深紫外飞秒激光成丝物理及其在超快光谱学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中心波长800nm的钛宝石飞秒激光在透明介质成丝过程中具有非常丰富的物理效应,如频谱展宽,脉冲压缩,锥状辐射,谐波输出,化学反应,布居反转等。结合这些效应,有望将飞秒光丝应用于高能量白光的产生,孤立阿秒脉冲的产生与应用,大气环境科学的研究,全光光学器件的制备,无谐振腔超快激光脉冲的输出,诸如此类。紫外波段的激光具有成丝阈值低,聚焦性能好,临界电子密度高,多光子电离截面大等特点,然而由于缺乏高能量的紫外飞秒激光,对该波段成丝过程的研究则不是特别完善。
     本文详细研究和讨论了中心波长267nm,峰值功率高达20GW的深紫外飞秒激光脉冲在各种气体介质中的成丝现象、成丝机制及其潜在的应用价值。主要包括以下内容:
     首先,以荧光成像法结合全息成像法和瞬态电流法对光丝进行诊断后发现,相对于近红外飞秒光丝,紫外光丝具有自更高的电子密度、更小的几何尺寸和更长的等离子体通道等特性。结合这些特性,本文探索了267nm深紫外飞秒光丝在全光光学器件——等离子体光栅、光丝诱导荧光光谱技术、光学频率上转换等方面的应用价值。
     其次,以两束近乎平行的267nm紫外光丝的非线性相互作用在空气中诱导形成了周期为波长量级、自由电子密度调制度达1018cm-3的等离子体光栅,并观察到其对800nm探测激光的非线性布拉格衍射效应。周期性的等离子体通道形成了类似于“墙壁”的效果,将激光束缚在狭小的等离子体波导中,并有效地抑制因光束发散引起的能量损耗。功率密度高达1014W/cm2的探测光照射等离子体光栅后非但未破坏其结构,反而通过驱动电子碰撞电离促使其电子密度增加至1019cm-3,折射率调制度提升一个数量级,性能得到明显改善。损坏阈值高出传统固体光学器件三个数量级,奠定了等离子体光栅在操控超快超强激光方面应用的基础,如文中展示的啁啾脉冲的压缩与展宽、谐波转换过程的准位相匹配。
     再者,自由电子密度高、等离子体通道长、几何尺寸小、等离子体温度低的特点使紫外光丝在远程荧光光谱技术中具有得天独厚的优势。文中详细论证了基于267nm紫外光丝的荧光光谱技术,并提出了利用缓冲气体提供种子电子并结合紫外+红外双色场光丝增强等离子体荧光强度的方法以提高光丝诱导荧光光谱技术灵敏度的提高。紫外光丝提供种子电子,红外光丝加热种子电子并引起周围原子分子的碰撞电离和激发。通过双色场光丝诱导的三步激发,能有效地将荧光光谱信噪比和灵敏度提升1-2个数量级。
     最后,利用惰性气体中高强度光丝的四波混频效应,本文研究了利用267nm+400nm双色场光丝输出脉冲能量达μJ量级的多波长真空紫外超快脉冲,如133nm、114nm、100nm和89nm。这是目前利用飞秒光丝四波混频的方法获得的最短波长的极紫外微焦量级飞秒超快脉冲。本文提出了通过控制气压以平衡原子色散、等离子体色散和古伊相移的方法,成功地实现了紫外光丝谐波转换过程的位相匹配操控,并将最高谐波转换效率提升至0.8%。同时在这些多色场光丝的非线性相互作用过程中观察到了脉冲分裂、脉冲压缩、光斑自修复等一系列有趣的物理现象。
     今后将深紫外飞秒成丝的研究拓展至固体和液体中,则有望将其应用于光丝诱导化学反应,微纳尺度的材料精密加工,周期量级极紫外超快脉冲的产生,飞秒时间分辨原子分子超快动力学的研究,乃至激光武器等研究方向。
The propagation of ultra-short intense800nm Ti:sapphire laser pulses in the transparent media is rich in nonlinear physics and may have a broad range of applications, induced supercontinuum genereation, pulse self-compression, conical emission, harmonics generation, chemical reaction, population inversion and trapping, remote sensing of chemical and biological agents, electric discharge, remote lasing action, single attosecond pulse generation, etc. Ultraviolet femtosecond pulses show the advantages of lower filamentation threshold power, more excellent focusing ability, and higher critical plasma density; however, the investigations of ultraviolet filamentation in transparent media are limited by the lack of intense ultraviolet femtosecond laser.
     This paper introduces and discusses the main aspects and potential applications of267nm deep-ultraviolet femtosecond laser filamentation in gaseous media including air, argon, neon and helium. The nonlinear phenomena of femtosecond filamentation such as spectral modulation, intensity clamping, mode self-healing, pulse splitting are described. Self-guiding is shown to subsist in low gas pressure. The various techniques consist of fluorescence imaging, external electric field induced transient current and in-line holographic imaging provide a comprehensive image of the ultraviolet femtosecond filamentation process and its characteristics. It is shown that higher free electrons density, longer plasma channels, and smaller beam profile accompany the ultraviolet filamentation, allowing for a better application in all-optical devices, fluorescent spectroscopy, and frequency up-conversion.
     The interference between two almost parallel267nm ultraviolet filamentary pulses produced periodic wavelength-scale plasma channels surrounding with air molecules. Such a periodic refractive index modulation can be functioned as effective plasma grating exhibits a nonuniform photonic band gap that support the efficient
     Bragg diffraction of probe laser pulse. As a result of the nonlinear interaction between these two ultraviolet filaments, enhanced ionization is produced, which represent waveguide walls for laser beams that can suppress their divergence, resulting in a dramatic increase of the ionization rate. It is shown that the modulation depth of plasma grating was enhanced by one order of magnitude under the irradiation of intense800nm laser pulses with the peak intensity of1014W/cm2. This is ascribed to laser driven electrons impact ionization, which increased the peak plasma density up to1019cm-3. The unique feature of plasma grating such as ultrahigh damage threshold and low cost enables its application in compression of ultrashort intense positively or negatively chirped pulses.
     Due to the higher multi-photon ionization rate and lower electron temperature inside the ultraviolet filaments, its potential application in remotely nonlinear fluorescence spectroscopy is proposed. The method of ultraviolet+infrared dual-color filamentation in mixed gaseous media was introduced to enhance the plasma fluorescence intensity and signal-to-noise ratio. A semiclasscal three-step-excitation model was verified by the fluorescence emission from the impact excitation of high potential atoms such as neon and helium. Firstly, some free electrons were liberated from buffer gases through multi-photon absorption of ultraviolet photons due to its low ionization potential. Secondly, as a subsequent intense infrared pulse was tightly coupled and guided into the preformed plasma channels, the well-confined free electrons were driven by the laser electric field along its polarization direction. A host of free electrons were further peeled through these energetic electrons collision ionization. Thirdly, some neutral neon or helium atoms in excited states approaching ionization potential were kicked into ionic states through the collisions of these hot electrons, facilitating the impact ionization of neon atoms. As a result, more high-lying excited states were populated through ion conversion and dissociative recombination.
     Generation of ultrashort vacuum ultraviolet pulses by using nonlinear frequency conversion through filamentation was experimentally investigated. Gently focusing267nm and400nm pulses into argon efficiently generated multicolor vacuum ultraviolet pulses including133nm,114nm,100nm, and89nm generated by sum-frequency four-wave mixing, which are the shortest wavelength generated through filamentation in gaseous media. The pressure dependence of the conversion efficiency can be explained by phase matching induced by dynamical balance among dispersion originated from neutrally atomic atoms, plasma and Gouy phase shift. The pulse breakup effect was observed during ultraviolet filamentation. The generated multicolor vacuum ultraviolet pulses with the energies exceeding10μJ are available for time-resolved studies of atomic and molecular ultrafast dynamics.
     In the following, the propagation of ultraviolet femtosecond pulses in solid and liquid media will stimulate the studies of underlying filamentation physics and potential allpications, such as filamentation induced chemical reaction, filamentation induced micro/nano precision machining, few-cycle extreme ultraviolet pulses generation, femtosecond resolved dynamics research of atomes and molecules, remote sensing by filamentation induced lasing action, and even long distance laser weapon, etc.
引文
[1]A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Optics letters,20 (1995) 73-75.
    [2]R. Boyd, B. Masters, Nonlinear optics, Journal of Biomedical Optics,14 (2009) 029902.
    [3]S. Chin, Femtosecond Laser Filamentation, Springer Verlag,2009.
    [4]A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Physics reports,441 (2007) 47-189.
    [5]A. Brodeur, S. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, Journal of the Optical Society of America B,16 (1999) 637-650.
    [6]H. Yang, J. Zhang, Q. Zhang, Z. Hao, Y. Li, Z. Zheng, Z. Wang, Q. Dong, X. Lu, Z. Wei, Polarization-dependent supercontinuum generation from light filaments in air, Optics letters,30 (2005) 534-536.
    [7]Y. Petit, S. Henin, W.M. Nakaema, P. B"|jot, A. Jochmann, S.D. Kraft, S. Bock, U. Schramm, K. Stelmaszczyk, P. Rohwetter,1-J white-light continuum from 100-TW laser pulses, Physical Review A,83 (2011) 013805.
    [8]C. Wang, Y. Fu, Z. Zhou, Y. Cheng, Z. Xu, Femtosecond filamentation and supercontinuum generation in silver-nanoparticle-doped water, Applied Physics Letters,90 (2007) 181119.
    [9]F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, J. Biegert, Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal, Nature Communications,3 (2012) 807.
    [10]J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. Andre, A. Mysyrowicz, White-light filaments for atmospheric analysis, Science,301 (2003) 61-64.
    [11]E. Nibbering, P. Curley, G. Grillon, B. Prade, M. Franco, F. Salin, A. Mysyrowicz, Conical emission from self-guided femtosecond pulses in air, Optics letters,21 (1996) 62-65.
    [12]0. Kosareva, V. Kandidov, A. Brodeur, C. Chien, S. Chin, Conical emission from laser plasma interactions in the filamentation of powerful ultrashort laser pulses in air, Optics letters,22 (1997) 1332-1334.
    [13]F. Th"|berge, N. Akozbek, W. Liu, J. Filion, S. Chin, Conical emission and induced frequency shift of third-harmonic generation during ultrashort laser filamentation in air, Optics Communications,276 (2007) 298-304.
    [14]J. Bi, X. Liu, Y. Li, P. Lu, Colored conical emission in BBO crystal induced by intense femtosecond pulses, Optics Communications, (2010).
    [15]A. Ryan, G. Agrawal, Pulse compression and spatial phase modulation in normally dispersive nonlinear Kerr media, Optics letters,20 (1995) 306-308.
    [16]L. Berg"|, C. K hler, S. Skupin, Compression of ultrashort UV pulses in a self-defocusing gas, Physical Review A,81 (2010) 11805.
    [17]S. Champeaux, L. Berg"|, Femtosecond pulse compression in pressure-gas cells filled with argon, Physical Review E,68 (2003) 66603.
    [18]S. Skupin, G. Stibenz, Berg, eacute, Luc, F. Lederer, T. Sokollik, Schn, uuml, M. rer, N. Zhavoronkov, G. Steinmeyer, nter, Self-compression by femtosecond pulse filamentation:Experiments versus numerical simulations, Physical Review E,74 (2006) 056604.
    [19]S. Skobelev, A. Kim,O. Willi, Generation of High-Energy Few-Cycle Laser Pulses by Using the Ionization-Induced Self-Compression Effect, Physical review letters,108 (2012) 123904.
    [20]G. Stibenz, N. Zhavoronkov, G. Steinmeyer, Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament, Optics letters,31 (2006) 274-276.
    [21]A. Couairon, J. Biegert, C. Hauri, W. Kornelis, F. Helbing, U. Keller, A. Mysyrowicz, Self-compression of ultra-short laser pulses down to one optical cycle by filamentation, Journal of Modern Optics,53 (2006) 75-85.
    [22]A. Couairon, H.S. Chakraborty, M.B. Gaarde, From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases, Physical Review A,77 (2008) 053814.
    [23]H. Wang, M. Chini, S. Chen, C.-H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, Z. Chang, Attosecond Time-Resolved Autoionization of Argon, Physical review letters,105 (2010) 143002.
    [24]R. Kienberger, M. Hentschel, M. Uiberacker, C. Spielmann, M. Kitzler, A. Scrinzi, M. Wieland, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, Steering attosecond electron wave packets with light, Science,297 (2002) 1144-1148.
    [25]S. Eisenmann, J. Penano, P. Sprangle, A. Zigler, Effect of an energy reservoir on the atmospheric propagation of laser-plasma filaments, Physical review letters,100 (2008) 155003.
    [26]B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B, Eberle, M. Krenz, D. Seiffer,O. Vasseur, Spatial mode cleaning by femtosecond filamentation in air, Optics letters,31 (2006) 2601-2603.
    [27]S. Akturk, C. D'Amico, M. Franco, A. Couairon, A. Mysyrowicz, Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon, Physical Review A,76 (2007) 063819.
    [28]M. Kolesik, J. Moloney, Self-healing femtosecond light filaments, Optics letters,29 (2004) 590-592.
    [29]Ak, ouml, N. zbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin, C.M. Bowden, Third-Harmonic Generation and Self-Channeling in Air Using High-Power Femtosecond Laser Pulses, Physical review letters,89 (2002) 143901.
    [30]H. Yang, J. Zhang, L. Zhao, Y. Li, H. Teng, Y. Li, Z. Wang, Z. Chen, Z. Wei, Third-order harmonic generation by self-guided femtosecond pulses in air, Physical Review E,67 (2003) 15401.
    [31]D. Steingrube, E. Schulz, T. Binhammer, M. Gaarde, A. Couairon, U. Morgner, M. Kovacev, High-order harmonic generation directly from a filament, New Journal of Physics,13 (2011) 043022.
    [32]J.C. Painter, M. Adams, N. Brimhall, E. Christensen, G. Giraud, N. Powers, M. Turner, M. Ware, J. Peatross, Direct observation of laser filamentation in high-order harmonic generation, Optics letters,31 (2006) 3471-3473.
    [33]H. Lange, A. Chiron, J.F. Ripoche, A. Mysyrowicz, P. Breger, P. Agostini, High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses, Physical review letters,81 (1998) 1611-1613.
    [34]P. Balcou, A. L'Huillier, Phase-matching effects in strong-field harmonic generation, Physical Review A,47 (1993) 1447-1459.
    [35]P. Balcou, C. Cornaggia, A. Gomes, L. Lompre, A. L'Huillier, Optimizing high-order harmonic generation in strong fields, Journal of Physics B:Atomic, Molecular and Optical Physics,25 (1992) 4467.
    [36]G. Tempea, M. Geissler, M. Schnurer, T. Brabec, Self-phase-matched high harmonic generation, Physical review letters,84 (2000) 4329-4332.
    [37]T. Vockerodt, D. Steingrube, E. Schulz, M. Kretschmar, U. Morgner, M. Kovacev, Low-and high-order harmonic generation inside an air filament, Applied Physics B:Lasers and Optics, (2012) 1-4.
    [38]P. Gibbon, E. F rster, Short-pulse laser-plasma interactions, Plasma Physics and Controlled Fusion,38 (1996) 769.
    [39]0. Kosareva, N. Panov, V. Makarov, I. Perezhogin, C. Marceau, Y. Chen, S. Yuan, T. Wang, H. Zeng, A. Saveli-ev, Polarization rotation due to femtosecond filamentation in an atomic gas, Optics letters,35 (2010) 2904-2906.
    [40]Y. Chen, C. Marceau, F. Th"|berge, M. Chateauneuf, J. Dubois, S. Chin, Polarization separator created by a filament in air, Optics letters,33 (2008) 2731-2733.
    [41]C.Marceau,Y.Chen,F.Th"|berge,M.Chateauneuf,J.Dubois,S.Chin,Ultrafast birefringence induced by a femtosecond laser filament in gases, Optics letters,34 (2009) 1417-1419.
    [42]C. Marceau, S. Ramakrishna, S. G"|nier, T. Wang, Y. Chen, F. Th"|berge, M. Ch"|teauneuf, J. Dubois, T. Seideman, S. Chin, Femtosecond filament induced birefringence in argon and in air:Ultrafast refractive index change, Optics Communications, (2010).
    [43]Y. Petit, P. B"|jot, L. Bonacina, J. Kasparian, M. Moret, J. Wolf, Filament-induced birefringence in Argon, Laser Physics,19(2009)336-341.
    [44]A. Sheinfux, E. Schleifer, J. Papeer, G. Fibich, B. Ilan, A. Zigler, Measuring the stability of polarization orientation in high intensity laser filaments in air, Applied Physics Letters,101 (2012) 201105.
    [45]F. Th"|berge, W. Liu, P. Simard, A. Becker, S. Chin, Plasma density inside a femtosecond laser filament in air:Strong dependence on external focusing, Physical Review E,74 (2006) 36406.
    [46]H. Yang, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, Z. Sheng, Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air, Physical Review E,66 (2002) 16406.
    [47]J. Liu, Z. Duan, Z. Zeng, X. Xie, Y. Deng, R. Li, Z. Xu, S.L. Chin, Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air, Physical Review E,72 (2005) 026412.
    [48]N. Vuji i, H. Skenderovi, T. Ban, D. Aumiler, G. Pichler, Low-density plasma channels generated by femtosecond pulses, Applied Physics B:Lasers and Optics, 82 (2006) 377-382.
    [49]S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air, Optics Communications,181 (2000) 123-127.
    [50]H. Yang, J. Zhang, W. Yu, Y. Li, Z. Wei, Long plasma channels generated by femtosecond laser pulses, Physical Review E,65 (2001) 16406.
    [51]A. Couairon, Filamentation length of powerful laser pulses, Applied Physics B:Lasers and Optics,76 (2003) 789-792.
    [52]J.Daigle,O. Kosareva,N. Panov, M. B"|gin, F. Lessard, C. Marceau,Y. Kamali, G. Roy, V. Kandidov, S. Chin, A simple method to significantly increase filaments i-length and ionization density, Applied Physics B:Lasers and Optics,94 (2009) 249-257.
    [53]W. Liu, Q. Luo, F. Th"|berge, H. Xu, S. Hosseini, S. Sarifi, S. Chin, The influence of divergence on the filament length during the propagation of intense ultra-short laser pulses, Applied Physics B:Lasers and Optics,82 (2006) 373-376.
    [54]S. Tzortzakis, S. Moustaizis, M. Franco, A. Chiron, B. Lamouroux, B. Prade, A. Mysyrowicz, Long connected plasma channels in air produced by ultrashort UV laser pulses, in,2000, pp.143-144.
    [55]Z. Zhang, X. Lu, T.-T. Xi, W.-X. Liang, Z.-Q. Hao, Y. Zhang, M.-L. Zhou, Z.-H. Wang, J. Zhang, Long distance filamentation of 400 nm femtosecond laser pulses in air, Applied Physics B,97 (2009) 207-213.
    [56]H. Cai, J. Wu, H. Li, X. Bai, H. Zeng, Elongation of femtosecond filament by molecular alignment in air, Opt. Express,17 (2009) 21060-21065.
    [57]S. Akturk, B. Zhou, M. Franco, A. Couairon, A. Mysyrowicz, Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon, Optics Communications,282 (2009) 129-134.
    [58]S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, G. Fibich, Control of the filamentation distance and pattern in long-range atmospheric propagation, Optics express,15 (2007) 2779-2784.
    [59]W. Yu, M. Yu, J. Zhang, L. Qian, X. Yuan, P. Lu, R. Li, Z. Sheng, J. Liu, Z. Xu, Long-distance propagation of intense short laser pulse in air, Physics of plasmas, 11 (2004) 5360.
    [60]H. Xu, P. Simard, Y. Kamali, J.-F. Daigle, C. Marceau, J. Bernhardt, J. Dubois, M. Chateauneuf, F. Theberge, G. Roy, Filament-induced breakdown remote spectroscopy in a polar environment, Laser Physics,22 (2012) 1767-1770.
    [61]H. Schillinger, R. Sauerbrey, Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses, Applied Physics B: Lasers and Optics,68 (1999) 753-756.
    [62]S. Tzortzakis, M. Franco, Y. Andr"|, A. Chiron, B. Lamouroux, B. Prade, A. Mysyrowicz, Formation of a conducting channel in air by self-guided femtosecond laser pulses, Physical Review E,60 (1999) 3505-3507.
    [63]O. Chalus, A. Sukhinin, A. Bourdier, D. Mirell, A. Aceves, J. Diels, Simulation of the propagation of a UV filament in the air, in,2007.
    [64]S. Tzortzakis, B. Lamouroux, A. Chiron, S. Moustaizis, D. Anglos, M. Franco, B. Prade, A. Mysyrowicz, Femtosecond and picosecond ultraviolet laser filaments in air:experiments and simulations, Optics Communications,197 (2001) 131-143.
    [65]J. Zhu, Z. Ji, Y. Deng, J. Liu, R. Li, Z. Xu, Long lifetime plasma channel in air generated by multiple femtosecond laser pulses and an external electrical field, Optics express,14 (2006) 4915-4922.
    [66]B. Zhou, S. Akturk, B. Prade, Y.-B. Andre, A. Houard, Y. Liu, M. Franco, C. D'Amico, E. Salmon, Z.-Q. Hao, Revival of femtosecond laser plasma filaments in air by a nanosecond laser, Optics express,17 (2009).
    [67]Y. Liu, A. Houard, B. Prade, S. Akturk, A. Mysyrowicz, V. Tikhonchuk, Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses, Physical review letters,99 (2007) 135002.
    [68]C. Amico, A. Houard, S. Akturk, Y. Liu, J. Le Bloas, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, A. Mysyrowicz, Forward THz radiation emission by femtosecond filamentation in gases:theory and experiment, New Journal of Physics,10 (2008) 013015.
    [69]F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. De Silvestri, S. Stagira, Rotational Raman effects in the wake of optical filamentation, Physical review letters,100 (2008) 123006.
    [70]N. Henriksen, Molecular alignment and orientation in short pulse laser fields, Chemical Physics Letters,312 (1999) 196-202.
    [71]M. Leibscher, I. Averbukh, H. Rabitz, Molecular alignment by trains of short laser pulses, Physical review letters,90 (2003) 213001. [72] H. Cai, J. Wu, Y. Peng, H. Zeng, Comparison study of supercontinuum generation by molecular alignment of N2 and 02, Optics express,17 (2009) 5822.
    [73]H. Cai, J. Wu, X. Bai, H. Pan, H. Zeng, Molecular-alignment-assisted high-energy supercontinuum pulse generation in air, Optics letters,35 (2010) 49-51.
    [74]J. Wu, Y. Tong, X. Yang, H. Cai, P. Lu, H. Pan, H. Zeng, Interaction of two parallel femtosecond filaments at different wavelengths in air, Optics letters,34 (2009) 3211-3213.
    [75]J. Liu, Y. Feng, H. Li, P. Lu, H. Pan, J. Wu, H. Zeng, Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating, Optics express,19 (2011) 40-46.
    [76]J. Wu, P. Lu, J. Liu, H. Li, H. Pan, H. Zeng, Ultrafast optical imaging by molecular wakes, Applied Physics Letters,97 (2010) 161106.
    [77]Q. Luo, W. Liu, S. Chin, Lasing action in air induced by ultra-fast laser filamentation, Applied Physics B:Lasers and Optics,76 (2003) 337-340.
    [78]A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-gain backward lasing in air, Science,331 (2011) 442-445.
    [79]J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, High-brightness switchable multi-wavelength remote laser in air, arXiv preprint arXiv:1107.4410, (2011).
    [80]J. Ni, W. Chu, H. Zhang, C. Jing, J. Yao, H. Xu, B. Zeng, G. Li, C. Zhang, S.L. Chin, Harmonic-seeded remote laser emissions in N< sub> 2-Ar, N< sub> 2-Xe and N< sub> 2-Ne mixtures:a comparative study, Optics express,20 (2012) 20970-20979.
    [81]Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses, Optics express,21 (2013) 22791-22798.
    [82]T.-J. Wang, J. Ju, J.-F. Daigle, S. Yuan, R. Li, S.L. Chin, Self-seeded forward lasing action from a femtosecond Ti:sapphire laser filament in air, Laser Physics Letters,10 (2013) 125401.
    [83]T.-J. Wang, J.-F. Daigle, J. Ju, S. Yuan, R. Li, S.L. Chin, Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air, Physical Review A,88 (2013) 053429.
    [84]S. Yuan, T. Wang, Y. Teranishi, A. Sridharan, S.H. Lin, H. Zeng, S.L. Chin, Lasing action in water vapor induced by ultrashort laser filamentation, Applied Physics Letters,102 (2013) 224102.
    [85]M.P. de Boer, H.G. Muller, Observation of large populations in excited states after short-pulse multiphoton ionization, Physical review letters,68 (1992) 2747-2750.
    [86]A. Talebpour, Y. Liang, S. Chin, Population trapping in the CO molecule, Journal of Physics B:Atomic, Molecular and Optical Physics,29 (1996) 3435.
    [87]A. Talebpour, C. Chien, S. Chin, Population trapping in rare gases, Journal of Physics B:Atomic, Molecular and Optical Physics,29 (1996) 5725.
    [88]A. Azarm, S. Ramakrishna, A. Talebpour, S. Hosseini, Y. Teranishi, H. Xu, Y. Kamali, J. Bernhardt, S. Lin, T. Seideman, Population trapping and rotational revival of N2 molecules during filamentation of a femtosecond laser pulse in air, Journal of Physics B:Atomic, Molecular and Optical Physics,43 (2010) 235602.
    [89]H. Xu, A. Azarm, S. Chin, Controlling fluorescence from N2 inside femtosecond laser filaments in air by two-color laser pulses, Applied Physics Letters,98 (2011) 141111.
    [90]Y. Petit, S. Henin, J. Kasparian, J. Wolf, Production of ozone and nitrogen oxides by laser filamentation, Applied Physics Letters,97 (2010) 021108.
    [91]P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W.M. Nakaema, Y. Petit, M. Queiβer, R. Salame, Laser-induced water condensation in air, Nature Photonics,4 (2010) 451-456.
    [92]J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S.L. Chin, R. Li, Z. Xu, Laser-filamentation-induced condensation and snow formation in a cloud chamber, Optics letters,37 (2012) 1214-1216.
    [93]J. Ju, J. Liu, C. Wang, H. Sun, W. Wang, X. Ge, C. Li, S.L. Chin, R. Li, Z. Xu, Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation, Applied Physics B,110 (2013) 375-380.
    [94]J. Ju, H. Sun, A. Sridharan, T.-J. Wang, C. Wang, J. Liu, R. Li, Z. Xu, S.L. Chin, Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber:Experimental and theoretical study, Physical Review E,88 (2013) 062803.
    [95]G. Cristoforetti, E. Pitzalis, R. Spiniello, R. Ishak, M. Muniz-Miranda, Production of palladium nanoparticles by pulsed laser ablation in water and their characterization, The Journal of Physical Chemistry C,115 (2010) 5073-5083.
    [96]Y. Liu, M. Durand, S. Chen, A. Houard, B. Prade, B. Forestier, A. Mysyrowicz, Energy Exchange between Femtosecond Laser Filaments in Air, Physical review letters,105 (2010) 055003.
    [97]X. Yang, J. Wu, Y. Peng, Y. Tong, P. Lu, L. Ding, H. Zeng, Plasma Waveguide Arrays from Filament Interaction in Air, in, Optical Society of America,2010.
    [98]X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, H. Zeng, Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air, Applied Physics Letters,95 (2009) 111103.
    [99]S. Suntsov, D. Abdollahpour, D. Papazoglou, S. Tzortzakis, Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air, Optics express,17 (2009) 3190-3195.
    [100]S. Suntsov, D. Abdollahpour, D.G. Papazoglou, S. Tzortzakis, Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility, Physical Review A,81 (2010) 033817.
    [101]Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, Efficient generation of third harmonic radiation in air filaments:A revisit, Optics Communications,284 (2011) 4706-4713.
    [102]T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O.D. Mucke, A. Pugzlys, Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers, science,336 (2012) 1287-1291.
    [103]M. Durand, A. Jarnac, A. Houard, Y. Liu, S. Grabielle, N. Forget, A. Durecu, A. Couairon, A. Mysyrowicz, Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids:a new regime of filamentation, Physical Review Letters,110 (2013) 115003.
    [104]D. Kartashov, S. Alisauskas, A. Pugzlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Bejot, J. Kasparian, J.-P. Wolf, A. Baltuska, Mid-infrared laser filamentation in molecular gases, Optics letters,38 (2013) 3194-3197.
    [105]L. Berge, J. Rolle, C. Kohler, Enhanced self-compression of mid-infrared laser filaments in argon, Physical Review A,88 (2013) 023816.
    [106]J. Schwarz, J.-C. Diels, UV filaments and their application for laser-induced lightning and high-aspect-ratio hole drilling, Applied Physics A,77 (2003) 185-191.
    [107]T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum, Proceedings of the National Academy of Sciences,106 (2009) 10516-10521.
    [108]A. Becker, N. Ak zbek, K. Vijayalakshmi, E. Oral, C. Bowden, S. Chin, Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas, Applied Physics B:Lasers and Optics,73 (2001) 287-290.
    [109]J. Kasparian, R. Sauerbrey, S. Chin, The critical laser intensity of self-guided light filaments in air, Applied Physics B:Lasers and Optics,71 (2000) 877-879.
    [110]P.H. Bucksbaum, The future of attosecond spectroscopy, Science,317 (2007) 766-769.
    [111]G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, Isolated single-cycle attosecond pulses, Science,314 (2006) 443-446.
    [112]A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Physical review letters,88 (2002) 135003.
    [113]B. Zhou, A. Houard, Y. Liu, B. Prade, A. Mysyrowicz, A. Couairon, P. Mora, C. Smeenk, L. Arissian, P. Corkum, Measurement and Control of Plasma Oscillations in Femtosecond Filaments, Physical review letters,106 (2011) 255002.
    [114]C.T.L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D.M. Villeneuve, A. Staudte, P.B. Corkum, Partitioning of the Linear Photon Momentum in Multiphoton Ionization, Physical review letters,106 (2011) 193002.
    [115]A. Talebpour, M. Abdel-Fattah, A. Bandrauk, S. Chin, Spectroscopy of the gases interacting with intense femtosecond laser pulses, Laser Physics,11 (2001) 68-76.
    [116]M. Centurion, Y. Pu, Z. Liu, D. Psaltis, T.W. H nsch, Holographic recording of laser-induced plasma, Optics letters,29 (2004) 772-774.
    [117]G. Rodriguez, A.R. Valenzuela, B. Yellampalle, M.J. Schmitt, K.Y. Kim, In-line holographic imaging and electron density extraction of ultrafast ionized air filaments, JOSA B,25 (2008) 1988-1997.
    [118]D. Papazoglou, S. Tzortzakis, In-line holography for the characterization of ultrafast laser filamentation in transparent media, Applied Physics Letters,93 (2008) 041120.
    [119]S. Eisenmann, A. Pukhov, A. Zigler, Fine structure of a laser-plasma filament in air, Physical review letters,98 (2007) 155002.
    [120]D. Abdollahpour, S. Suntsov, D. Papazoglou, S. Tzortzakis, Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments, Optics express,19 (2011) 16866-16871.
    [121]M. Petrarca, Y. Petit, S. Henin, R. Delagrange, P. Bejot, J. Kasparian, Higher-order Kerr improve quantitative modeling of laser filamentation, Optics letters,37 (2012) 4347-4349.
    [122]A. Couairon, M. Franco, G. M"|chain, T. Olivier, B. Prade, A. Mysyrowicz, Femtosecond filamentation in air at low pressures:Part I:Theory and numerical simulations, Optics Communications,259 (2006) 265-273.
    [123]V. Loriot, E. Hertz,O. Faucher, B. Lavorel, Measurement of high order Kerr refractive index of major air components, Optics express,17 (2009) 13429.
    [124]eacute, P. jot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz,0. Faucher, B. Lavorel, J.P. Wolf, Higher-Order Kerr Terms Allow Ionization-Free Filamentation in Gases, Physical review letters,104 (2010) 103903.
    [125]Br, eacute, C. e, A. Demircan, G. Steinmeyer, uuml, nter, Saturation of the All-Optical Kerr Effect, Physical review letters,106 (2011) 183902.
    [126]W. Ettoumi, eacute, P. jot, Y. Petit, V. Loriot, E. Hertz,O. Faucher, B. Lavorel, J. Kasparian, J.P. Wolf, Spectral dependence of purely-Kerr-driven filamentation in air and argon, Physical Review A,82 (2010) 033826.
    [127]W. Ettoumi, Y. Petit, J. Kasparian, J.-P. Wolf, Generalized miller formulae, arXiv preprint arXiv:1011.1588, (2010).
    [128]J. Bernhardt, P. Simard, W. Liu, H. Xu, F. Theberge, A. Azarm, J. Daigle, S. Chin, Critical power for self-focussing of a femtosecond laser pulse in helium, Optics Communications,281 (2008) 2248-2251.
    [129]J. Schwarz, P. Rambo, J. Diels, M. Kolesik, E. Wright, J. Moloney, Ultraviolet filamentation in air, Optics Communications,180 (2000) 383-390.
    [130]T. Xi, X. Lu, J. Zhang, Interaction of light filaments generated by femtosecond laser pulses in air, Physical review letters,96 (2006) 25003.
    [131]A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, A. Mysyrowicz, Propagation of twin laser pulses in air and concatenation of plasma strings produced by femtosecond infrared filaments, Optics Communications, 225 (2003) 177-192.
    [132]S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, A. Mysyrowicz, Concatenation of plasma filaments created in air by femtosecond infrared laser pulses, Applied Physics B:Lasers and Optics,76 (2003) 609-612.
    [133]A.C. Bernstein, M. McCormick, G.M. Dyer, J.C. Sanders, T. Ditmire, Two-Beam Coupling between Filament-Forming Beams in Air, Physical review letters,102 (2009) 123902.
    [134]S. Suntsov, D. Abdollahpour, D. Papazoglou, S. Tzortzakis, Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications, Applied Physics Letters,94 (2009) 251104.
    [135]X. Yang, J. Wu, Y. Tong, Z. Xu, H. Zeng, Femtosecond laser pulse energy transfer induced by plasma grating due to filament interaction in air, Applied Physics Letters,97 (2010) 071108.
    [136]H. Wu, T. Yang, Y. Wang, L. Ding, Background-free third-order harmonic generation induced by dynamic gratings in dual filaments, Journal of the Optical Society of America B,26 (2009) 645-649.
    [137]A. Jarnac, M. Durand, Y. Liu, B. Prade, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Study of laser induced plasma grating dynamics in gases, Optics Communications,312 (2014) 35-42.
    [138]S. Xu, Y. Zheng, Y. Liu, W. Liu, Intensity clamping during dual-beam interference, Laser Physics, (2010) 1-5.
    [139]P. Kiran, S. Bagchi, C. Arnold, S. Krishnan, G. Kumar, A. Couairon, Filamentation without intensity clamping, Optics express,18 (2010) 21504-21510.
    [140]X.L. Liu, X. Lu, X. Liu, T.T. Xi, F. Liu, J.L Ma, J. Zhang, Tightly focused femtosecond laser pulse in air:from filamentation to breakdown, Optics express, 18 (2010) 26007-26017.
    [141]S. Kahaly, S. Yadav, W. Wang, S. Sengupta, Z. Sheng, A. Das, P. Kaw, G.R. Kumar, Near-Complete Absorption of Intense, Ultrashort Laser Light by Sub-|E Gratings, Physical review letters,101 (2008) 145001.
    [142]L. Shi, W. Li, Y. Wang, X. Lu, L.e. Ding, H. Zeng, Generation of high-density electrons based on plasma grating induced Bragg diffraction in air, Physical review letters,107 (2011) 095004-095004.
    [143]A. Filin, R. Compton, D. Romanov, R. Levis, Impact-ionization cooling in laser-induced plasma filaments, Physical review letters,102 (2009) 155004.
    [144]V. Semak, M. Shneider, Effect of power losses on self-focusing of high-intensity laser beam in gases, Journal of Physics D:Applied Physics,46 (2013) 185502.
    [145]P. Polynkin, J.V. Moloney, Optical breakdown of air triggered by femtosecond laser filaments, Applied Physics Letters,99 (2011) 151103.
    [146]E. Gaul, S. Le Blanc, A. Rundquist, R. Zgadzaj, H. Langhoff, M. Downer, Production and characterization of a fully ionized He plasma channel, Applied Physics Letters,77 (2000) 4112.
    [147]M. Durand, A. Jarnac, Y. Liu, B. Prade, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Dynamics of plasma gratings in atomic and molecular gases, Physical Review E,86 (2012) 036405.
    [148]S. Bodrov, N. Aleksandrov, M. Tsarev, A. Murzanev, I. Kochetov, A. Stepanov, Effect of an electric field on air filament decay at the trail of an intense femtosecond laser pulse, Physical Review E,87 (2013) 053101.
    [149]K. Hartinger, R.A. Bartels, Enhancement of third harmonic generation by a laser-induced plasma, Applied Physics Letters,93 (2008) 151102.
    [150]H. Xiong, H. Xu, Y. Fu, Y. Cheng, Z. Xu, S.L. Chin, Spectral evolution of angularly resolved third-order harmonic generation by infrared femtosecond laser-pulse filamentation in air, Physical Review A,77 (2008) 043802.
    [151]X. Zhang, A.L. Lytle, T. Popmintchev, X. Zhou, H.C. Kapteyn, M.M. Murnane, 0. Cohen, Quasi-phase-matching and quantum-path control of high-harmonic generation using counterpropagating light, Nature Physics,3 (2007) 270-275.
    [152]C. Kuo, C. Pai, M. Lin, K. Lee, J. Lin, J. Wang, S. Chen, Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide, Physical review letters,98 (2007) 33901.
    [153]Y. Peng, X. Yang, H. Zeng, R. Li, Z. Xu, Phase-matching control of high-order harmonic generation in a two-color laser field, Physical Review A,76 (2007) 063823.
    [154]Z.M. Sheng, J. Zhang, D. Umstadter, Plasma density gratings induced by intersecting laser pulses in underdense plasmas, Applied Physics B:Lasers and Optics,77 (2003) 673-680.
    [155]H.C. Wu, Z.M. Sheng, J. Zhang, Chirped pulse compression in nonuniform plasma Bragg gratings, Applied Physics Letters,87 (2005) 201502.
    [156]H.C. Wu, Z.M. Sheng, Q.J. Zhang, Y. Cang, J. Zhang, Manipulating ultrashort intense laser pulses by plasma Bragg gratings, Physics of plasmas,12 (2005) 113103.
    [157]H. Wu, Z. Sheng, Q. Zhang, Y. Cang, J. Zhang, Controlling ultrashort intense laser pulses by plasma Bragg gratings with ultrahigh damage threshold, Laser and Particle Beams,23 (2005) 417-421.
    [158]Q. Luo, S. Hosseini, B. Ferland, S. Chin, Backward time-resolved spectroscopy from filament induced by ultrafast intense laser pulses, Optics communications,233 (2004) 411-416.
    [159]H. Xu, J. Bernhardt, P. Mathieu, G. Roy, S. Chin, Understanding the advantage of remote femtosecond laser-induced breakdown spectroscopy of metallic targets, Journal of applied physics,101 (2007) 033124.
    [160]Q. Luo, H. Xu, S. Hosseini, J.-F. Daigle, F. Theberge, M. Sharifi, S. Chin, Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy, Applied Physics B,82 (2006) 105-109.
    [161]H. Xu, J. Daigle, Q. Luo, S. Chin, Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane, Applied Physics B,82 (2006) 655-658.
    [162]K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, L. Woste, Long-distance remote laser-induced breakdown spectroscopy using filamentation in air, Applied Physics Letters,85 (2004) 3977-3979.
    [163]S. Tzortzakis, D. Anglos, D. Gray, Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis:applications in cultural heritage monitoring, Optics letters,31 (2006) 1139-1141.
    [164]H. Xu, Y. Kamali, C. Marceau, P. Simard, W. Liu, J. Bernhardt, G. Mejean, P. Mathieu, G. Roy, J.-R. Simard, Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy, Applied physics letters,90 (2007) 101106.
    [165]H. Xu, W. Liu, S. Chin, Remote time-resolved filament-induced breakdown spectroscopy of biological materials, Optics letters,31 (2006) 1540-1542.
    [166]W. Liu, H. Xu, G. Mejean, Y. Kamali, J.-F. Daigle, A. Azarm, P. Simard, P. Mathieu, G. Roy, S. Chin, Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample, Spectrochimica Acta Part B:Atomic Spectroscopy,62 (2007) 76-81.
    [167]B. Zeng, T.-J. Wang, S. Hosseini, Y. Cheng, Z. Xu, W. Liu, S.L. Chin, Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses, JOSA B,29 (2012) 3226-3230.
    [168]J. Liu, X.C. Zhang, Terahertz-radiation-enhanced emission of fluorescence from gas plasma, Physical review letters,103 (2009) 235002.
    [169]J. Liu, X.C. Zhang, Plasma characterization using terahertz-wave-enhanced fluorescence, Applied Physics Letters,96 (2010) 041505.
    [170]J. Liu, X.C. Zhang, Enhancement of Laser-Induced Fluorescence by Intense Terahertz Pulses in Gases, Selected Topics in Quantum Electronics, IEEE Journal of, [2011) 1-8.
    [171]J. Liu, J. Dai, S.L. Chin, X.-C. Zhang, Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases, Nature photonics,4 (2010) 627-631.
    [172]V. Hohreiter, J. Carranza, D. Hahn, Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy, Spectrochimica Acta Part B:Atomic Spectroscopy,59 (2004) 327-333.
    [173]V. Pinon, C. Fotakis, G. Nicolas, D. Anglos, Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses, Spectrochimica Acta Part B:Atomic Spectroscopy,63 (2008) 1006-1010.
    [174]D. Scuderi,0. Albert, D. Moreau, P. Pronko, J. Etchepare, Interaction of a laser-produced plume with a second time delayed femtosecond pulse, Applied Physics Letters,86 (2005) 071502.
    [175]J. Levesque, P.B. Corkum, Attosecond science and technology, Canadian journal of physics,84 (2006) 1-18.
    [176]D.J. Flannigan, K.S. Suslick, Plasma line emission during single-bubble cavitation, Physical review letters,95 (2005) 44301.
    [177]Y. Itikawa, Cross sections for electron collisions with nitrogen molecules, Journal of physical and chemical reference data,35 (2006) 31-54.
    [178]V. Puech, L. Torchin, Cross Sections for Electron Collisions with argon , Journal of Physics D:Applied Physics,19 (1986) 2309.
    [179]Y. Hatano, Interaction of vacuum ultraviolet photons with molecules. Formation and dissociation dynamics of molecular superexcited states, Physics reports,313 (1999) 109-169.
    [180]Y. Hatano, Interaction of VUV photons with molecules:Spectroscopy and dynamics of molecular superexcited states, Journal of Electron Spectroscopy and Related Phenomena,119 [2001) 107-125.
    [181]T. Allison, T. Wright, A. Stooke, C. Khurmi, J. van Tilborg, Y. Liu, R. Falcone, A. Belkacem, Femtosecond spectroscopy with vacuum ultraviolet pulse pairs, Optics letters,35 (2010) 3664-3666.
    [182]N. Shivaram, H. Timmers, X.-M. Tong, A. Sandhu, Attosecond-Resolved Evolution of a Laser-Dressed Helium Atom:Interfering Excitation Paths and Quantum Phases, Physical review letters,108 (2012) 193002.
    [183]H. Timmers, N. Shivaram, A. Sandhu, Ultrafast dynamics of neutral superexcited Oxygen:A direct measurement of the competition between autoionization and predissociation, Physical review letters,109 (2012) 173001.
    [184]T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, J. Wang, Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser, JOSA B,21 (2004) 370-375.
    [185]L. Misoguti, S. Backus, C.G. Durfee, R. Bartels, M.M. Murnane, H.C. Kapteyn, Generation of Broadband VUV Light Using Third-Order Cascaded Processes, Physical review letters,87 (2001) 013601.
    [186]Th, eacute, F. berge, Ak, ouml, N. zbek, W. Liu, A. Becker, S.L. Chin, Tunable Ultrashort Laser Pulses Generated through Filamentation in Gases, Physical review letters,97 (2006) 023904.
    [187]T. Fuji, T. Horio, T. Suzuki, Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas, Optics letters,32 (2007) 2481-2483.
    [188]T. Fuji, T. Suzuki, E. Serebryannikov, A. Zheltikov, Experimental and theoretical investigation of a multicolor filament, Physical Review A,80 (2009) 63822.
    [189]P. Zuo, T. Fuji, T. Suzuki, Spectral phase transfer to ultrashort UV pulses through four-wave mixing, Optics express,18 (2010) 16183-16192.
    [190]M. Beutler, M. Ghotbi, F. Noack, I.V. Hertel, Generation of sub-50-fs vacuum ultraviolet pulses by four-wave mixing in argon, Optics letters,35 (2010) 1491-1493.
    [191]M. Beutler, M. Ghotbi, F. Noack, Generation of intense sub-20-fs vacuum ultraviolet pulses compressed by material dispersion, Optics letters,36 (2011) 3726-3728.
    [192]V. Mizrahi, D.P. Shelton, Dispersion of Nonlinear Susceptibilities of Ar, N_{2}, and O_{2} Measured and Compared, Physical review letters,55 (1985) 696-699.
    [193]N. Kortsalioudakis, M. Tatarakis, N. Vakakis, S. Moustaizis, M. Franco, B. Prade, A. Mysyrowicz, N. Papadogiannis, A. Couairon, S. Tzortzakis, Enhanced harmonic conversion efficiency in the self-guided propagation of femtosecond ultraviolet laser pulses in argon, Applied Physics B:Lasers and Optics,80 (2005) 211-214.
    [194]T. Fuji, T. Suzuki, E.E. Serebryannikov, A. Zheltikov, Experimental and theoretical investigation of a multicolor filament, Physical Review A,80 (2009) 063822.
    [195]A. Tunnermann, C. Momma, K. Mossavi, C. Windolph, B. Welleghausen, Generation of tunable short pulse VUV radiation by four-wave mixing in xenon with femtosecond KrF-excimer laser pulses, Quantum Electronics, IEEE Journal of,29 (1993) 1233-1238.
    [196]E.R. Peck, D.J. FIISIER, Dispersion of argon, JOSA,54 (1964) 1362-1364.
    [197]C. Homann, P. Lang, E. Riedle, Generation of 30 fs pulses tunable from 189 to 240 nm with an all-solid-state setup, JOSA B,29 (2012) 2765-2769.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700