K, et al. Zeolite Microspheres with Hierarchical Structures: Formation, Mechanism and Catalytic Performance[J]. J. Mater. Chem.,2011, 21(40):16223-16230.
    [58]Jansang B, Nanok T, Limtrakul J. Interaction of mordenite with an aromatic hydrocarbon:An embedded ONIOM study. J. Mol. Catal. A:Chem. 2007;264:33-9.
    [59]van Donk S, Broersma A, Gijzeman OLJ, van Bokhoven JA, Bitter JH, de Jong KP. Combined Diffusion, Adsorption, and Reaction Studies of n-Hexane Hydroisomerization over Pt/H-Mordenite in an Oscillating Microbalance. J. Catal.2001;204:272-80.
    [60]Lukyanov DB, Vazhnova T. Aromatization activity of gallium containing MFI and TON zeolite catalysts in< i> n-butane conversion:Effects of gallium and reaction conditions. Appl. Catal. A:Gen.2007;316:61-7.
    [61]Choudhary VR, Kinage AK, Choudhary TV. Effective Low-Temperature Aromatization of Ethane over H-Galloaluminosilicate (MFI) Zeolites in the Presence of Higher Alkanes or Olefins. Angew. Chem. Int. Ed.1997;36:1305-8.
    [62]Choudhary V, Kinage A, Choudhary T. Simultaneous aromatization of propane and higher alkanes or alkenes over H-GaAIMFI zeolite. Chem. Commu.. 1996:2545-6.
    [63]Soualah A, Lemberton JL, Pinard L, Chater M, Magnoux P, Moljord K. Hydroisomerization of long-chain n-alkanes on bifunctional Pt/zeolite catalysts: Effect of the zeolite structure on the product selectivity and on the reaction mechanism. Appl. Catal. A:Gen.2008;336:23-8.
    [64]Yamamura M, Chaki K, Wakatsuki T, Okado H, Fujimoto K. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization. Zeolites.1994; 14:643-9.
    [65]Koo J-B, Jiang N, Saravanamurugan S, Bejblova M, Musilova Z, Cejka J, et al. Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. J. Catal.2010;276:327-34.
    [66]Shiju NR, Guliants W. Recent developments in catalysis using nanostructured materials. Appl. Catal. A:Gen.2009;356:1-17.
    [67]Bejblova M, Prochazkova D, Cejka J. Acylation reactions over zeolites and mesoporous catalysts. ChemSusChem.2009;2:486-99.
    [68]Saravanamurugan S, Palanichamy M, Arabindoo B, Murugesan V. Liquid phase reaction of 2'-hydroxyacetophenone and benzaldehyde over ZSM-5 catalysts. J. Mol. Catal. A:Chem.2004;218:101-6.
    [69]Chu N, Yang J, Li C, Cui J, Zhao Q, Yin X, et al. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous Mesoporous Mater.2009; 118:169-75.
    [1]Scandella L, Binder G, Mezzacasa T, et al. Combination of Single Crystal Zeolites and Microfabrication:Two Applications Towards Zeolite Nanodevices[J]. Microporous Mesoporous Mater.,1998,21(4-6):403-409.
    [2]Ozin G A, Kuperman A, Stein A. Advanced Zeolite Materials Science[J]. Angew. Chem.,1989,101(3):373-390.
    [3]Stucky G D, Dougall J E M. Quantum Confinement and Host/Guest Chemistry: Probing a New Dimension[J]. Science,1990,247(4943):669-678.
    [4]Ozin G A. Nanochemistry:Synthesis in Diminishing Dimensions[J]. Adv. Mater.,1992,4(10):612-649.
    [5]Davis M E. Ordered Porous Materials for Emerging Applications[J]. Nature, 2002,417(6891):813-821.
    [6]Calzaferri G, Huber S, Maas H, et al. Host-Guest Antenna Materials[J]. Angew. Chem. Int. Ed.,2003,42(32):3732-3758.
    [7]Weigel S J, Gabriel J-C, Puebla E G, et al. Structure-Directing Effects in Zeolite Synthesis:A Single-Crystal X-Ray Diffraction,29Si MAS NMR, and Computational Study of the Competitive Formation of Siliceous Ferrierite and Dodecasil-3c (ZSM-39)[J]. J. Am. Chem. Soc.,1996,118(10):2427-2435.
    [8]Brent R, Anderson M W. Fundamental Crystal Growth Mechanism in Zeolite L Revealed by Atomic Force Microscopy[J]. Angew. Chem. Int. Ed.,2008,47(29): 5327-5330.
    [9]Karger J, Kortunov P, Vasenkov S, et al. Unprecedented Insight into Diffusion by Monitoring the Concentration of Guest Molecules in Nanoporous Host Materials[J]. Angew. Chem.Int. Ed.,2006,45(46):7846-7849.
    [10]Heinke L, Chmelik C, Kortunov P, et al. Application of Interference Microscopy and IR Microscopy for Characterizing and Investigating Mass Transport in Nanoporous Materials[J]. Chem.1 Engin. Tech.,2007,30(8): 995-1002.
    [11]Snurr R Q, Hagen A, Ernst H, et al. In Situpfg Nmr Study of Intracrystalline Diffusion During Ethene Conversion in ZSM-5[J]. J. Catal.,1996,163(1): 130-137.
    [12]Di Renzo F. Zeolites as Tailor-Made Catalysts:Control of the Crystal Size[J]. Catal. Today,1998,41(1-3):37-40.
    [13]Yang X B, Albrecht D, Caro E. Revision of Charnell's Procedure Towards the Synthesis of Large and Uniform Crystals of Zeolites a and X[J]. Microporous Mesoporous Mater.,2006,90(1-3):53-61.
    [14]Qiu S, Yu J, Zhu G, et al. Strategies for the Synthesis of Large Zeolite Single Crystals[J]. Microporous Mesoporous Mater.,1998,21(4-6):245-251.
    [15]Charnell J F. Gel Growth of Large Crystals of Sodium a and Sodium X Zeolites[J]. J. Cryst. Growth,1971,8(3):291-294.
    [16]Zhang L, Laak A N C V, Jongh P E D, et al. Synthesis of Large Mordenite Crystals with Different Aspect Ratios[J]. Microporous Mesoporous Mater., 2009,126(1-2):115-124.
    [17]Sano T, Wakabayashi S, Oumi Y, et al. Synthesis of Large Mordenite Crystals in the Presence of Aliphatic Alcohol[J]. Microporous Mesoporous Mater.,2001, 46(1):67-74.
    [18]Oumi Y, Kakinaga Y, Kodaira T, et al. Influences of Aliphatic Alcohols on Crystallization of Large Mordenite Crystals and Their Sorption Properties[J]. J. Mater. Chem.,2003,13(2):181-185.
    [19]Sun J, Zhu G S, Chen Y L, et al. Synthesis, Surface and Crystal Structure Investigation of the Large Zeolite Beta Crystal[J]. Microporous Mesoporous Mater.,2007,102(1-3):242-248.
    [20]Lu B W, Oumi Y, Sano T. Convenient Synthesis of Large Mordenite Crystals[J]. J. Cryst. Growth,2006,291(2):521-526.
    [21]Kida T, Kojima K, Ohnishi H, et al. Synthesis of Large Silicalite-1 Single Crystals from Two Different Silica Sources[J]. Ceram. Int.,2004,30(5): 727-732.
    [22]Gao F, Zhu G, Li X, et al. Synthesis of a High-Quality Host Material:Zeolite MFI Giant Single Crystal from Monocrystalline Silicon Slice[J]. J. Phys. Chem. B,2001,105(51):12704-12708.
    [23]Fu L, Zhai J P, Hu J M, et al. Synthesis of Large Silicon Substituted Alpo4-11 Single Crystals[J]. Microporous Mesoporous Mater.,2011,137(1-3):1-7.
    [24]Navarro M, Mateo E, Diosdado B, et al. Insight into the Synthesis and Characterization of Zeolite Millimeter-Sized Crystals[J]. CrystEngComm,2012, 14(18):6016-6022.
    [25]Kuperman A, Nadimi S, Oliver S, et al. Non-Aqueous Synthesis of Giant Crystals of Zeolites and Molecular Sieves[J]. Nature,1993,365(6443): 239-242.
    [26]Dong J, Tong X, Yu J, et al. Synthesis of Large Single Crystals of a Clathrate Compound Mtn (a Zeolite-Like Material) by the Vapor-Phase Method[J]. Mater. Let,2008,62(1):4-6.
    [27]Shimizu S, Hamada H. Direct Conversion of Bulk Materials into MFI Zeolites by a Bulk-Material Dissolution Technique[J]. Adv. Mater.,2000,12(18): 1332-1335.
    [28]Shimizu S, Hamada H. Synthesis of Giant Zeolite Crystals by a Bulk-Material Dissolution Technique[J]. Angew. Chem. Int. Ed.,1999,38(18):2725-2727.
    [29]Shimizu S, Hamada H. Synthesis of Giant Zeolite Crystals by a Bulk Material Dissolution Technique[J]. Microporous Mesoporous Mater.,2001,48(1-3): 39-46.
    [30]Williams J J, Lethbridge Z a D, Clarkson G J, et al. The Bulk Material Dissolution Method with Small Amines for the Synthesis of Large Crystals of the Siliceous Zeolites ZSM-22 and ZSM-48[J]. Microporous Mesoporous Mater.,2009,119(1-3):259-266.
    [31]Kadono T, Tajima M, Shiomura T, et al. Hydrothermal Synthesis of Giant Single Crystals of MFI Type Zeolite:Modified Bulk Material Dissolution Method[J]. Microporous Mesoporous Mater.,2008,115(3):454-460.
    [32]Mateo E, Paniagua A, Giiell C, et al. Study on Template Removal from Silicalite-1 Giant Crystals[J]. Mater. Res. Bull.,2009,44(6):1280-1287.
    [33]Gilbert J E, Mosset A. Large Crystals of Mordenite and MFI Zeolites[J]. Mater. Res. Bull,1998,33(7):997-1003.
    [34]Marthala V R R, Hunger M, Kettner F, et al. Solvothermal Synthesis and Characterization of Large-Crystal All-Silica, Aluminum-, and Boron-Containing Ferrierite Zeolites[J]. Chem. Mater.,2011,23(10): 2521-2528.
    [35]Morris R E, Weigel S J. The Synthesis of Molecular Sieves from Non-Aqueous Solvents[J]. Chem. Soc. Rev.,1997,26(4):309-317.
    [36]Sun Y, Song T, Qiu S, et al. Synthesis of Mordenite Single Crystals Using Two Silica Sources[J]. Zeolites,1995,15(8):745-753.
    [37]Warzywoda J, Dixon A G, Thompson R W, et al. Synthesis and Control of the Size of Large Mordenite Crystals Using Porous Silica Substrates[J]. J. Mater. Chem.,1995,5(7):1019-1025.
    [38]Shiraki T, Wakihara T, Sadakata M, et al. Millimeter-Sized Sodalite Single Crystals Grown under High-Temperature, High-Pressure Hydrothermal Conditions[J]. Microporous Mesoporous Mater.,2001,42(2-3):229-234.
    [39]Lethbridge Z a D, Williams J J, Walton R I, et al. Methods for the Synthesis of Large Crystals of Silicate Zeolites[J]. Microporous Mesoporous Mater.,2005, 79(1-3):339-352.
    [40]Xue C, Xu T. Fluorine-Free Synthesis of Large ZSM-39 Crystals Incorporated with Alkaline Earth Metals in an Environment-Friendly System[J]. Mater. Let., 2013.
    [41]Valtchev V, Tosheva L. Porous Nanosized Particles:Preparation, Properties, and Applications[J]. Chem. Rev.,2013.
    [42]Goel S, WuZh, Zones, S I. Iglesia E. Synthesis and Catalytic Properties of Metal Clusters Encapsulatedwithin Small-Pore (SOD, GIS, ANA) Zeolites J. Am. Chem. Soc.2012,134,17688-17695
    [43]Liu B, Au C. Preparation and Separation Performance of a TPAOH-Induced ANA Zeolite Membrane[J]. Chem. Let,2002,31(8):806-807.
    [1]Perez-Ramirez J, Christensen C H, Egeblad K, et al. Hierarchical Zeolites: Enhanced Utilisation of Microporous Crystals in Catalysis by Advances in Materials Design[J]. Chem. Soc. Rev.,2008,37(11):2530-2542.
    [2]Serrano D P, Escola J M, Pizarro P. Synthesis Strategies in the Search for Hierarchical Zeolites[J]. Chem. Soc. Rev.,2013.
    [3]Moller K, Bein T. Mesoporosity-a New Dimension for Zeolites[J]. Chem. Soc. Rev.,2013,42(9):3689-3707.
    [4]Ivanova I I, Knyazeva E E. Micro-Mesoporous Materials Obtained by Zeolite Recrystallization:Synthesis, Characterization and Catalytic Applications[J]. Chem. Soc. Rev.,2013,42(9):3671-3688.
    [5]Lopez-Orozco S, Inayat A, Schwab A, et al. Zeolitic Materials with Hierarchical Porous Structures[J]. Adv. Mater.,2011,23(22-23):2602-2615.
    [6]Na K, Choi M, Ryoo R. Recent Advances in the Synthesis of Hierarchically Nanoporous Zeolites[J]. Microporous Mesoporous Mater.,2013,166(0):3-19.
    [7]Parlett C M A, Wilson K, Lee A F. Hierarchical Porous Materials:Catalytic Applications[J]. Chem. Soc. Rev.,2013,42(9):3876-3893.
    [8]Egeblad K, Christensen C H, Kustova M, et al. Templating Mesoporous Zeolites[J]. Chem. Mater.,2007,20(3):946-960.
    [9]Vallet-Regi M, Balas F, Arcos D. Mesoporous Materials for Drug Delivery[J]. Angew. Chem. Int. Ed.,2007,46(40):7548-7558.
    [10]Gonzalez-Urbina L, Baert K, Kolaric B, et al. Linear and Nonlinear Optical Properties of Colloidal Photonic Crystals[J]. Chem. Rev.,2011,112(4): 2268-2285.
    [11]Wu Y N, Li F, Zhu W, et al. Metal-Organic Frameworks with a Three-Dimensional Ordered Macroporous Structure:Dynamic Photonic Materials[J]. Angew. Chem. Int. Ed.,2011,50(52):12518-12522.
    [12]Karuturi S K, Luo J, Cheng C, et al. A Novel Photoanode with Three-Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells[J]. Adv. Mater.,2012,24(30):4157-4162.
    [13]He X, Antonelli D. Recent Advances in Synthesis and Applications of Transition Metal Containing Mesoporous Molecular Sieves[J]. Angew. Chem. Int. Ed.,2002,41(2):214-229.
    [14]Davis M E. Ordered Porous Materials for Emerging Applications[J]. Nature, 2002,417(6891):813-821.
    [15]Schmidt I, Boisen A, Gustavsson E, et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals[J]. Chem. Mater.,2001,13(12): 4416-4418.
    [16]Na K, Jo C, Kim J, et al. Directing Zeolite Structures into Hierarchically Nanoporous Architectures [J]. Science,2011,333(6040):328-332.
    [17]Fan W, Snyder M A, Kumar S, et al. Hierarchical Nanofabrication of Microporous Crystals with Ordered Mesoporosity[J]. Nat. Mater.,2008,7(12): 984-991.
    [18]Chen H, Wydra J, Zhang X, et al. Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure[J]. J. Am. Chem. Soc.,2011,133(32):12390-12393.
    [19]Sakthivel A, Huang S-J, Chen W-H, et al. Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMS) with Zeolite Framework from Mesoporous Carbons (CMKs)[J]. Chem. Mater.,2004,16(16):3168-3175.
    [20]Fang Y, Hu H. An Ordered Mesoporous Aluminosilicate with Completely Crystalline Zeolite Wall Structure[J]. J. Am. Chem. Soc.,2006,128(33): 10636-10637.
    [21]Cho H S, Ryoo R. Synthesis of Ordered Mesoporous MFI Zeolite Using CMK Carbon Templates[J]. Microporous Mesoporous Mater.,2012,151(0):107-112.
    [22]Liu F, Willhammar T, Wang L, et al. ZSM-5 Zeolite Single Crystals with B-Axis-Aligned Mesoporous Channels as an Efficient Catalyst for Conversion of Bulky Organic Molecules[J]. J. Am. Chem. Soc.,2012,134(10):4557-4560.
    [23]Holland B T, Abrams L, Stein A. Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks [J]. J. Am. Chem. Soc.,1999,121(17): 4308-4309.
    [24]Rhodes K H, Davis S A, Caruso F, et al. Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core-Shell Building Blocks[J]. Chem. Mater.,2000,12(10):2832-2834.
    [25]Wang Y, Caruso F. Macroporous Zeolitic Membrane Bioreactors[J]. Adv. Funct. Mater.,2004,14(10):1012-1018.
    [26]Valtchev V. Silicalite-1 Hollow Spheres and Bodies with a Regular System of Macrocavities[J]. Chem. Mater.,2002,14(10):4371-4377.
    [27]Huang L, Wang Z, Sun J, et al. Fabrication of Ordered Porous Structures by Self-Assembly of Zeolite Nanocrystals[J]. J. Am. Chem. Soc.,2000,122(14): 3530-3531.
    [28]Velev O D, Jede T A, Lobo R F, et al. Porous Silica Via Colloidal Crystallization[J]. Nature,1997,389(6650):447-448.
    [29]Yang Z, Xie Z, Liu H, et al. Streptavidin-Functionalized Three-Dimensional Ordered Nanoporous Silica Film for Highly Efficient Chemiluminescent Immunosensing[J]. Adv. Funct. Mater.,2008,18(24):3991-3998.
    [30]Kuang D, Brezesinski T, Smarsly B. Hierarchical Porous Silica Materials with a Trimodal Pore System Using Surfactant Templates[J]. J. Am. Chem. Soc.,2004, 126(34):10534-10535.
    [31]Meng X, Al-Salman R, Zhao J, et al. Electrodeposition of 3d Ordered Macroporous Germanium from Ionic Liquids:A Feasible Method to Make Photonic Crystals with a High Dielectric Constant[J]. Angew. Chem. Int. Ed., 2009,48(15):2703-2707.
    [32]Jiang P, Cizeron J, Bertone J F, et al. Preparation of Macroporous Metal Films from Colloidal Crystals[J]. J. Am. Chem. Soc.,1999,121(34):7957-7958.
    [33]Yan H, Blanford C F, Holland B T, et al. A Chemical Synthesis of Periodic Macroporous Nio and Metallic Ni[J]. Adv. Mater.,1999,11(12):1003-1006.
    [34]Iskandar F, Iwaki T, Toda T, et al. High Coercivity of Ordered Macroporous Fept Films Synthesized Via Colloidal Templates[J]. Nano Let.,2005,5(7): 1525-1528.
    [35]Braun P V, Wiltzius P. Electrochemical Fabrication of 3d Microperiodic Porous Materials[J]. Adv. Mater.,2001,13(7):482-485.
    [36]Yates H M, Pemble M E, Palacios-Lidon E, et al. Modification of the Natural Photonic Bandgap of Synthetic Opals Via Infilling with Crystalline Inp[J]. Adv. Funct. Mater.,2005,15(3):411-417.
    [37]Wijnhoven J E G J, Vos W L. Preparation of Photonic Crystals Made of Air Spheres in Titania[J]. Science,1998,281(5378):802-804.
    [38]Holland B T, Blanford C F, Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids[J]. Science, 1998,281(5376):538-540.
    [39]Chen X, Li Z, Ye J, et al. Forced Impregnation Approach to Fabrication of Large-Area, Three-Dimensionally Ordered Macroporous Metal Oxides[J]. Chem. Mater.,2010,22(12):3583-3585.
    [40]Yang P, Deng T, Zhao D, et al. Hierarchically Ordered Oxides[J]. Science,1998, 282(5397):2244-2246.
    [41]Wijnhoven J E G J, Bechger L, Vos W L. Fabrication and Characterization of Large Macroporous Photonic Crystals in Titania[J]. Chem. Mater.,2001,13(12): 4486-4499.
    [42]Geraud E, Rafqah S, Sarakha M, et al. Three Dimensionally Ordered Macroporous Layered Double Hydroxides:Preparation by Templated Impregnation/Coprecipitation and Pattern Stability Upon Calcination[J]. Chem. Mater.,2007,20(3):1116-1125.
    [43]Geraud E, Prevot V, Ghanbaja J, et al. Macroscopically Ordered Hydrotalcite-Type Materials Using Self-Assembled Colloidal Crystal Template[J]. Chem. Mater.,2005,18(2):238-240.
    [44]Prevot V, Forano C, Khenifi A, et al. A Templated Electrosynthesis of Macroporous Nial Layered Double Hydroxides Thin Films[J]. Chem. Commu., 2011,47(6):1761-1763.
    [45]Zakhidov A A, Baughman R H, Iqbal Z, et al. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths[J]. Science,1998, 282(5390):897-901.
    [46]Johnson S A, Ollivier P J, Mallouk T E. Ordered Mesoporous Polymers of Tunable Pore Size from Colloidal Silica Templates[J]. Science,1999, 283(5404):963-965.
    [47]Valtchev V, Balanzat E, Mavrodinova V, et al. High Energy Ion Irradiation-Induced Ordered Macropores in Zeolite Crystals[J]. J. Am. Chem. Soc.,2011,133(46):18950-18956.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700