酸性液固两相流中不锈钢冲刷腐蚀行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿法炼锌料浆介质中含有SiO2等固相颗粒、稀H2SO4及Cl–、F–、Zn2+、Fe3+等杂质离子,料浆泵遭受严重的液固两相流冲刷腐蚀,特别是叶轮的快速损坏使工厂频繁停机检修、更换备件,导致生产效率降低,生产成本增加,给工厂带来巨大的经济损失。虽然工厂在改进料浆泵叶轮结构和叶轮材料采用铜合金、钛合金等高性能金属材料、工程塑料和陶瓷材料等方面作了大量工作,但这一难题一直没有得到很好的解决。到目前为止,有关湿法炼锌料浆介质中材料冲刷腐蚀行为的研究报道极少,因此,开展此领域中冲刷腐蚀的研究极为迫切。本论文以湿法炼锌料浆介质为背景,对三种不锈钢材料的冲刷腐蚀机理和影响因素等展开了系统而深入的研究,以期为料浆泵叶轮的合理选材提供理论依据,同时研究结果对于耐冲刷腐蚀材料的开发以及丰富摩擦学理论将具有重要意义。
     论文首先对料浆泵叶轮进行失效分析,同时采用电化学方法和旋转圆盘冲刷腐蚀试验装置对湿法炼锌过程的腐蚀性及叶轮不同部位冲刷作用的动力学特性进行了模拟研究。结果表明,现采用的奥氏体不锈钢(0Cr25Ni18Mo)叶轮的失效是腐蚀和机械冲刷共同作用的结果,其中冲刷作用占主导地位;叶轮材料的硬度低、抗冲刷磨损性能差是导致其快速损坏的主要原因。料浆的流速和固体颗粒的浓度,即颗粒的冲击动量对叶轮不同部位损坏程度有重要影响,叶轮外缘由于流速大且固体颗粒浓度高,冲击动量大,因而冲刷腐蚀失重速率大,叶轮中心处附近由于流速小且固体颗粒浓度小,冲击动量小,因而冲蚀失重速率小。
     电化学分析表明,增大介质中的SO42-、Cl-、F-浓度,使叶轮材料的维钝电流密度ip和致钝电流密度ipp增大、钝化区间缩小、腐蚀速度加大,当SO42-、Cl-、F-同时存在时,对叶轮材料的腐蚀有强烈协同促进作用,从而增大叶轮材料的冲刷腐蚀失重率;而Zn2+、Fe3+、Cd2+等阳离子使材料的腐蚀电位正移,维钝电流密度ip降低、促进材料钝化,对材料的腐蚀有抑制效应,降低试验材料的腐蚀分量,从而使冲刷腐蚀失重率减小。研究结果对耐冲刷腐蚀材料的开发和理论研究都具有重要参考价值。
     对常用耐蚀或耐磨材料的冲刷腐蚀研究表明,在湿法炼锌介质中,选用传统的耐蚀或耐磨材料作为料浆泵叶轮无法保证其较长服役寿命。而具有一定耐蚀性和一定抗变形或耐磨能力的不锈钢系列材料有可能成为未来耐冲刷腐蚀的首选,初步筛选出了较适合于此介质环境下的3种候选材料:含氮双相不锈钢、17-4PH沉淀硬化不锈钢和σ相强化奥氏体不锈钢。
     对含氮双相不锈钢的研究结果表明,在模拟湿法炼锌料浆介质中,在试验氮量范围内,随含氮量增加,腐蚀电流密度逐渐减小、钝化区逐渐增大,双相钢的纯腐蚀速率(Vc)逐渐减小。但纯冲刷速率(Ve)和整个材料流失速率(Vt)并未随含氮量的增加而减小,当含氮量在0.1%~0.3%时,钢中奥氏体相(γ)含量为30%~70%、其余为铁素体相(α),两相比例比较适当,其Ve和Vt较低,双相钢有较好的抗冲刷腐蚀性能,当两相含量相当时,其Ve和Vt最低,双相钢的抗冲刷腐蚀性能最好。硬度不是双相钢抗冲刷腐蚀性能的决定因素,形变强化能力才对其起决定作用。
     对17-4PH沉淀硬化不锈钢的研究表明, 460℃时效处理时,钢中析出大量弥散分布的富铜相,硬度最高,在模拟试验料浆介质环境下,抗冲刷腐蚀性能最好。与失效叶轮相比,硫酸浓度对17-4PH钢的冲刷腐蚀失重速率的影响显著,当硫酸浓度低时, 17-4PH钢的抗冲刷腐蚀性能比失效叶轮好,当硫酸浓度高时,抗冲刷腐蚀性能比失效叶轮差。
     对σ相强化奥氏体不锈钢的研究表明,σ相硬度高、在软的奥氏体基体中起到骨架作用,耐磨性得到提高,同时σ相中主要耐蚀合金元素含量高,与基体的电极电位差小,耐蚀性良好,因而具有优良的抗冲刷腐蚀性能。时效处理后析出的细针片状σ相,在软的基体上弥散分布,对钢进一步强化,而基体中的主要耐蚀合金元素的含量没有明显降低,耐蚀性仍很好,因而抗冲刷腐蚀性能得到进一步提高。在模拟湿法炼锌料浆介质中,σ相强化奥氏体不锈钢材料的冲刷腐蚀失重速率比失效叶轮材料相比降低了57%。
     系统研究了主要环境参数对σ相强化奥氏体不锈钢和失效叶轮材料冲刷腐蚀行为的影响。结果表明VE-C与υ之间满足指数关系:VE-C = k1·υn1 ,在试验条件下,n1值在1~2.5之间,与通常气固冲蚀的速度指数2~5要小; SiO2固体颗粒浓度在5%和20%附近时,VE-C增大的幅度显著;VE-C随SiO2粒度Dp增大呈近似线性关系增大;在料浆H2SO4浓度较低时,材料的耐冲刷腐蚀性能主要取决于材料的抗冲刷磨损性能,当H2SO4浓度较高时,材料的耐冲刷腐蚀性能除取决于材料的抗冲刷磨损性能外,还与其耐腐蚀性,尤其是冲刷与腐蚀交互作用的失重速率(Vs)的大小有关。将研究结果绘制出了流速-SiO2颗粒尺寸、流速-SiO2颗粒浓度和流速-H2SO4浓度的材料流失机制图,可以对工况条件变化时材料的流失情况作出预测。
     通过三种研究不锈钢与失效叶轮材料冲刷腐蚀对比试验表明,在湿法炼锌料浆介质中,σ相强化奥氏体不锈钢材料的抗冲刷腐蚀性能最好,明显高于现使用叶轮材料。因此,利用弱阴极第二相强化是开发料浆泵叶轮等过流部件材料,延长其使用寿命的一种有效途径。
The slurry pumps are suffered from serious erosion-corrosion (E-C) in liquid-solid two-phase flow of zinc hydrometallurgy slurry containing solid particles such as silica , and diluted sulfuric acid as well as the impurities of Cl–、F–、Zn2+、Fe3+ and so on. Especially due to the rapid damages of the impellers, the plant is forced to stop production frequently so as to repair or replace spare parts. It results in decrease of productive efficiency and increase of production cost, together with the huge economic loss. Although many efforts were made such as improving the configurations and replacing the materials of the impellers, in which better performance metallic materials such as copper alloy and titanium alloy, engineering plastic and ceramic material were used, the difficult problem has not been still satisfactorily solved. By now ,there are few research reports on E-C behavior of the materials used in zinc hydrometallurgy environment, therefore the basic research on it is urgent. In this thesis, three kinds of stainless steels were selected as research object and zinc hydrometallurgy slurry as medium, systemic researches were carried out on E-C mechanism and effect factors and so on, the purpose is to provide a guide for rational selection of the impeller materials of slurry pump. At the same time the research results should be of benefit not only to the development of E-C resistant materials, but also to the richness of tribology theory.
     Failure analysis of the impeller of slurry pump was firstly carried out, at the same time corrosion behavior of slurry ions composition and dynamics characteristic of erosion action at different position of the impeller were simulated by using electrochemical method and rotating disc E-C apparatus. The results showed that the failure of austenite stainless steel (0Cr25Ni18Mo) impeller used in zinc hydrometallurgy environment was due to the interaction of corrosion and erosion-wear, erosion-wear was dominating, low hardness of the impeller material namely poor wear resistance was main reason that resulted in rapid damage of it. Moreover erosion damage of the impeller at different place depended on flow velocity of the slurry and concentration of solid particles, i.e. the momentum of particles. Erosion rate in the margin of the impeller was higher because of higher flow velocity and bigger particles concentration ,namely bigger impact momentum, while erosion rate near the center of the impeller was lower because of lower flow velocity and smaller particles concentration,namely smaller impact momentum.
     The results of electrochemical analysis showed that with the increase of acidic ions such as SO42-,Cl-, F- in the slurry , the critical passivation current density ip or ipp of stainless steel was increased and passive potential range was shortened , therefore corrosive mass loss rate and E-C mass loss rate of the material were increased; While with the increase of the cations such as Zn2+ and Fe3+ in the slurry, passivation current density ip was decreased and passive potential range was widened, therefore corrosion mass loss rate and E-C mass loss rate of the material were reduced. The conclusion should be of benefit not only to the development of E-C resistant materials, but also to the richness of E-C research.
     The research results on the simulated tests of the several corrosion resistant or wear resistant materials showed that under the condition of zinc hydrometallurgy selecting the traditional materials as that of the impellers of slurry pumps couldn’t ensure longer service life. But stainless steel series materials possessing certain corrosion resistance and good deformation resistance or wear resistance should be likely to become the first selection of the impeller materials. Three kinds of candidate materials, i.e. nitrogen-containing duplex stainless steel (DSS), 17-4PH precipitation-hardening stainless steel (17-4PH) and austenite stainless steel strengthened byσphase were screened out as three kinds of candidate materials of the impeller from the simulated test.
     The research results on nitrogen-containing DSS showed that in the simulated slurry corrosion current density ic of the tested materials was decreased and passive potential range was enlarged, and pure corrosion rate (Vc) was decreased with the increase of N content. While pure erosion rate (Ve) and total E-C rate (Vt) weren't decreased with the increase of N content in the studied the range of N content. DSSs containing nitrogen contents from 0.1% to 0.3% had the microstructures of austenite (γ) contents from 30% to 70% and ferrite (α), the ratio ofγandαwas appropriate, their Ve and Vt were lower, their E-C resistant performance were more excellent, moreover Ve and Vt of DSS containing the microstructure of nearly equal content ofγandαwere lowest, therefore its E-C resistant performance is most excellent. Hardness of DSS is not be the determinant factor, deformation strengthening ability is just a key factor on E-C resistance.
     The research results on 17-4PH steel showed that under the simulated slurry medium owing to dispersive precipitate of a number of Cu-rich particle aged at 460℃,the hardness of the material was highest and its E-C resistance was most excellent. Effect of corrosion factor on E-C rate was more remarkably compared with failure impeller material. When sulfuric acid concentration was lower, 17-4PH steel showed better E-C resistance than that of failure impeller, while sulfuric acid concentration was higher, its E-C resistance was poorer than that of failure impeller.
     The research results on austenite stainless steel strengthened byσphase showed that they exhibited better wear resistance due to the protecting action ofσphase on soft matrix as well as excellent corrosion resistance owing to higher main corrosion-resistant alloy element inσphase and little difference of electrode voltage with austenite matrix, therefore they showed excellent E-C resistance. The steels aged had been reinforced further owing to the dispersive precipitate of fine needle and flakeσphase in the matrix, at the same time it held good corrosion resistance due to the slight decrease of main corrosion resistant elements in the matrix, therefore E-C resistance of the improved materials had been significantly promoted. 57% of E-C rate of the improved materials was decreased compared with that of failure impeller in the simulated zinc hydrometallurgy slurry.
     The systemic research of main environmental parameters on E-C behavior of austenite stainless steel strengthened byσphase and failure impeller was performed. The results showed that under the test condition, flow velocity (υ) dependency of E-C rate (VE-C) was as follows: VE-C = K1·υn1 ,n1 in the test was between 1 and 2.5, n1 is smaller than velocity exponent (2~5) of general gas-solid E-C. VE-C was markedly increased with the concentration of silica(Cp) of about 5% or 20%. VE-C was approximately linerly increased with the increase of granularity of silica (Dp). When sulphuric acid concentration (Ca) was lower, E-C resistances of the tested materials mainly depended on erosion resistance, while Ca was higher, E-C resistances depended on not only erosion resistance but also corrosion resistance, especially synergistic rate (Vs) between erosion and corrosion besides erosion resistance. Material loss mechanism maps of flow velocity-silica granularity, flow velocity-silica particles concentration and flow velocity-sulphuric acid concentration are drawn by the research results,thereby material loss trend could be forecasted by them when the condition change of the material occurs.
     E-C test result of three kinds of stainless steels and failure impeller material confirmed that under the zinc hydrometallurgy slurry, E-C resistance of austenite stainless steel strengthened byσphase was most excellent, much more excellent than the impeller material used now. It should be an effective approach to develop the material of flow-handling component of slurry pump such as the impeller and prolong its service life to make use of such method that the material is strengthened by second phase with weak cathode.
引文
[1] 刘家浚. 材料磨损原理及其耐磨性. 北京: 清华大学出版社, 1993
    [2] M.Schorr. Erosion-corrosion in wet process phosphoric acid production. 8th Int. Cong. Met. Corros., 1981,2: 1384~1389
    [3] H.Pitt, Y.M.Chang. Jet slurry corrosive wear of high-Chromium cast iron and high-Carbon steel grinding ball alloys. Corrosion,1986, 42(6):312~317
    [4] L. Tomlinson, C. B. Ashmore. Erosion-corrosion of carbon and low alloy steels by water at 300℃. British Corrosion Journal, 1987, 22(1):45~52
    [5] R. Hoey, l. S. Bednar. Erosion-corrosion of selected metals in cool plant environment. Materials Performance, 1983, 22 (4):9~14
    [6] 姜晓霞,李诗卓,李曙.金属的腐蚀磨损.北京:化学工业出版社,2003
    [7] F.H.Stott,J.E.Breakell.The influence of corrosion on the wear of cast iron in sulfuric acid solution. Wear,1989,135:119~134
    [8] 黄淑菊.金属腐蚀与防护.西安:西安交通大学出版社,1988
    [9] E Passaglia. The Economic Effects of Corrosion Research. Corrosion, 1979,Vol.35 ,No.3,i~ii
    [10] 朱日彰.金属腐蚀学.北京:冶金工业出版社,1993
    [11] 肖骁,肖松文,刘卫平等.株冶和韶冶锌冶炼过程的生命周期评价和清洁生产措施.有色金属,2003,55(3):72~75
    [12] J A. Akcil, H. Ciftci. A study of the selective leaching of complex sulfides from the Eastern Black Sea Region, Turkey. Minerals Engineering,2002,15 :457~459
    [13] Postlethwaite J, Tinker E B, Hawrylak M W. Erosion-corrosion in slurry pipelines. Corrosion, 1974,30(8):285~290
    [14] 张天成,姜晓霞,路新春等.腐蚀磨损交互作用的定量研究.材料研究学报,1994,8(5):397~402
    [15] 毕红运,姜晓霞,李诗卓等.铸造 Cr-Mn-N 系不锈钢腐蚀磨损行为的研究.金属学报,1997,33(10):1069~1074
    [16] 邵荷生, 曲敬信, 许小棣等. 摩擦与磨损. 北京:煤炭工业出版社,1992
    [17] 魏翔云,郑玉贵,张玉生等.显微组织和元素分布对铁基铸造合金耐冲刷腐蚀性能的影响.金属学报,1994,30(2):91~96
    [18] ZhengYu gui,Yao Zhiming ,Wei Xiangyun ,et al .The synergistic effect between erosion and corrosion in acidic slurry medium.Wear ,1995, 186-187:555~561
    [19] Kim K Y, Bhattacharrya S,Agarwala V S. An Electrochemical Polarization Technique for Evaluation of Wear-Corrosion in Moving Components under Stress.Wear of Materials.Proc.Inter.Conf.on W eat of Materials, 1981,772~778
    [20] R.J.No?l, A.Ball. On the synergistic effects of abrasion and corrosion during wear. Wear, 1983,87:351~361
    [21] Schumacher W. Corrosive wear synergy of alloy and stainless steel. Proc Int Conf on Wear of Materials1985. NewYork:ASME, 1985-Ⅱ:558~566
    [22] B.W.Madsen. Measurement of erosion-corrosion synergism with a slurry wear test apparatus.Wear ,1988,123:127~142
    [23] A.Neville,T.Hodgkiess,J.T.Dallas. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications. Wear, 1995,186-187:495~507
    [24] A. W.Batchelor, G W, Stachowiak. Predicting synergism between corrosive and abrasive wear. Wear,123(1988):281~291
    [25] 张天成,姜晓霞,路新春等.腐蚀磨损交互作用的定量研究.材料研究学报,1994,8(5):397~402
    [26] 黄彦良,姜晓霞,李诗卓.腐蚀磨损交互作用研究中腐蚀分量的一种暂态测量方法. 腐蚀科学与防护技术,1995,7(4):305~309
    [27] 杨院生,曲敬信,邵荷生. 两种金属材料腐蚀磨损的交互作用.摩擦学学报,1996,16(1):47~53
    [28] 郑玉贵,姚治铭,何莉等. 泥浆型冲蚀中冲刷和腐蚀交互作用研究综述. 材料科学与工程,1994,12(4):27~31
    [29] X. Z. Zhao,N. Cui, J. L. Luo,S. Chiovelli. Effects of erosion on corrosion of type 430 and 316 stainless steels in aqueous environments. British Corrosion Journal , 2002, 37 (1): 63~68
    [30] Chakraborty I, Basak A, Chatterjee U K. Corrosive wear behaviourof Cr-Mn-Cu white castirons in sand-water slurry media. Wear, 1991 , 143 (2):203~220
    [31] 郑玉贵,姚治铭, 李生春等.外加电位对0Cr18Ni9Ti不锈钢冲刷腐蚀行为的影响 化工机械,1994, 21(2):78~81,88
    [32] R.C.D. Richardson.The maximum hardness of strained surfaces and the abrasive wear of metals and alloys. Wear,1967,10:353~382
    [33] R.C.D. Richardson. The wear of metals by relatively soft abrasives. Wear,1968,11:245~265
    [34] M.A.Moore, F.S.King.Abrasive wear of brittle solids.Wear,1980,60:123~140
    [35] 任善之,汪孟春,王续宝等. 钨系合金白口铸铁低应力浸蚀磨料磨损的研究.摩擦磨损,1983,1:34~43
    [36] 邓海金,仝建民. 低合金钢的腐蚀磨损. 摩擦磨损, 1988, 2:58~63
    [37] 饶启昌 .稀土对高铬铸铁三体腐蚀磨损特性的影响 .摩擦磨损, 1989, 4:32~36
    [38] Levy A V, Wang B Q, Geng G Q etal. Scale behaviour in erosion-corrosion of low alloy steels. Wear, 1990 , 140 :309~333
    [39] Pourahmadi F, Humphrey JAC. Modeling solid–fluid turbulent flows with application to predicting erosion wear. Physic. Chem. Hydrodyn .,1983,4(3):191~219
    [40] 张安峰,王豫跃,邢建东等. 两种涂层和两种钢在液/固两相流中冲刷与腐蚀的交互作用.金属学报,2004,40(4):411~415
    [41] C.H.Pitt,Y.M.Chang. Jet slurry corrosive wear of high-chromium cast iron and high- carbon steel griding ball alloys. Corrosion,1986,42(6):312~317
    [42] C.H.Pitt,YM.Chang. Electrochemical determination of erosive wear of high carbon steel grinding balls. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Society. 1985,278:166~173
    [43] 郑玉贵,姚治铭,李生春等. 泥浆型冲蚀中冲刷和腐蚀的交互作用.中国腐蚀与防护学报,1993,13(4):390~395
    [44] 姜晓霞,李诗卓.腐蚀磨损的交互作用.化工机械,1991,18(3):150~154
    [45] 刘新宽,马明亮,方其先. 泥浆型冲刷-腐蚀交互作用的研究. 腐蚀与防护,1998,19(6):253~255
    [46] 饶启昌,高义民,刘福玲. 24Cr高铬铸铁三体腐蚀磨损过程中腐蚀与磨损的交互作用. 机械工程学报,1991,27(6):1~6
    [47] 饶启昌,高义民,刘福玲. 高铬铸铁三体腐蚀磨损机理及影响因素的研究.西安交通大学学报,1992,26(1):81~90,106
    [48] Y.S.Yang, J. X. Qu and H.S. Shao. Proc. Int. Conf. on Advances materials, Tokyo, Japan, Aug.31, 1993
    [49] W.J.Tomlinson, M.G.Talks. Erosion and corrosion of pure iron under cavitatingconditions. Ultrasonics,1991,29(2):171~175
    [50] J.R.Shadley, S.A.Shirazi, E.Dayalan. Using an inhibitor to combat erosion-corrosion in carbon steel piping一how much does it help? Proceedings of the 1996 Offshore Technology Conference. Part 4 (of 4), 1996, Houston: Ofshore Technol Conf Richardson,437~443
    [51] M.M.Ruscak, J.Kaplan, J.Zdarek. Flow accelerated corrosion monitoring and control program in WWER nuclear power plant. Proceedings of the International Conference on Pressure Vessel Technology, 1996, Sponsored by ASME,207~218
    [52] M.M.Stack, N.Corlet, S.Zhou. Methodology for the construction of the erosion-corrosion map in aqueous environments. Wear, 1997,203-204:474~488
    [53] 郑玉贵,姚治铭,张玉生等.冲刷与腐蚀的交互作用与耐冲刷腐蚀合金设计.金属学报,2000,36(1):51~54
    [54] 刘新宽,方其先.冲刷腐蚀对不锈钢表面状态的影响.西安交通大学学报,1998,32(40):105~107
    [55] 孙家枢.金属的磨损.北京:冶金工业出版社,1992
    [56] Pourahmadi F, Humphrey JAC. Modeling solid–fluid turbulent flows with application to predicting erosion wear. Physic. Chem. Hydrodyn .,1983;4(3):191~219
    [57] Shewmon P, Sundararajan G. The erosion of metals. Annu. Rev. Mater. Sci., 1983, 13: 303~318
    [58] Robert W.Lyczkowskia, Jacques X.Bouillard.State-of-the-art review of erosion modeling in fluid/solids systems.Progress in Energy and Combustion Science ,2002,28 : 543~602
    [59] I.Finnie.Some reflections on the past and future of erosion.Wear,1995,186-187:1~10
    [60] I.Finnie.Erosion of surfaces by solid particles.Wear,1960,3:87~103
    [61] E Heitz. Mechanistically based prevention strategies of flow-induced corrosion. Electrochemica Acta , 1996 , 41 (4):503~509
    [62] I.Finnie.The Mechanism of Erosion of Ductile Metals.Proc.3rd US Congress of Applied Mechanis,ASME,New York,1958:527~532
    [63] I. Finnie. Some observations on the erosion of ductile metals. Wear,1972,19:81~90
    [64] G.L.Sheldon , I.Finnie.On the Ductile Behavior of Norminally Brittle Materials Erosive Cutting.Trans.ASME, 1966 ,88B: 387~392
    [65] I. Finnie, D. H. McFadden. On the velocity dependence of ductile metals by solid particles at low angles of incidence.Wear 1978;48:181~190
    [66] Bitter J G A. A study of erosion phenomena.Part I. Wear,1963,6: 5~21
    [67] Bitter J G A. A study of erosion phenomena.Part II. Wear,1963,8:61~90
    [68] Neilson J H, Gilchrist A. Erosion by a stream of solid particles. Wear,1968,11:111~122
    [69] M.Mamoun.Analytical models for the erosive-corrosive wear process.Rep.ANL-75-XX-2,1975,appendix Ⅰ(Argonne National Laboratory)
    [70] I.M.Hutchings.Prediction of the resistance of metals to erosion by solid particles.Wear,1975,35: 371~374
    [71] I M Hutchings.A mode for the erosion of metals by spherical particles at normal incidence. Wear,1981,70:269~281
    [72] Sundararajan G, Shewmon P G. A new model for the erosion of metals at normal incidence, Wear ,1983,84: 237~258
    [73] Danian Chen, M.Sarumi, S.T.S.Alhassani, et al. A model for erosion at normal impact.Wear,1997, 205:32~39
    [74] I.Hutchings.Mechanisms of the erosion of metals by solid particles, ASTM STP664,Erosion: Prevention and Useful Applications,1979,p59~76
    [75] Sundararajan G.. An analysis of the localization of deformation and weight loss during single-particle normal impact.Wear,1983 ,84:217~235
    [76] Hien L K, Shewmon P G. Effects of hardness on the solid particle erosion mechanisms in AISI 1060 steel.Wear,1983 ,89:291~302
    [77] J. Gil Sevillano, P. van Houtte and E. Aernoudt. Large strain work hardening and textures. Progress in Material Science ,1980,25:69~412
    [78] Shewmon P G, Sundararajan G.Annual Review of Materials Science,1983,13:301~318
    [79] R.Bellman, A.V.Levy. Erosion mechanism in ductile metals.Wear,1981,70(1):1~27
    [80] A.V.Levy. The solid particle erosion behavior of steel as a function of microstructure. Wear,1981,68(3):269~287
    [81] A.V.Levy.The platelet mechanism of erosion of ductile metals.Wear,1986,108:1~21
    [82] N.P.Suh.The delamination theory of wear.Wear,1973,25:111~124
    [83] N.P.Suh.Scientific and technical problems in erosive wear. Institute on Scientific problems Relevant to Coal Utilization, West Virginia Univ., 1977, West Virginia Univ.Press, Morgantown
    [84] S.Jahanmir, N.P.Suh.Mechanics of subsurface void nucleation in delamination wear. Wear, 1977,44:17~38
    [85] S.Jahanmir. A fundamental study of the delamination theory of wear. Ph. D.Diss., Massachusetts Inst.Technol.,Cambridge,Mass.,1976
    [86] S.Jahanmir.The mechanics of subsurface damage in solid particle erosion. Wear, 1980, 61:309~324
    [87] 吴又陵. 磷酸泵的应用情况剖析.化工机械,1992,2:112~114
    [88] 吉田武司.最近のハステロイ合金の特性と用途.防食技术,1982,31(2):81~86
    [89] 孙可顺.化工料浆泵耐腐合金的开发与应用.水泵技术,1996,6:40~42
    [90] 李志强.湿法磷酸生产用耐蚀合金的研制和发展.化工机械,1991,18(3):155~161
    [91] 丁士元.国内磷复肥用泵及其材料的现状和对策. 化工机械,1991,18(3):133~135
    [92] 丁则仁.湿法磷酸生产中轴流泵和料装泵用材质腐蚀性能的研究.化学工业与工程技术,1998,19(1):20~22
    [93] 江镇海. 湿法磷酸生产装置中耐蚀材料的应用. 腐蚀与防护,1999,20(6):282~284
    [94] 刘培飞.湿法磷酸生产中合金材料的合理选用. 化学工业与工程技术,2002,23(3):19~21
    [95] 吴又陵. 磷复肥装置腐蚀与防护的现状和展望. 全面腐蚀控制,1994,8(3、4):13~18
    [96] 刘焕安. 硫酸用不锈钢研究发展综述. 硫酸工业,1999,1:1~16,57
    [97] 姜晓霞,李诗卓,赵先明等.耐磨耐蚀钢发展途径的探索.材料研究学报,1994,8(4):304~309
    [98] 李诗卓 ,姜晓霞.耐磨蚀合金设计原则.腐蚀科学与防护技术 , 1995, 7(2 ):122~129
    [99] Juri Kolta,B. C.James and Aziz1 Asphahani.Highly Alloyed Austenitic Materialsfor Corrosion Service.Metal Progress,1983,124(4):24~36
    [100] 秦紫瑞,李隆盛,赵军等.耐硫酸泵用钢的选材研究. 化工机械,1994,21(2): 82~88
    [101] 秦紫瑞,李隆盛,郭宁等. 磷酸泵用新型合金钢的组织与性能的研究. 上海金属,2001,23(6):18~22
    [102] 吕崇武.F5合金在湿法磷酸介质中的冲刷腐蚀研究.全面腐蚀控制,1994,8(3/4):1~4
    [103] 徐金麟,王朴安.Km合金的研制及其在轴流泵上的应用.化工机械,1991,18(3):145~149
    [104] 秦紫瑞,李隆盛,林俊涛等.硫酸泵用合金耐蚀性研究. 硫酸工业,1995,3:19~24
    [105] 樊爱民,尤晋明. 高耐磨蚀 R1 合金研究. 钢铁,1996,31(3):51~55
    [106] 宋淑英,姜晓霞,肖跃天.IMRCW-2 合金在磷酸料浆中的腐蚀行为.腐蚀科学与防护技术,1994,6(3):269~273
    [107] 申泽骥,SZDS309 耐磨蚀铸造双相不锈钢,铸造,1996.12:25~28
    [108] 路新春,姜晓霞,李诗卓等. 双相不锈钢腐蚀磨损机理初探.中国腐蚀与防护学报,1994,14(4):297~303
    [109] 路新春,李诗卓,张天成等.固溶处理温度对双相不锈钢在硫酸介质中腐蚀磨损行为的影响.金属学报,1994,30(4):159~164
    [110] 张少宗,施瑞鹤. CD-4MCu 双相不锈钢在稀硫酸介质中的腐蚀磨损行为.化工机械,1997,24(5):267~270,309
    [111] 张少宗,施瑞鹤,黄良余.热处理对双相不锈钢腐蚀磨损性能的影响.机械工程材料,1998,22(3):5~7
    [112] 章晔平.双相不锈钢 CD-4MCu 在料浆泵上的应用.水泵技术,1999,4:24~26
    [113] 盛申远.大型磷复肥装置中转动设备的防蚀选材浅析,化工防腐,1993,1:25~29
    [114] 秦紫瑞,李隆盛,贾克力等.结晶盐浆新型双相不锈钢的研究.化工机械,1994,21(3):132~137,184
    [115] 丁晖. 铸造铬锰氮不锈钢的耐蚀性研究. 铸造,1994,12:14~18
    [116] 丁晖,余刚,袁广银等. 铸造铬锰氮不锈钢在 5%H2SO4 水砂介质中的腐蚀磨损行为. 沈阳工业大学学报, 1997,19(2):33~36
    [117] 丁晖,袁广银,余刚等.稀土对铬锰氮不锈钢在稀硫酸介质中腐蚀磨损性能的影响.中国稀土学报,1997,15(2):146~150
    [118] 肖纪美.铬锰氮奥氏体不锈耐热钢研究.金属学报,1958,1:138~180
    [119] 中科院金属研究所.铬锰氮无镍不锈钢研究.北京:科学出版社,1969
    [120] 程莲萍,雍歧龙,张国亮. 磷酸料浆泵叶轮用新型铁素体不锈钢的研制.昆明理工大学学报,2002,27(2):36~39,42
    [121] 吴南锋,潘国强,余曼萍. 高铬耐磨蚀合金研制及其在磷酸料浆泵上的应用. 铸造,1998,3:26~28
    [122] 郭清胜,黄永昌.高铬钼不锈钢在湿法磷酸中磨损腐蚀行为.腐蚀科学与防护技术,1994,6(4):364~366
    [123] 黄彦良,姜晓霞,李诗卓.腐蚀磨损中几种测量纯机械磨损分量方法的比较.腐蚀科学与防护技术,1996,8(1):49~53
    [124] Fan Aiming,Long Jinming,Tao Ziyun. Failure analysis of the impeller of a slurry pump subjected to corrosive wear.Wear, 1995,181-183:876~882
    [125] 饶启昌,高义民,刘福玲等.介质酸根对高铬铸铁腐蚀磨损特性的影响.西安交通大学学报,1993,27(3):15~18,32
    [126] 樊爱民,龙晋明,廖伦诗.不锈钢在湿法磷酸中腐蚀行为研究. 化工机械,1994,21(5):262~265,309
    [127] 丁一刚.液固流动导致不锈钢腐蚀的电化学行为及交互作用研究. 华中科技大学博士学位论文,2002
    [128] 龙晋明,樊爱民.磷酸中杂质和温度对不锈钢电化学特性的影响. 昆明工学院学报,1994,19(4):39~44
    [129] 霍宇凝,蔡张理,赵岩等. 聚天冬氨酸及其与锌盐的复配物对碳钢缓蚀性能的影响. 华东理工大学学报,2001,27(6):669~672
    [130] 郭稚弧等.缓蚀剂及其应用.武汉:华中工学院出版社,1987
    [131] 叶康民.金属腐蚀与防护概论.北京:高等教育出版社,1993
    [132] B.K. Prasad. Effects of alumina particle dispersion on the erosive–corrosive wear response of a zinc-based alloy under changing slurry conditions and distance. Wear, 2000 ,238: 151~159
    [133] Fai Aiming, Long Jinming, Tao Ziyun. An investigation of the corrosive wear of stainless steels in aqueous slurries. Wear, 1996, 193: 73~77
    [134] 张大伟,毕凤琴,段慧玲.砂浆冲刷腐蚀磨损介质中粒子冲击速度的确定. 大庆石油学院学报,2003,27(4):76~78,123
    [135] I. M. Hutchings. Abrasive and erosive wear tests for thin coatings: a unifiedapproach. Tribology International , 1998, 31( 1–3): 5~15
    [136] K.Muroyama,T.Yoshikawa,S.Takakura and Y.Yamanaka. Mass transfer from an immersed cylinder in three-phase systems with fine suspended particles.Chemical Engineering Science,1997,52(21-22):3861~3868
    [137] S. E.Forrester, G. M.Evans. Computational modelling study of the hydrodynamics in a sudden expansion--tapered contraction reactor geometry. Chemical Engineering Science,1997,52(21-22): 3773~3785
    [138] 田爱民,许宏元,罗先武等. 离心式渣浆泵叶轮的磨损规律研究. 水泵技术,1997,6:7~10
    [139] 许洪元,卢达熔,罗先武等. 离心式渣浆泵叶轮磨损规律研究. 摩擦学学报,1998,18(3):248~253
    [140] H.X. Zhao , A. Yabukia, M. Matsumura , et al. Slurry erosion of plasma-sprayed ceramic coatings. Wear, 1999, 233-235: 608~614
    [141] H.X. Zhao , M. Matsumura , M. Yamamoto .Slurry erosion properties of ceramic coatings and functionally gradient materials.Wear, 1995,186-187: 473~479
    [142] Sang Yul Lee, Gwang Seok Kim, Bum-Suk Kim. Mechanical properties of duplex layer formed on AISI 403 stainless steel by chromizing and boronizing treatment. Surface and Coatings Technology ,2004,177-178:178~184
    [143] H.X. Zhao , H. Goto , M. Matsumura , et al. Slurry erosion of plasma-sprayed ceramic coatings. Surface and Coatings Technology, 1999,115: 123~131
    [144] R.Dasgupta,B.K.Prasad,A.K.Jha, et al. Slurry erosive wear characteristics of a hard faced steel: Effect of experimental parameters.Wear,1997,213:41~46
    [145] Michael Bromark,Mats Larsson,Per Hedenqvist,,Sture Hogmark. Wear of PVD Ti/TiN multiplayer coatings. Surface and Coatings Technology ,1997,90:217~223
    [146] C.H. Tang , F.T. Cheng, H.C. Man. Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese–nickel–aluminium bronze. Materials Science and Engineering A, 2004,373:195~203
    [147] 田保红,徐滨士,马世宁等.高速电弧喷涂 Fe3Al/WC 复合涂层高温冲蚀行为研究.中国表面工程,2000,13(1):22~26
    [148] R.Merello,F.J.Botana,J.Botella, M.V.Matres, M.Marcos. Influence of chemical composition on the pitting corrosion resistance of non-standard low-Ni high-Mn–N duplex stainless steels. Corrosion Science ,2003,45:909~921
    [149] 吴玖.双相不锈钢.北京:冶金工业出版社,1999
    [150] 王亚樵,吴幼林. 不锈钢.北京:化学工业出版社,1991
    [151] 孙文山,丁桂荣,宋爱英等. 新型稀土双相不锈钢—SG52. 兵器材料科学与工程,2004,27(5):44~46,63
    [152] H.H?nnien,J.Romu, R.Ilola et al. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties. Journal of materials processing technology, 2001,23:424~430
    [153] 雍兴跃,林玉珍,刘景军等.双相钢在流动中性含砂氯化物中的磨损腐蚀.金属学报,2001,37(7):745~748
    [154] Young-Hwan Park , Zin-Hyoung Lee. The effect of nitrogen and heat treatment on the microstructure and tensile properties of 25Cr–7Ni–1.5Mo–3W–xN duplex stainless steel castings. Materials Science and Engineering A,2001,297 :78~84
    [155] 崔教林,左景尹,吴玖. 氮元素对25-6Mo3型双相不锈钢耐孔蚀及缝隙腐蚀性能影响的研究. 中国腐蚀与防护学报,1992,12(4):291~300
    [156] 艾文山,吴玖. 氮改善OOCr18Ni5Mo3Si2双相不锈钢应力腐蚀破裂性能的机制.中国腐蚀与防护学报,1991,11(1):9~16
    [157] 崔教林. 氮元素对25-6Mo3双相不锈钢α与γ两相耐点蚀行为的影响. 腐蚀与防护,1997,18(2):17~19,40
    [158] 中科院金属研究所,抚顺钢厂.铬锰氮无镍不锈钢的研究.北京:科学出版社,1969
    [159] 王肇偷.铬锰氮中气体问题的探讨.铸工,1981,3:32~35
    [160] 李建明. 磨损金属学 . 北京:冶金工业出版社,1990
    [161] Johan J. Moverare, Magnus Ode′n. Deformation behaviour of a prestrained duplex stainless steel. Materials Science and Engineering A,2002,337 : 25~38
    [162] Xin-Chun Lu, Ke Shi, Shi-Zhuo Li , Xiao-Xia Jiang. Effects of surface deformation on corrosive wear of stainless steel in sulfuric acid solution .Wear,1999,225-229:537~543
    [163] Sang-Beom Kim, Kyung-Wook Paik , Young-Gil Kim. Effect of Mo substitution by W on high temperature embrittlement characteristics in duplex stainless steels. Materials Science and Engineering A,1998,247 : 67~74
    [164] Kwang Min Lee , Hoon Sung Cho, Dap Chun Choi. Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of d/g interface boundary andgrowth of austenite. Journal of Alloys and Compounds ,1999,285 :156~161
    [165] E. Angelini , B. De Benedetti, F. Rosalbino. Microstructural evolution and localized corrosion resistance of an aged superduplex stainless steel. Corrosion Science ,2004,46 : 1351~1367
    [166] Chan-Jin Park , Hyuk-Sang Kwon , M.M. Lohrengel. Micro-electrochemical polarization study on 25% Cr duplex stainless steel. Materials Science and Engineering A ,2004,372 :180~185
    [167] R.A. Perren , T. Suterb, C. Solenthaler , G. Gullo ,P.J. Uggowitzer , H. Bohni , M.O. Speidel. Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method II. Infuence of precipitates. Corrosion Science ,2001,43 : 727~745
    [168] T.H. Chen , J.R. Yang. Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering A,2001, 311;28~41
    [169] Ryszard Henryk Koztowski. Composite of austenitic-ferritic stainless steel. Journal of Materials Processing Technology, 1995,53:239~246
    [170] 李丕钟,陆世英,王欣增等. 热处理对26–5型双相不锈钢组织和机械性能的影响.钢铁研究学报,1982,2(1):61~67
    [171] Eric Johnson , Yoon-Jun Kim , L. Scott Chumbley , Brian Gleeson. Initial phase transformation diagram determination for the CD3MN cast duplex stainless steel. Scripta Materialia ,2004,50 : 1351~1354
    [172] Wen-Tung Chien, Chung-Shay Tsai. The investigation on the prediction of tool wear and the determination of optimum cutting conditions in machining 17-4PH stainless steel. Journal of Materials Processing Technology, 2003,140: 340~345
    [173] 秦紫瑞,李茅华,吕景序等. 0Cr17Ni7Al沉淀硬化不锈钢的耐蚀性能实验. 上海金属,1999,21(4):20~24
    [174] W.C. Chiang, C.C. Pu, B.L. Yu, J.K. Wu. Hydrogen susceptibility of 17-4 PH stainless steel. Materials Letters ,2003,57 : 2485~2488
    [175] 文道维,薛伟,赵春华. 常用水轮机叶片材料耐磨蚀性能真机试验研究. 大电机技术,1996,30: 49~52
    [176] 李静,胡平,赵慧杰. MgCl2介质中0Cr17Ni4Cu4Nb钢应力腐蚀性能研究. 材料保护,1999,8:32~33
    [177] 赵莉萍,杨慧,李慧琴. 固溶处理和时效对17-4PH沉淀硬化不锈钢组织性能的影响. 特殊钢,2003,24(4):24~25
    [178] 王均,沈保罗,孙志平等. 17-4PH的时效动力学研究. 四川冶金,2004,1:28~30
    [179] 黄根良. 17-4PH 沉淀硬化不锈钢的组织和性能研究. 钢铁,1998,33(4):44~46
    [180] 夏晓玲,李玉清,吴大茂. 不同热处理对 17-4PH 钢过时效组织与性能的影响. 材料科学与工艺, 1997,5(2):106~110
    [181] 孙珍宝,朱谱藩, 林慧国等. 合金钢手册?上册. 北京;冶金工业出版社,1984
    [182] 毛卫民,任慧平,余永宁. 结构钢中含铜析出相的时效强化作用.材料热处理学报,2004,25(2):1~4
    [183] 肖纪美.不锈钢的金属学问题. 北京:冶金工业出版社,1993
    [184] 张安峰,周心艳,邢建东. 铬系白口铸铁在液-固两相流中冲刷腐蚀的交互作用. 铸造技术,2003,24(1):69~71
    [185] 李卫,涂小慧,苏俊义等. 高铬铸铁铝矿浆泵泵壳腐蚀磨损失效分析. 机械工程材料,2000 ,24(2):42~44
    [186] 张永刚. 金属间化合物结构材料 . 北京:国防工业出版社,2001
    [187] Yugui Zheng, Zhiming Yao, Wei Ke. Erosion–corrosion resistant alloy development for aggressive slurry flows. Materials Letters,2000,46: 362~368
    [188] L.柯洛姆比著,赵忠译.不锈钢与热强钢.北京:中国工业出版社,1964
    [189] (美)Donald Peckner, I.M.Bernstein主编,顾首仁,周有德译.不锈钢手册.北京:机械工业出版社,1987
    [190] 康喜范,张廷凯.25-20 型铬镍奥氏体不锈钢的成分优化和组织性能研究. 钢铁研究学报,1995,7(4):35~42
    [191] 中国机械工程学会铸造分会.铸造手册(I).北京:机械工业出版社,2002
    [192] Akihiro Yabuki , Kazuo Matsuwaki, Masanobu Matsumura. Critical impact velocity in the solid particles impact erosion of metallic materials. Wear, 1999,233–235:468~475
    [193] H.McI. Clark, Ryan B. Hartwich. A re-examination of the particle size effect in slurry erosion. Wear ,2001,248:147~161
    [194] H.McI. Clark, L.C. Burmeister. The influence of the squeeze film on particle impact velocities in erosion, Int. J. Impact Eng. 1992,12(3):415~426
    [195] Y. Xie, H.McI. Clark, H.M. Hawthorne. Modelling slurry particle dynamics in the Coriolis erosion tester. Wear ,1999,225–229:405~416
    [196] G. L. Sheldon, I.Finnie.The mechanism of material removal in the erosive cutting of brittle materials. Trans. ASME, Ser.13, J. Engng. Ind. 1966,88:393~400
    [197] Yoshiro Iwai,Kazuyuki Nambu. Slurry wear properties of pump lining materials . Wear,1997, 210 :211~219
    [198] Parslow G I, Stephenson D J, Strutt J E ,et al. Paint layer erosion resistance behaviour for use in a multilayer paint erosion indication technique.Wear, 1997,212 :103~109
    [199] Lam C K, Bremhorst K .A modified form of the k-ε model for predicting wall turbulence.Transactions of the ASME Journal of Fluids Engineering,1981,103:456~460
    [200] 陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [201] S.Nesic, J.Postlethwaite. Hydrodynamics of disturbed flow and erosion-corrosion two- phase flow study.The Canadian Journal of Chemical Engineering,1991,69:704~710
    [202] M.M.Stack,N.Corlett,S. Zhou. Impact angle effects on the transition boundaries of the aqueous erosion-corrosion map. Wear,1999,225(1):190~198
    [203] H.Nanjo, Y.Kurata, N.Sanada, et al. Erosion-corrosion damage of aluminum alloy in a high-speed, high-temperature, two-phase flow.Wear,1995,186-187(2):573~578
    [204] H. McI. Clark. Particle velocity and size effects in laboratory slurry erosion measurements OR… do you know what your particles are doing?. Tribology International ,2002,35: 617~624
    [205] 丁一刚.液固流动导致不锈钢腐蚀的电化学行为及交互作用研究.华中科技大学博士学位论文,2002,11
    [206] 骆素珍,郑玉贵,李劲等. 浆体含砂量和砂粒度对环氧粉末涂层冲蚀规律的影响. 腐蚀科学与防护技术,2002,14(2):63~66
    [207] 张安峰,邢建东,鲍崇高,贾焕如.动态与静态纯腐蚀对定量研究材料冲刷腐蚀交互作用的影响.金属学报,2002,38(5):521~524
    [208] 骆素珍,郑玉贵,李劲等. 环氧粉末涂层的抗冲蚀性能. 材料研究学报,2000,14(5):517~523
    [209] 程则久. 空化和磨蚀中临界含沙量的试验研究. 水利水电技术,1990,2:59~65
    [210] 何筱奎. 不同含沙量不同流速时材料的磨蚀失效特性. 水力发电学报,1996,3:79~86
    [211] S.Turenne,M.Fiset,J.Masounave. The effect of sand concentration on the erosion of materials by a slurry jet. Wear,1989,133:95~101
    [212] 鲍崇高,潘伟,苗赫濯等. 磨粒粒度对SiN结构陶瓷冲蚀磨损性能的影响. 西安交通大学学报,2005,39(11):1219~1222,1263
    [213] O.P.Modi, M.Saxena, B.K.Prasad ,et al. Corrosion behaviour of squeeze cast aluminum alloy-silicon carbide composites. J.Mater.Sci.,1992,27:3897~3902
    [214] M. Saxena, O.P. Modi, B.K. Prasad, et al. Erosion and corrosion characteristics of an aluminium alloy–alumina fibre composite. Wear,1993,169:119~124
    [215] O.P. Modi, M. Saxena, B.K. Prasad, et al. The role of alloy matrix and dispersoid on the corrosion behaviour of cast aluminium alloy composites. Corrosion ,1998,54 :129~134
    [216] Foundry Journal Agency. Prices of castings, foundry raw and auxiliary materials in some regions of China. China Foundry,2005,2(3):204~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700