诺如病毒核酸荧光定量检测及其衣壳蛋白基因重组腺病毒免疫效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杯状病毒(Calicivirus)是一种人畜共患的病原体,是世界范围内人类急性病毒性胃肠炎的主要病原之一,对公共卫生有着重要影响。杯状病毒目前已知能感染人的包括诺如病毒(Norovirus)和札如病毒(Saporovirus)两个属,常在医院、餐馆、学校、托儿所、养老院、军队、家庭及其他人群中引起暴发性非菌性腹泻。根据RNA聚合酶区或外壳蛋白区的核苷酸和氨基酸序列,可将诺如病毒和札如病毒分为不同的基因组,目前已知诺如病毒基因组Ⅰ(GGⅠ)和Ⅱ(GGⅡ),札如病毒基因组SGⅠ和SGⅡ均可感染人。尽管杯状病毒引起的急性胃肠炎症状(呕吐、腹泻和腹部痉挛等)呈自限性,但若治疗不及时仍会导致死亡,因此检测该病毒的感染情况对于疾病控制和临床诊断均具有重要意义。
     近年来我国杯状病毒性腹泻发生率呈上升趋势,已在多个地区发生暴发流行。但是由于杯状病毒型别众多,变异频繁,其流行具有一定的地域和时间特征。因此,调查我国不同地区的杯状病毒流行特征、建立可靠的检测技术并开展其疫苗研究,对于全面掌握我国杯状病毒病的流行状况,评估其造成的经济社会负担及制订相应的控制策略具有重要意义。有鉴于此,本实验研究了山东济南地区存在杯状病毒感染的流行状况及其毒株的分子遗传特点,建立了针对流行毒株检测的荧光定量PCR技术,并对诺如病毒GGⅡ4型衣壳蛋白基因重组腺病毒(rvAdGⅡ4)免疫效果进行了研究。取得主要结果如下:
     一、济南地区婴幼儿腹泻病杯状病毒的流行特征收集了山东济南市儿童医院婴幼儿病毒性腹泻粪便标本,使用文献报道的杯状病毒特异性引物进行了RT-PCR检测。发现在212例病毒性腹泻标本中,杯状病毒RT-PCR阳性62例,检出率为29.25%,2月份为发病高峰。
     将杯状病毒阳性PCR产物进行克隆和序列分析,结果表明,所有杯状病毒均为诺如病毒基因组GGⅡ型,未见GGⅠ型和札如病毒。对39个毒株的序列分析表明,GGⅡ-4基因型占46.15%,GGⅡ-1基因型占35.90%,GGⅡ-2基因型占17.95%。说明杯状病毒是山东地区婴幼儿腹泻病的主要病原之一,目前以诺如病毒基因组Ⅱ-4型毒株流行为主,与我国其它地区相似。
     对测序毒株进行核苷酸序列的同源性分析,结果表明其中18株GGⅡ-4型同源性大于95.99%,与Lordsdale株同源性为89.05%~90.15%;14株GGⅡ-1型同源性大于94.16%,与Hawaii株同源性为85.04%~87.59%;7株GGⅡ-2型同源性为大于98.91%,与Melksham株同源性为80.29%~81.02%。39株诺如病毒之间的核苷酸同源性为81.45%~100%。本次测定的基因型内部毒株之间的核苷酸同源性大于94.16%,远高于与参考毒株核苷酸之
Calicivirus are one of zoonosis pathogen and the most common causes of gastroenteritis in all age groups and large outbreaks remain an important public health problem worldwide. Norovirus and saporovirus were comprised to human calicivirus, due to the non- bacterium diarrhea outbreak in hospital, restaurant, school, nursery, gerocomium, armed forces, family and other crowd. Different genogroup were divided according to nucleotide and amino acid sequence of RNA polymerase and capsid, GGⅠand GGⅡof norovirus and SGⅠand SGⅡof saporovirus could infected human. Acute gastroenteritis by norovirus could autotherapy with vomit, diarrhea, abdomen, could be death if not treat promptly.
     The importance of calicivirus was underestimated due to the limit of detection method and it was recognized gradually with the high sensitivity diagnostic assay of RT-PCR. The studies for norovirus in our country were relatively late, and showed the infection with norovirus was at large, and it was the important pathogen causing diarrhea among children. However, the studies in our country were mainly focused on the detection of pathogen and antibody, and the results were short of representative, and were also limited. There was no clinical information and other epidemiological data, also.
     Hence, we want to reveal the incidence, clinical characteristic, molecule biology characteristic of calicivirus infection in Shandong. We want to establish a Taqman based real-time RT-PCR assay for the genogroupⅡ(GGⅡ) norovirus RNA in stool. Study the immune effect of the four genogroupⅡof norovirus capsid with recombinant adenovirus (rvAdGⅡ4). It will be favor of the development of detection reagents and effective vaccine. The result of experiment as follow:
     1 Characterization of human calicivirus in infants with acute diarrhea in Jinan area, China. To characterize the prevalence and genetics of human calicivirus (HuCV) infection in infants with acute diarrhea in Jinan area. The fecal specimens from children with acute nonbacterial gastroenteritis were collected and HuCV in the samples were detected by reverse transcription (RT)-PCR. HuCV was detectable in 62 cases out of the 212 specimens (29.25%). And the peak of epidemic was February every year.
     The amplified cDNA fragments were cloned into pMD18-T vector, sequenced and
引文
[1] Green KY, Ando T, Balayan MS, et al. Taxonomy of the Calicivirus[J]. J Infec Dis, 2000, 181(2): S322-330.
    [2] Seal BS. Analysis of capsid protein gene variation among divergent isolates of feline calicivirus[J]. Virus Res, 1994, 33:39-53.
    [3] Radford AD, Bennett M. Quasispecies evolution of a hypervariable region of the feline calicivirus capsid gene in cell culture and persistently infected cats[J]. Vet Microbiol, 1999, 69(1-2):67-68.
    [4] Tohya Y, Yokoyama N. Mapping of antigenic sites involved in neutralization on the capsid protein of feline calicivirus [J]. J Gen Virol, 1997, 78(2):303-305.
    [5] 范泉水,夏咸柱. 老虎感染猫传染性鼻—结膜炎病毒的研究[J].中国病毒学, 2000, 15(4):373-378.
    [6] Kadoi K, Kiryu M. A strain of calicivirus isolated from lions with vesicular lesions on tongue and snout [J]. New Microbiol, 1997, 20(2):141-148.
    [7] Hohdatsu T, Sato K, Tajima T, et al. Neutralizing feature of commercially available feline calicivirus (FCV) vaccine immune sera against FCV field isolates[J]. J Vet Med Sci, 1999, 61(3):299-301.
    [8] Clarke IN, Lambden PR. The molecular biology of calicivirus[J]. J Gen V irol, 1997, 78(2):291-301.
    [9] Thiel HT, Konig M. Calicivirus: an overview[J].Vet Microbiol, 1999, 69(1-2):55-62
    [10] 刘 胜 江 , 薛 花 平 , 浦 伯 清 , 等 . 兔 的 一 种 新 病 毒 病 — 兔 病 毒 性 出 血 症 [J]. 畜 牧 与 兽医,1984,16(6):253-255
    [11] Meyers G, Wirblich C, Thiel HT.Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles[J]. Virol, 1991, 184(2):677-686
    [12] Konig M, Thiel HT, Meyers G. Detection of viral proteins after infection of cultured hepatocytes with rabbit hemorrhagic disease virus[J]. J Virol, 1998, 72(5):4492-4497
    [13] Kanno T, Mackay D, Inoue T, et al. Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus[J]. J Virol, 1999, 73(4):2710-2716.
    [14] Jang HK, Tohya Y, Han KY, et al. Seroprevalence of canine calicivirus and canine minute virus in the Republic of Korea[J].Vet Rec, 2003, 153(5):150-152.
    [15] Guerrant RL, Hughes JM, Lima NL, et al. Diarrhea in developed and developing countries: magnitude, special settings, and etiologies[J]. Rev Infect Dis, 1990, 12:41-50.
    [16] Kapikian AZ, Wyatt RG, Dolin R, et al. Chanock. Visualization by immune electron microscopy of a 27 nm particle associated with acute infectious nonbacterial gastroenteritis[J]. J Virol, 1972, 10:1075-1081.
    [17] Jiang X, Wang M, Wang K, et al. Sequence and genomic organization of Norwalk virus[J]. Virology, 1993, 195:51-61.
    [18] Prasad BV, Rothnagel VR, Jiang X, et al. Three dimensional structure of baculovirus-expressed Norwalk virus capsids[J]. J Virol, 1994, 68:5117-5125.
    [19] Glass PJ, White LJ, Ball JM, et al. Norwalk virus open reading frame 3 encodes a minor structural protein[J]. J Viro1, 2000, 74:6581-6591.
    [20] Katayama K, Shirato HH, Kojima S, et al. Phylogenic analysis of the complete genome of 18 Norwalk- like viruses[J]. Virology, 2002, 299:225-239.
    [21] Schuffenecker I, Ando T, Thouvenot D, et al. Genetic classification of "Sapporo-like viruses"[J]. Arch Virol, 2001, 146:2115-2132.
    [22] Richards AF, Lopman B, Gunn A, et al. Evaluation of a commercial ELISA for detecting Norwalk-like virus antigen in faeces[J]. J Clin Virol, 2003, 26:109-115.
    [23] Jiang X, Cubitt DW, Berke T, et al. Sapporo-like human caliciviruses are genetically and antigenically dicerse[J]. Arch. Virol, 1997, 142:1813-1827.
    [24] Someya Y, Takeda N, Miyamura T. Complete nucleotide sequence of the Chiba virus genome and functional expression of the 3C-like protease in Escherichia coli[J]. Virology, 2000, 278:490-500.
    [25] 金奇.医学分子病毒学[M].第一版北京:科学出版社,2001:565-576.
    [26] Caul E. Viral gastroenteritis: small round structured viruses, caliciviruses astroviruses.Part Ⅱ.The epidemiological perspective[J]. J Clin Path, 1996: 959-964.
    [27] Cunney R, Costigan P, McNamara E, et al. Investigation of an outbreak of gastroenteritis caused by Norwalk-like virus, using solid phase immune electron microscopy[J]. J Hosp Infect, 2000, 44:113-118.
    [28] Moore C, Clark EM, Gallimore CI, et al. Evaluation of a broadly reactive nucleic acid sequence based amplification assayfor the detection of noroviruses in faecal material[J]. J Clin Virol, 2004, 29:290-296.
    [29] Atmar RL, Estes MK. Diagnosis of noncultivatable gastroenteritis viruses, the human caliciviruses[J]. Clin Microbiol Rev, 2001, 14(1):15-37.
    [30] Mounts AW, AndoT, Koopmans M, et al. Cold weather seasonality of gastroenteritis associated with Norwalk-like viruses[J]. J Infect Dis, 2000, 181(Suppl.2):284-287.
    [31] Deneen VC, Hunt JM, Paule CR, et al. The impact of foodborne calicivirus disease: the Minnesota experience[J]. J Infect Dis, 2000, 181(Suppl.2):281-283.
    [32] Inouye S, Yamashita K, Yamadera S, et al. Surveillance of viral gastroenteritis in Japan: pediatric cases and outbreak incidents[J]. J Infect Dis, 2000, 181(Suppl.2):270-274.
    [33] Mead PS, Slutsker LV, McCaig LF, et al. Food-related illness and death in the United States[J]. Emerg Infect Dis, 1999, 5:607-625
    [34] Meakins SM, Adak GK, Lopman BA, et al. General outbreaks of infectious intestinal disease (IID) in hospitals, England and Wales, 1992~2000[J]. J Hosp Infect, 2003, 53:1-5.
    [35] Pedalino B, Feely E, McKeown P, et al. An outbreak of Norwalk-like viral gastroenteritis in holiday- makers travelling to Andorra, January to February 2002[J]. Euro Survelll, 2003, 8(1):1-8.
    [36] Chadwick PR, McCann R. Transmission of SRSV by vomiting during a hospital outbreak of gastroenteritis[J]. J Hosp Infect, 1994, 26:251-259.
    [37] Atmar RL, Estes MK. Diagnosis of Noncultibatable gastroenteritis viruses, the human caliciviruses[J].Clin Microbiol Rev, 2001, 14:15-37.
    [38] Vinje J, Koopmans M. Molecular detection and epidemiology of small round-structured viruses in outbreaks of gastroenteritis in the Netherlands[J]. J Infec Dis, 1996, 174:610-615.
    [39] Wright PJ, Gunesekere IC, Doultree JC, et al. Small round-structured (Norwalk-like) viruses and classical human caliciviruses in Southeastern Australia, 1980~1996[J]. J Med Viro1, 1998, 55:312-320
    [40] Kaplan JE, Gary GW, Baron RC, et al. Epidemiology of Norwalk gastroenteritis and the role ofNorwalk virus in outbreaks of acute nonbacterial gastroenteritis[J]. Ann Intern Med, 1982, 96:756-761.
    [41] Lewis DC. Three serotypes of Norwalk-like virus demonstrated by solid-phase immune electron micro- scopy[J]. J Med Virol, 1990, 30:77-81.
    [42] Lewis DC, Ando T, Humphrey CD, et al. Use of solid-phase immune electron microscopy for classification of Norwalk-like viruses into six antigenic groups from 10 outbreaks of gastroenteritis in the United States[J]. J Clin Microbiol, 1995, 33:501-504.
    [43] Lewis DC, Lightfoot NF, Pether JV. Solid-phase immune electron microscopy with human immuno- globulin M for serotyping of Norwalk-like viruses[J]. J Clin Microbiol, 1988, 26:938-942.
    [44] Greenberg HB, Wyatt J, Valdesuso AR, et al. Solid-phase microtiter radioimmunoassay for detection of the Norwalk strain of acute nonbacterial, epidemic gastroenteritis virus and its antibodies[J]. J Med Virol, 1978, 2:97-108.
    [45] Gary GW, Kaplan JE, Stine SE, et al. Detection of Norwalk virus antibodies and antigen with a biotin- avidin immunoassay[J]. J Clin Microbiol, 1985, 22:274-278.
    [46] Graham DY, Jiang X, Tanaka T, et al. Norwalk virus infection of volunteers: New insights based on improved assays[J]. J Infect Dis, 1994, 170:34-43.
    [47] Jiang X, Cubitt D, Hu J, et al. Development of an ELISA to detect MX virus, a human calicivirus in the Snow Mountain agent genogroup[J]. J Gen Virol, 1995, 76:2739-2747.
    [48] Herrmann JE, Nowak NA, Blacklow NR. Detection of Norwalk virus by enzyme immunoassay in stools[J]. J MedVirol, 1985, 17:127-133.
    [49] Hayashi Y, Ando T, Utagawa E, et al. Western blot (immunoblot) assay of small, round-structured virus associated with an ccute gastroenteritis outbreak in Tokyo[J]. J Clin Microbiol, 1989, 27:1728-1733.
    [50] Hainian Y, Fumihiro Y, Shoko O, et al. Detection of norovirus (GI GII), Sapovirus and astrovirus in fecal samples using reverse transcription single-round multiplex PCR[J]. J Virolo Meth, 2003, 114:37-44.
    [51] Casas I, Tenorio A, Echevarria JM, et al. Detection of enteroviral RNA and specific DNA of herpesviruses by multiplex genome amplification[J]. J Virol Meth, 1997, 66:39-50.
    [52] Jackson R, Morris DJ, Cooper RJ, et al. Multiplex polymerase chain reaction for adenovirus and herpes simplex virus in eye swabs[J]. J Virol Meth, 1996, 56:41-48
    [53] Aguilar JC, Perez-Brena MP, Garcia ML, et al. Detection and identification of human parain-fluenza viruses 1, 2, 3 and 4 in clinical samples of pediatric patients by multiplex reverse transcription-PCR[J]. J Clin Microbiol, 2000, 38: 1191-1195.
    [54] Tsai YL,Tran B, Sangermano LR, et al. Detection of poliovirus, hepatitis A virus, and rotavirus from sewage and ocean water by triplex reverse transcriptase PCR[J]. Appl Environ Microbiol, 1994, 60:2400-2407.
    [55] Cho HB, Lee SH, Cho JC, et al. Detection of adenoviruses and enteroviruses in tap water and river water by reverse transcription multiplex PCR[J]. Can JMicrobiol, 2000, 46:417-424.
    [56] Henshilwood K, Green J, Lees DN. Monitoring the marine environment for small round structured viruses (SRSVS): a new approach to combating the transmission of these viruses by molluscan shellfish[J]. WatSci Tech., 1998, 38(2):51-56.
    [57] Ando T, Mulders MN, Lewis DC, et al. Comparison of the polymerase region of small round structured virus strains previously characterized in three serotypes by solidphase immune electron microscopy[J]. Arch Virol, 1994, 135:217-226.
    [58] Cubitt WD, Jiang X, Wang J, et al. Sequence similarity of human caliciviruses and small round structured viruses[J]. J Med Virol, 1994, 43:252-258
    [59] Matsuno S, Sawada R, Kimura K, et al. Sequence analysis of SRSV in fecal specimens from an epidemic of infantile gastroenteritis, October to December 1995, Japan[J]. J Med Viro1, 1997, 52:377-380.
    [60] Vinje J, GreenLewis CI, Gallimore DW, et al. Genetic polymorphism across regions of the three open reading frames of "Norwalk-like viruses”[J]. Arch. Virol, 2000, 145:223-241
    [61] Green J, Henshilwood K, Gallimore DW, et al. A nested reverse transcriptase PCR assay for detection of small round structured viruses in environmentally contaminated molluscan shellfish[J]. Appl Environ Microbiol, 1998, 64:858-863.
    [62] Hiroyoshi K, Kenji Y, Etsuko U, et al. Nucleatide sequence analysis and development of consensus primers of RT-PCR for detection of norwalk-like viruses prevailing in Japan[J]. J Med Virol, 2001, 64:569-576.
    [63] Robert LA, Mary KE. Diagnosis of Noncultivatable Gastroenteritis Viruses, the Human Caliciviruses[J]. Clin Microbiol Rev, 2001, 14(1):15-37.
    [64] Vesanen M, Piiparinen H, Kallio A, et al. Detection of herpes simplex virus DNA in cerebrospinal fluid samples using the polymerase chain reaction and microplate hybridization[J]. J Virol Methods, 1996, 59:1-11.
    [65] Lee AJ, Ricardo DL, Mark DS. A virion concentration method for detection of human neteric viruses in oysters by PCR and oligoprobe hybridization[J]. Appl Environ Microbiol, 1996, 62(6):2074-2080.
    [66] Leena M, Heli P, Carl HB. Comfirmation of morwalk-like virus amplicons after RT-PCR by microplate hybridization and direct sequencing[J]. J Virol Meth, 1999, 83:125-134.
    [67] Belliot GM, Fankhauser RL, Monroe SS. Characterization of norwalk-like viruses and astroviruses by hybridization assay[J]. J Virol Meth, 2001, 91:119-130
    [68] Kageyama T, Kojima S, Shinohara M, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR[J]. J Clin Microbiol, 2003, 41:1548- 1557.
    [69] Kageyama T, Shinohara M, Uchida K, et al. Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan[J]. J Clin Microbiol, 2004, 42: 2988-2995.
    [70] Katayama H, Shimasaki A, Ohgaki S. Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater[J]. Appl Environ Microbiol, 2002, 68:1033-1039.
    [71] Nishida T, Kimura H, Saitoh MS, et al. Detection, quantitation, and phylogenetic analysis of noroviruses in Japanese oysters[J]. Appl Environ Microbol, 2003, 69:5782-5786.
    [72] Vinje J, Hamidjaja RA, Sobsey MD. Development and application of a capsid VP1 (region D) based reverse transcription PCR assay for genotyping of genogroup I and II noroviruses[J]. J Virol Methods, 2004, 116:109-117.
    [73] Loisy F, Atmar RL, Guillon PL, et al. Real-time RT-PCR for norovirus screening in shellfish[J]. J Virol Meth. 2005, 123(1):1-7.
    [74] Glass RI, Noel J, Ando T, et al. The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics[J]. J Infect Dis, 2000, 18(Suppl.2):S254-S261
    [75] Christian B. Simultaneoous detection of enteric viruses by multiplex real-time RT-PCR[J]. J Virol Methods, 2004, 115: 1-8.
    [76] Miller I, Gunson R, Carman WF. Norwalk like virus by light cycler PCR[J]. J Clin Virol, 2002, 25:231-232.
    [77] Richards GP, Watson MA, Kingsley DH. A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools[J]. J Virol Meth, 2004, 116:63-70.
    [78] Beuret C. Simultaneous detection of enteric viruses by multiplex real-time RT-PCR[J]. J Virol Meth, 2004, 115:1-8.
    [79] Laverick MA, WynJones AP, Carter MJ. Quantitative RT-PCR for the enumeration of noroviruses (Norwalk-like viruses) in water and sewage[J]. Let Appl Microbiol, 2004, 39: 127-136.
    [80] Myrme IM, Berg EM, Rimstad EG, et al. Detection of enteric viruses in shellfish from the Norwegian coast[J]. Appl Environ Microbiol, 2004, 70:2678-2684.
    [81] Hohne M, Schreier E. Detection and characterization of norovirus outbreaks in Germany: application of a one-tube RT-PCR using a fluorogenic real-time detection system[J]. J Med Virol, 2004, 72(2):312-319
    [82] Deiman B, Van AP, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA) [J].Mol Biotechnol, 2002, 20(2):163-179.
    [83] Fox JD, Song H, Samuelson A, et al. Development and evaluation of' nucleic acid sequence based amplifi-canon (NASBA) for the diagnosis of enterovirus infections using the NuclisenTM basic kit[J]. J Clin Virol, 2002, 24:117-30.
    [84] Baric RS, Yount B, Lindesmith L, et al. Expression and self-assembly of Norwalk virus capsid protein from Venezuelan equine encephalitis virus replicons[J]. J Virol, 2002, 76 (6):3023-3030
    [85] EstesMK, Ball JM, Guerrero RA, et al. Norwalk virus vaccines: challenges and progress[J]. J Infect Dis, 2000, 181 (Supp l2):S367-373.
    [86] Mason HS, Ball JM, Shi JJ, et al Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice[J]. Proc Natl Acad Sci USA, 1996, 28,93(11):5335-40.
    [87] Ball JM, Graham DY,Opekun AR, et al. Recombinant Norwalk virus-like particles given orally to volunteers: phase I study[J]. Gastroenterology, 1999, 117(1):40-48
    [88] Harrington PR, Yount B, Johnston RE, et al. Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles[J]. J Virol, 2002, 76 (2) : 730-742
    [89] Marionneau S, Ruvoen N, LeMoullac VB, et al. Norwalk virus binds to histoblood group antigens present on gastroduodenal epithelial cells of secretor individuals[J]. Gastroenterology, 2002, 122(7):1967-1977
    [90] Harrington PR, Lindesmith L, Yount B, et al. Binding of Norwalk virus-like particles to ABO histoblood group antigens is blocked by antisera from infected human volunteers or experimentally vaccinated mice[J]. J Virol, 2002, 76(23):335-343
    [91] Tacket CO, Sztein MB, Losonsky GA, et al. Humoral mucosal, and cellular immune responses to oral Norwalk virus-like particles in volunteers[J]. Clin Immunol, 2003, 108(3):241-247
    [92] SubektiDS, Tjaniadi P, Lesmana M, et al. Experimental infection of Macaca nemestrina with a Toronto Norwalk-like virus of epidemic viral gastroenteritis[J]. J Med Virol, 2002, 66(3):400-406
    [93] Hzratsukam. Rapid detectin of CYP2C9-3 alleles by real-time fluorescence PCR based SYBR Green [J]. Mol Genet Metab, 1999, 68:357-361.
    [94] Livak KJ, Flood SA, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization[J]. PCR Met Appl, 1995, 4:357-362.
    [95] Heinz EH, Nattermann MO. Rapid and Sensitive identification of pathogenic and apathogenic bacillus anthracis by real time PCR[J]. FEMS Microbiology Letters, 2002, 214:51-59.
    [96] Marras SA, Kramer FR. Mutiplex detection of single 3 nucleotide variations using molecular beacons[J]. Genetic Analysis, 1999, 37(2):327-332.
    [97] Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization [J]. Nat Biotechnol, 1996, 14(3):303-308.
    [98] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endo, 2000, 25(2):169-193.
    [99] Nazarenko IA, Bhatnagar SK, Hohman RJ. A closed tube format for amplification and detection of DNA based on energy transfer [J]. Nucleic Acids Research, 1997, 25(12):2516-2521.
    [100] Whitcombe D, Theaker J, Guy SP, et al. Detection of PCR products using self-probing amplicons and fluorescence[J]. Nat Biotechnol, 1999, 17(8):804-807.
    [101] 孔德明,古珑,沈含熙,等. TaqMan分子灯标:一种新型的荧光基因检测探针[J].化学学报,2003, 61(5):755-759.
    [102] Kong DM, Gu L, Shen HX, et al. A modified moleculae beacon combining the properties of TaqMan probe[J]. Chem Commun, 2002, 21(8):854-855.
    [103] 王梁燕,洪其华.实时定量PCR技术及其应用[J].细胞生物学杂志.2004, 2(2):62-67.
    [104] Bassler HA, Flood SJ. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes[J]. Appl Environ Microbiol, 1995, 61(10):3724-3728.
    [105] 阳成波,蒋原. 基于TaqMan 探针的Real-time PCR定量检测空肠弯曲杆菌[J].动物医学进展,2003,24 (1) :74-78.
    [106] 阳成波,蒋原. 应用SYBRGreenⅠ的Real-time 定量检测空肠弯曲杆菌[J].中国预防兽医学报,2003,25(3):183-188.
    [107] Straubinger RK. PCR-based quantification of Borrelia burgdorferi organisms in canine tissues over a 500-day postinfection period[J]. J Clin Microbiol, 2000, 38(6):2191-2199.
    [108] Wang GQ, Liveris D, Brei B, et al. Real-time PCR for simultaneous detection and quantification of Borrelia burgdorferi in field-collected ixodes scapularis ticks from the Nort heastern United States[J]. Appl Environ Microbiol, 2003, 69(8):4561-4565.
    [109] Carli KT, Eyigor A. Real-time polymerase chain reaction for detection of Mycoplasma gallisepticum in chicken trachea[J]. Avian Diseases, 2003, 47(3):712-717.
    [110] Newby DT, Hadfield TL, Roberto FF. Real-time PCR detection of Brucella abortus: a comparative study of SYBR GreenⅠ, 5’-exonuclease, and hybridization probe assays [J]. Appl Environ Microbiol,2003, 69 (8):4753-4759.
    [111] 陈苏红,张敏丽,牟航,等. 一种快速定量检测炭疽杆菌方法的建立[J].中华检验医学杂志,2003,26 (2):98-100.
    [112] 张鹤晓,赖平安,孙颖杰,等. 中强毒力新城疫病毒(NDV)荧光RT–PCR检测方法建立及体系优化[J]. 检验检疫科学,2003, 13(3):25-28.
    [113] Tan Sw, Omar AR, Aini I, et al. Detection of Newcastle disease virus using a SYBR GreenⅠreal time polymerase chain reaction[J]. Acta Virol, 2004, 48(1):23-28.
    [114] Mark GW, David LS, Bruce SS, et al. Development of a Real-Time Reverse-Transcription PCR for Detection of Newcastle Disease Virus RNA in Clinical Samples[J].J Clin Microbiology, 2004, 42(1): 329-338.
    [115] Schweiger B, Zadow I, Heckler R, et al. Application of a Fluorogenic PCR Assay for Typing and Subtyping of Influenza Viruses in Respiratory Samples[J]. J Clin Microbiol, 2000, 38:1552-1558.
    [116] Bumstead N, Sillibourne J, RennieM, et al. Quantification of marek’s disease virus in chicken lymphocytes using the polymerase chain reaction with fluorescence detection[J]. J Virol Methods, 1997, 65(1):75-81.
    [117] 邹文,杨旭. SYBR Green实时荧光定量聚合酶链反应检测鸭乙型肝炎病毒的研究[J].中国肝脏病杂志, 2004, 12,(7):34-37.
    [118] 陈压西,黄爱龙,齐珍元,等. 鸭乙型肝炎病毒核酸荧光定量PCR方法的建立及应用[J].重庆医科大学学报,2003,28(1):36-39.
    [119] Yang FL. Development of quantitative real-time polymerase chain reaction for duck eateritiz virus DNA[J]. Avian Diseases, 2005, 49(3):337-400.
    [120] Jackwood DJ, Spalding BD, Sommer SE. Real-time reverse transcriptase polymerase chain reaction detection and analysis of nucleotide sequences coding for a neutralizing epitope on infectious bursal disease viruses [J]. Avian Diseases, 2003, 47:738-744.
    [121] 陈玉栋,张楚喻,邹俊煊,等. 建立快速定量检测猪瘟兔化弱毒苗的荧光定量PCR技术[J].中国病毒学,2003,18 (2):124-128.
    [122] 罗长保,鱼海琼,林志雄.应用荧光RT-PCR技术检测口蹄疫病毒[J].中国兽医杂志,2003,39(12): 113-116.
    [123] Thiery R, Pannetier C, Rziha HJ, et al. A fluorescence-based quantitative PCR method inverstigation of pseudorabies virus latency[J]. J Virol Methods, 1996, 61:79-87.
    [124] Takele A, Armin R. Development of a real time quantitiative PCR assay for detection of porcine endogenous retrovirus[J]. J Virol Meth, 2002, 106:97-106.
    [125] Krumbholz A, Wurm R, Scheck O, et al. Detection of porcine teschoviruses and enteroviruses by LightCycler real-time PCR [J]. J Virol Methods, 2003, 113(1):51-63.
    [126] Coutts AJ, Dawson S. Isolation of feline respiratory viruses from clinically healthy catsat UK cat shows[J].Vet Rec, 1994, 135:555-556.
    [127] Himmelstjrena GV, Harder A. Quantitative analysis of ITS2 sequences in the chostrongyle parasites[J]. Inte J Paras, 2002, 32:1529-1535.
    [128] James AH, Ron F. Real-time PCR for the detection of Cryptosporidium parvum[J]. J Microbiol Meth, 2001, 147:323-337.
    [129] Premanandh J, George LV, Wernery U, et al. Evaluation of a newly developed real-time PCR for thedetection of Taylorella equigenitalis and discrimination from Tasinigenitalis[J]. Vet Microbiol, 2003, 95 (4):229-237.
    [130] Fabrie L, Roselyne M. Analysis of chicken Mucosal Immune Response to Eimeria tenella and Eimeria maxima Infection by Quantitative Reverse Transcription-PCR[J]. Infection And Immunity, 2001, 3: 2527-2534.
    [131] 靖宇,钱渊.北京地区人群诺瓦克样病毒血清抗体水平调查[J].病毒学报,1998,14(4):321-328.
    [132] 吕红霞,方肇寅,谢华萍,等.河北省卢龙县1999~2001年婴幼儿杯状病毒腹泻流行病学研究[J].中华流行病学杂志,2003,24(12):118-121.
    [133] 陈志强,陈小霜,罗雷,等. 一起感染诺瓦克样病毒引起的群体性胃肠炎的流行病学调查与分析[J].热带医学杂志,2004,4(2):190-192.
    [134] 戴迎春,聂军,刘翼,等.一起家庭聚集性诺瓦克样病毒感染的调查[J].第四军医大学学报,2004,5(17): 1548-1550.
    [135] Fankhauser RL, Monroe SS, Noel JS, et al. Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States[J]. J Infect Dis, 2002, 186(1): 1-7
    [136] Koopmans M, Bonsdorff CH, Vinje J, et al. Foodborne viruses[J]. FEMS Microbiol Rev, 2002, 26(2):187-205
    [137] Jiang X ,Wang M ,Wang K, et al. Sequence and genomic organization of Norwalk virus[J]. Virology, 1993, 195:51-61
    [138] 陈冬梅,张又,钱渊,等. 我国婴幼儿中存在不同基因型杯状病毒的感染[J].病毒学报,2001,17(3): 265-269.
    [139] 谢华萍,方肇寅,王光,等.长春市儿童医院1998~2001年婴幼儿杯状病毒腹泻流行病学研究[J].病毒学报, 2002, 18:332-336
    [140] Jiang X, Huang PW, Zhong WM, et al. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR[J]. J Virol Method, 1999, 83:145-154.
    [141] Fankhauser RL, Noel JS, Monroe SS, et al. Molecular epidemiology of “Norwalk-like viruses” in outbreaks of gastroenteritis in the United States[J]. J Infect Dis, 1998, 178: 1571-1578.
    [142] Hedberg CW, Osterholm MT. Outbreaks of foodborne and waterborne viral gastroenteritis[J]. Clin Microbiol Rev, 1993, 6:199-210.
    [143] 方肇寅 , 温乐英 , 晋圣谨 , 等 . 在 我 国 腹 泻 患 儿中 发 现 诺 瓦 克 样 病 毒感 染 [J]. 病毒 学报,1995,11:215-219
    [144] Honma S, Nakata S, Numata KK, et al. Evaluation of nine sets of PCR primers in the RNA dependent RNA polymerase region for detection and differentiation of members of the family Caliciviridae, Norwalk virus and Sapporo virus[J]. Microbiol Immunol, 2000, 44(5):411-419.
    [145] 陈军林,王滔,高建民,等.福州地区腹泻患者诺瓦克样病毒感染的分子流行病学特点[J].中国人兽共患病杂志, 2003, 19(2):83-85
    [146] 郭丽,周红莉,王健伟,等.人诺如病毒衣壳蛋白的密码子优化及在昆虫细胞中的表达[J].中国病毒学, 2006, 21(2):123-127.
    [147] Gonin P, Couillard M, Halewyn MA. Genetic diversity and molecular epidemiology of Norwalk-like viruses[J]. J Infect Dis, 2000, 182:691-697.
    [148] Noel JS, Fankhauser RL, Ando T, et al. Identification of a distinct common strain of “Norwalk-likeViruses” having a global distribution [J]. J Infect Dis, 1999, 179:1134-1144.
    [149] 谢健屏,方肇寅,龚四堂, 等.2001年广州市婴幼儿杯状病毒腹泻病的基因研究[J].中华儿科杂志, 2003, 41(11):842-844.
    [150] Vinje J, Vennema H, Maunula L, et al. International collaborative study to compare reverse transcriptase PCR assays for detection and genotyping of noroviruses[J]. J Clin Microbiol, 2003, 41(4):1423-1433.
    [151] Duizer E, Schwab KJ, Neill FH, et al. Laboratory efforts to cultivate noroviruses[J]. J Gen Virol, 2004, 85(1):79-87.
    [152] Kageyama T, Shinohara M, Uchida K, et al. Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to Norovirus in Japan[J]. J Clin Microbiol, 2004, 42(7):2988-2995
    [153]Gunson RN, Miller J, Carman WF. Comparison of real-time PCR and EIA for the detection of outbreaks of acute gastroenteritis caused by norovirus[J]. Commun Dis Public Health, 2003, 6(4):297-299.
    [154] Pang XL, Lee B, Chui L, et al. Evaluation and validation of real time reverse transcription-PCR assay using the LightCycler system for the detection and quantitation of norovirus [J]. J Clin Microbiol, 2004, 42(10):4679-4685.
    [155] Pang XL, Preiksaitis JK, Lee B. Multiplex real time RT-PCR for the detection and quantitation of norovirus genogroups Ⅰ and Ⅱ in patients with acute gastroenteritis[J]. J Clin Virol, 2005, 33(2):168-171.
    [156] Amakfitano A, Hauser MA, Hu H, et al. Production and characterization of improved adenovirus vectors with the E1, E2 and E3 genes delected [J].J Virol, 1998, 72:926-933.
    [157] Morsy MA, Gu M, Motzel S, et al. An adenoviral vector deleted for all viral coding sequences results expression of a leptin transgene in enhanced safety and extended[J].Proc Natl Acad Sci USA, 1998, 95:7866-7871
    [158] Sandig V, Youil R, Bett AJ, et al. Optimization of the helper-dependent adenovirus system for produc- tion and potency in vivo[J].Proc Natl Acad Sci USA, 2000, 97:1002-1007.
    [159] Trauger RJ, Ferre F, Daigle AE, et al. Effect of immunization with inactivated gp120-depleted human immunodeficiency virus type 1 (HIV-1) immunogen on HIV-1 immunity, viral DNA, and percentage of CD4 cells[J]. J Infect Dis, 1994, 169(6):1256-1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700