小麦Vp-1基因的表达特性和STS标记的开发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦成熟期穗发芽是一种世界性的小麦灾害,严重影响小麦品质和产量。目前我国北方的大部分白粒小麦品种对穗发芽高度敏感,收获期遇雨极易引起穗发芽而造成重大经济损失。如何控制小麦穗发芽,是小麦品种改良的关键问题。本试验利用不同穗发芽抗性材料,分离Vp-1及其等位基因;采用半定量RT-PCR的方法,分析Vp-1及其等位基因的表达特性;基于Vp-1及其等位基因序列差异,开发并验证Vp-1 STS标记,并就其有效性与已开发的标记作比较研究;利用Vp-1 STS标记,结合不同穗发芽测定方法,鉴定具有不同穗发芽抗性机制的小麦品种。主要结果如下:
     1.在小麦3B染色体上发现了2个与穗发芽抗性相关的Vp-1的新型等位变异,分别命名为Vp-1Bb和Vp-1Bc,它们与Vp-1Ba(AJ400713)分别具有95.43%和97.89%的同源性;与Vp-1Ba相比,Vp-1Bb和Vp-1Bc在第3个内含子中分别具有193bp的插入和83bp的缺失,分别是由反转座子和转座子引起,在此基础上开发出与穗发芽抗性相关的Vp-1B STS标记,并命名为Vp1B3;经验证,Vp1B3标记可以有效地区分具有不同穗发芽抗性的小麦品种基因型,可用于种质资源的筛选和分子标记辅助育种。
     2.对开花后不同发育时期的Vp-1A、Vp-1B和Vp-1D基因的表达分析显示:开花后25d、30d和35d的幼胚中,虽然Vp-1A、Vp-1B和Vp-1D均存在转录本的错误剪切现象,但只有Vp-1B的正常剪切的转录本丰度在抗、感穗发芽品种间存在差异,且Vp-1Bb和Vp-1Bc比Vp-1Ba具有更高的表达量;用30uM ABA浸泡2d后,3个Vp-1B等位基因在胚中均观测到转录本的表达,尤以Vp-1Bb转录本的表达量最高,但在30uM ABA浸泡4d后,均未观测到Vp-1Bb和Vp-1Bc转录本的表达,而Vp-1Ba转录本的表达量基本没有变化,说明这3个等位基因对ABA的敏感性是不同的,其原因是插入和缺失影响了胚对ABA的敏感性,最终导致了品种对穗发芽抗性的不同差异。
     3.将开发的STS标记Vp1B3与已报道的小麦穗发芽抗性标记MST101、wmc104、Xgwm155的有效性比较可知,Vp1B3、Xgwm155标记与穗发芽抗性相关,而MST101、wmc104标记与穗发芽抗性无关,利用Vp1B3和Xgwm155标记来筛选小麦穗发芽抗性品种,将会提高选择效率和准确性。
     4.利用Vp1B3标记结合整穗发芽法和发芽指数鉴定33份小麦新品系的穗发芽抗性结果表明:红粒抗穗发芽品系CA0489属于Vp1Bb基因型和红色种皮休眠型,CA0481属于Vp1Bc抗穗发芽基因型;白粒抗穗发芽品系CA0509和CA0459的抗性为非Vp1B3类型,其抗性可能与穗部性状和颖壳抑制物有关。
     5.应用Vp1B3标记对中国的38份地方品种、94份历史品种和106份当代品种的Vp-1B基因多样性检测结果表明:Vp1-Ba、Vp1-Bb、Vp1-Bc和Vp-1Be基因型在地方品种中的分布频率分别为45%、18%、34%和3%,在历史品种中分别为30%、10%、60%和0%,在当代品种中分别为31%、1%、68%和0%;而在欧洲小麦材料中发现的Vp-1Bd基因型在本研究的238份实验材料中没有出现。
Pre-harvest sprouting (PHS) of wheat is a international balefulness which reduces the quality and economic value of the grains. Breeding for PHS tolerant cultivars is important in the Northern and Northeastern as well as in the Yangtze River valley region in China. So improvement of PHS tolerance is one of the most important objectives in wheat breeding. In this study, Vp-1 and Vp-1’s allelic varieties had been isolated from different PHS tolerance cultivars, and the expression characterization of the Vp-1 gene was studied by Semi-quantitative RT-PCR. According to the sequence and expression characterization of the Vp-1, a STS marker had been developed and validated, the efficiency was assessed with other three PHS markers and had been used in molecular assisted- selecting. The main details of the result as follows:
     1. Two new Viviparous-1 allelic variants related to PHS tolerance were identified on chromosome 3B of bread wheat, and designated as Vp-1Bb and Vp-1Bc, respectively. Sequence analysis showed that Vp-1Bb and Vp-1Bc had an insertion of 193-bp and a deletion of 83-bp fragment, respectively, which were begot to retrotransposon and transposon. A co-dominant STS marker of Vp-1B gene covering the insertion and deletion region was developed and designated as Vp1B3. Statistical analysis indicated that Vp1B3 was strongly associated with PHS tolerance suggesting that Vp1B3 could be used as an efficient and reliable co-dominant marker in the evaluation of wheat germplasm for PHS tolerance and marker-assisted breeding for PHS tolerant cultivars.
     2. Semi-quantitative RT-PCR analysis showed that alternatively spliced transcripts of the Vp-1A, Vp-1B and Vp-1D homologues were present and there were no differences in the splicing patterns or abundances of Vp-1A and Vp-1D from 25, 30 and 35 DAP embryos between PHS-tolerant and susceptible cultivars. The protein was expressed more highly in genotypes with Vp-1Bb and Vp-1Bc than in those with Vp-1Ba. Furthermore, genotypes with different levels of tolerance to PHS showed different responsiveness to ABA exposure and differences in transcript levels of Vp-1Ba, Vp-1Bb and Vp-1Bc were observed after ABA treatment. The results indicated that insertion or deletion in the third intron region may affect the expression of the Vp-1B gene and its sensitivity to ABA, and thus its resistance to PHS.
     3. Another three PHS tolerance-associated markers: MST101, wmc104 and Xgwm155, as well as Vp1B3, were employed, aimed at assessing the efficiency of these markers in selecting genotypes with higher PHS tolerance. Variations at Vp1B3 and Xgwm155 were associated with PHS response, but not for STS marker MST101 and STMS marker wmc104, and the selection efficiency would be improved by use of both markers together.
     4. Three methods, i.e., spike germination rate (SGR), germination index (GI), and molecular marker Vp1B3, were used to screen the PHS tolerance of 33 new wheat lines. The red grain PHS resistance line CA0489 possessed both Vp1Bb tolerance gene and red grain related dormancy gene; red grain PHS resistance line CA0481 had Vp1Bc tolerance gene. The two white grain PHS resistance lines CA0509 and CA0459 did not contain Vp1 tolerance gene, their PHS tolerance might be related to the characters of spike and the stayers excreted from glumes.
     5. In addition, 38 landraces,94 historical cultivars and 106 modern cultivars were used to evaluate the diversity of the Vp-1B gene associated with PHS tolerance. Four alleles were found in the wheat varieties tested. Frequencies of Vp1Ba alleles, Vp1Bb, Vp1Bc and Vp1Be genotypes were 45%, 18%, 34% and 3%, respectively, in landraces; 30%, 10%, 60% and 0%, respectively, in historical wheat; while 31%, 1%, 68% and 0%, respectively, and no Vp-1Bd genotype in studied 238 cultivars, which presented in Europe wheat cultivars, was found in this study.
引文
1 Groos C, Gay G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trai loci analysis in a white × red grain bread-wheat cross [J]. Theor. Appl. Genet., 2002, 104: 39-47
    2 Humphreys D G, Noll J. Methods for characterization of pre-harvest sprouting resistance in a wheat breeding program [J]. Euphytica, 2002, 126: 61-65
    3 Derera N F, Bhatt G M. On the problem of pre-harvest sprouting of wheat [J]. Euphytica, 1977, 26: 299-308
    4 Derera N F. The harmful harvest rain [J]. J. Agric. Sci., 1982, 48: 67-78
    5 Gordon I L, Selection against sprouting damage in wheat. III Dormancy, Germinative,Alpha-amylase, grain redness and flavanols [J]. Aust. J. Agric. Res., 1979, 30: 387-402
    6 Derera N F. Preharvest field sprouting in cereal [M]. CRC Press, 1989
    7 Hagemann M C, Ciha A J. Evaluation of methods used in testing wheat susceptibility to preharvest sprouting [J]. Crop Science, 1984, 24: 249-254
    8 肖世和, 闫长生. 小麦穗发芽研究[M]. 中国农业科学技术出版社, 2002, p92-99
    9 Campbell J A. A new method for detection of sprout damaged wheat using nephlometric determination of alpha-amylase activity [J]. Cereal Res., 1980, 8: 107-112
    10 张海峰, Zemetra R S. 冬小麦穗发芽抗性及其鉴定方法的研究[J]. 作物学报, 1989, 15(2): 116-122
    11 Masojc P, Marths L R. Variations of the levels of α-amylase and endogenous α-amylase inhibitor in rye and tritical grain [J]. Swedish J. Agric. Res., 1991, 21: 3-9
    12 张海峰, 卢荣禾. 小麦穗发芽抗性机理与遗传研究[J]. 作物学报, 1993, 19(6): 523-530
    13 沈正兴, 俞世蓉. 小麦品种穗发芽抗性研究[J]. 中国农业科学, 1991, 24(5): 44-50
    14 Gale M D. The genetics of pre-harvest sprouting in cereals, particularly in wheat. In: Pre-harvest Field Sprouting in Cereals [C]. Derera NF (Eds). CRC Press Inc., Boca Raton, USA, 1989, 85-110
    15 Gale M D, Flintham J E. Cereal comparative genetics and pre-harvest sprouting [J]. Euphytica, 2002, 126: 21-25
    16 何震天,陈秀兰. 白皮小麦抗穗发芽研究[J]. 麦类作物学报, 2000, 20(2): 84-87
    17 闫长生. 中国北方冬小麦品种穗发芽抗性的遗传变异[D] 中国农业科学院研究生学位论文. 2002
    18 Himi E, Kazuhiko N. Red grain color gene (R) of wheat is a Myb-type transcription factor [J]. Euphytica, 2005, 143: 238-242
    19 Laura P, Fernando C. Expression analysis of a GA 20-oxidase in embryos form two sorghum lines with contrasting dormancy: possible participation of this gene in the hormonal control of germination [J]. J. Exp. Bot., 2003, 54: 2071-2079
    20 Peter E T, Rosa M B. Differentially expressed genes associated with dormancy or germination ofArabidopsis thaliana seeds [J]. Planta, 2005,221: 637-647
    21 Lullien-Pellerin V, Popineau Y. Reversible changes of the wheat gamma 46 gliadin conformation submitted to high pressures and temperatures [J]. Eur. J. Biochem., 2001, 268: 5705-5712
    22 Upadhyay M P. Characterization of pre-harvest sprouting resistance in Clark’ scream white winter wheat [J]. Euphytica, 1988, 37: 85-92.
    23 Li C D, Ni PX. Genes controlling seed dormancy and pre-harvest sprouting in rice-wheat- barley comparison [J]. Funct Integr Genomics, 2004, 4: 84-93
    24 Holdsworth M, Kurup S. Molecular and genetic mechanisms regulating the transition from embryo development to germination [J]. Trends Plant Sci., 1999, 4: 275-280
    25 Kermode A R, Fisher S A. Accumulation and proteolytic processing of vicilin deletion-mutant proteins in the leaf and seed of transgenic tobacco [J]. Planta, 1995, 197: 501-13
    26 张海萍, 常成. 小麦胚休眠中 ABA 信号转导的蛋白质组分析[J]. 作物学报, 2006, 32(5): 690-697
    27 Gale M D, Flintham J E. Alpha-amylase production in the late stages of grain development-An early sprouting damage risk period?[A]. In: Third International Symposium on Pre-Harvest Cereals [C]. Kruger J E and LaBege D E (Eds). Westview Press Inc., Boulder Co.USA, 1983, 29-35
    28 Mrva K, Mares D J. Molecular markers associated with late maturity alpha-amylase (LMA) in wheat [J]. In: Proceedings of 54th Australian Cereal Chemistry Conference and 11th Wheat Breeders Assembly [C]. Black C K, Panozzo J F, Rebetzke G J (Eds). 2004, p150-151
    29 Morris C F, Anderberg R J. Molecular cloning and expression of abscisic acid-reponsive genes in embryos of dormant wheat seeds [J]. Plant Physiology, 1991, 95: 814-821
    30 Mrva K, Mares D J. Environmental and genetic factors that control late maturity α-amylase in wheat [C]. In: Proceedings of the 44th Australian Cereal Chemistry Conference,1994, 78-79Mrva K, Mares D J. Environmental and genetic factors that control late maturity α-amylase in wheat [C]. In: Proceedings of the 44th Australian Cereal Chemistry Conference,1994, 78-79
    31 Mrva K, Mares D J. Inheritance of late maturity α-amylase in wheat [J]. Euphytica, 1996, 88: 66-67
    32 Mrva K, Mares D J. Molecular markers associated with late maturity alpha-amylase (LMA) in wheat [J]. In: Proceedings of 54th Australian Cereal Chemistry Conference and 11th Wheat Breeders Assembly [C]. Black C K, Panozzo J F, Rebetzke G J (Eds). 2004, p150-151
    33 原亚萍, 陈孝. 小麦穗发芽的研究进展[J].麦类作物学报, 2003, 23(3): 136-139
    34 Mathewson P R, Fahrenhoz C H. Results of collaborative testing using a simplified rapid colorimetric Alpha-Amylase assay for evaluation of sprouted wheat [J]. Cereal Chemistry, 1982, 59:108-112
    35 白先权,王楚桃. 青霉素促进小麦胚乳 a-淀粉酶合成机理初探[J].核农学报, 1999, 1: 39-46
    36 Hageman M C, Ciha A J. Evalution of methods used in testing wheat susceptibility to preharvestsprouting [J]. Crop Science, 1982, 22: 584-588.
    37 Hageman M C, Ciha A J. Evalution of methods used in testing wheat susceptibility to preharvest sprouting [J]. Crop Science, 1982, 22: 584-588.
    38 Masojc P, Zawistowski J. A combined monoclonal and polyclonal antibody sandwich ELISA for quantification of the endogenous alpha-amylase inhibitor in barley and wheat [J]. Journal of Cereal Science, 1993, 17:115-124
    39 肖世和,陈孝. 大麦 a-淀粉酶基因抑制基因对小麦 a-淀粉酶的抑制作用研究[J].作物学报, 1998, 25 (6): 763-767
    40 原亚萍, 陈孝. 大麦有益基因向普通小麦到入的研究进展[J]. 麦类作物学报, 2004, 24(4): 129-132
    41 肖世和. 国外小麦抗穗发芽研究概况[J]. 国外农学-麦类作物, 1985, (6): 13- 16
    42 兰秀锦, 王志容. 小麦抗穗发芽的鉴定及其灌浆过程中胚、种皮和颖壳三因素与籽粒发芽率的关系[J]. 四川农业大学学报,1996, 14 (4) : 533-536
    43 蒋国梁, 陈兆夏等. 白皮小麦收获前穗发芽及品种抗性机制探讨[J]. 作物学报, 1998, 24 (6) : 793-798
    44 Come D, Lenoir C, Corbineau F. La dormancy des aerials et son elimination[J]. Seed Sci. Techno l., 1984, 12: 633
    45 秦代红. 小麦抗穗发芽生理[J]. 植物生理学通讯, 1990, (6): 62-64
    46 赵笃乐. 冬小麦籽粒发育过程中休眠性的变化[J]. 种子, 1999, (3): 18-20
    47 张海峰, R. S. Zemetra. 冬小麦穗发芽抗性及其鉴定方法的研究[J]. 作物学报, 1989, 15 (2) : 116-122
    48 Wu J M, Carver B F. Sp rout damage and pre-harvest sp rout resistance in hard wh ite w inter wheat [J]. Crop Sci., 1999, 39: 441-447
    49 昌小平. 对冬小麦品种穗发芽抗性的初步研究[J]. 作物品种资源, 1997, (4): 34-35
    50 吴纪民, 刘世家. 徐勇. 不同颜色小麦籽粒的发芽特性和生理特征的研究[J]. 种子, 1995, (1): 21-24
    51 Weidner S, Krupa U,Amarowicz R, Abe M K S. Phenolic copounds in embryos of triticale caryopsis at different stages of development and maturation in normal environment and after dehydration treatment [J]. Euphytica, 2002, 126: 115-122
    52 Gatford KT, Hearmden P. Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii [J]. Euphytica, 2002, 126: 67-76
    53 Neilsen M T. Effects of weather variables during maturation on p re- harvestsp routing of hard white w inter wheat [J], Crop Science, 1984, 24: 779-782
    54 Reddy L V, M etzger R J. Effect of temperature on seed do rmancy of wheat [J]. Crop Science, 1985, 25: 455-458
    55 Lunn G D, Kettlewell P S. V ariation in dormancy duration of the U. K. wheat cultivar ho rnet dueto environmental conditions during grain development [J]. Euphytica, 2002, 126: 89-97
    56 Takahashi N. Effect of environmental facto rs during seed formation on p re-harvests sp routing [J]. Cereal Res. Commun, 1980, 8: 175-183
    57 Ueno K, Kato T. Control of germ ination ability during ripening and after ripening wheat seeds, In: W eipert D (Ed. ), Pre-harvest Sp routing in Cereals [C], association of Cereal research Federal. Center for Cereal, Potato and Lipid Research [J]. Detmold,1998, 49-56
    58 赵同芳. 成熟度与收获后各种处理对小麦休眠的影响[J]. 植物学报, 1957, 6 (1) : 80-90
    59 Black M, Butler J. Contro l and development of dormancy in cereals, In:M ares DJ (Ed. ) , 4th Int Symp of pre-harvest Sp routing in Cereals[C]. 1987, p379-392
    60 Mares D J. Temperature dependence of germ inability of wheat grain (triticum aestivum L.) in relation to p re2harvest sp routing [J]. Aust. J. Agric. Res., 1984, 35: 115-128
    61 Ueno K. Effects of desiccation and a change in temperature on germ ination of immature grains of wheat (T riticum aestivum l) [J]. Euphytica, 2002, 126: 107-113
    62 Nyachiro J M, Clake F R, DePauw R M, et al. Temperature effects on seed germ ination and exp ression of seed do rmancy in wheat [J]. Euphytica, 2002, 126: 123-127
    63 Bewley J D. Seed germination and dormancy [J]. Plant Cell, 1997, 9: 1055-1066
    64 Hilorst H W M, Cohn M A. Are celluar membranes invo lved in the contro l of seed do rmancy? [C]. In:V iemont J D & Crabbe J(Ed. ). Dormancy in plants from wholep lant behavior to cellular control UKW allingfo rd: CABI Press, 2000, p275-285
    65 Torada A, Amano Y. Effect of seed coat co lo r on seed do rmancy in different environments [J]. Euphytica, 2002, 126: 99-105
    66 King R W. Water up take and pre-harvest sprouting damage in wheat: grain characteristics [J]. Aust. J. Agric. Res., 1984,35: 337-345
    67 Ziegler P. Carbohydrate degradation during germ ination, In: Kigel J, Galili G (Ed). Seed development and germ ination [C]. New York: Marcel Dekker Press, 1995, p447- 467
    68 Jacobsen J V, Pearce D W. A bscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley [J]. Physio. Logia. Plantarum, 2002, 115: 428-441
    69 Huang G, M arston E V. α-amylase activity and pre-harvestsp routing damage in Kansas red and white wheat [J]. J. Agric. Food Chem. 1980, 28: 509
    70 Patrick. B, Margaret. E S. Raffinose accumulation in maize embryos in the absence of a fully functional Vp1 gene product [J]. Planta, 1997, 203: 222-228
    71 Bailey P C, Mckibbin R S. Genetic map location for orthologous VP1genes in wheat and rice [J]. Theor. Appl. Genet., 1999, 98: 281-284
    72 Jones H D, Peters N C B. Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS 1 homologue in embryos of a vena fatua [J]. The Plant Journal, 1997, 12: 911-920
    73 Nakamura S, Toyama T. Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars [J]. J. Exp. Bot., 2001, 52: 875-876
    74 Rowan S M, Mark D W. Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species [J]. PNAS, 2002, 99:10203-10208
    75 Wilkinson M D, Mckibbin R S. Use of comparative molecular genetics to study pre-harvest sprouting in wheat [J]. Euphytica, 2002, 126: 27-33
    76 Flintham J E. Sprouting risks and genetic strate-gies for breeding resistant wheats. In: Ringlund K, Mosleth E, Mares D J (Eds). Pre-harvest sprouting in cereals 1989 [C], Westview Press/Boulder, San Fran-cisco, Oxford, 1990, 176–182
    77 Anderson J A, Sorrells M E. RFLP analysis of genomic regions associated with resistance to pre-harvest sprouting in wheat [J]. Crop Sci., 1993, 33: 453–459
    78 Roy J K, Prasad M. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with pre-harvest sprouting tolerance [J]. Theor. Appl. Genet., 1999, 99: 336-340
    79 Zanetti S, Winzeler M. Genetic analysis of pre-harvest sproutingin a wheat × spelt cross [J]. Crop Sci., 2000, 40: 1406-1407
    80 Mares D. Mrva EK. Cheong EJ. A QTL located on chromosome 4A associated with dormancy. Theor Appl Genet, 2005, 7:1357-1364
    81 Flintham J. Different genetic components control coat-imposed and embryo-imposed dormancy [J]. Seed Sci. Res., 2000, 10: 43-50
    82 Flintham JE, Adlam R. Mapping genes for resistance to sprouting damage in wheat [J]. Euphytica, 2002, 126: 39-45
    83 Ulrike L, Marion S R. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.) [J]. Euphytica, 2005, 143: 247-249
    84 KulWal PL, Kumar N. Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat [J]. Theor. Appl. Genet., 2005, 111: 1052-1059
    85 King R W, Wettsitein K P. Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat [J]. Euphytica, 2000, 112: 157-166
    86 Flintham J E, Angus W J. Heterosis, overdominance for grain yield, and alpha-amylase activity in F1 hybrids between near-isogenic Rht drawf and tall wheats [J]. J. Agric. Sci., 1997, 129: 371-378
    87 Rybka K. An approach to identification of rye chromosomes affecting the pre-harvest sprouting in triticale [J]. J. Appl. Genet., 2003, 44: 491-496
    88 Marta T, Piotr M, Pawel M. Pyramiding genes affecting sprouting resistance in Rye by means of marker assisted selection [J]. Euphytica, 2005, 143:257-260
    89 Jacobsen J V, Beach L R. Control of transient of α-amylase and rRNA genes in barely aleurone protoplasts by gibberellic acid and abscisic acid [J]. Nature, 1985, 316: 275-277
    90 Olsen O A, Klemsdal S S. Molecular strategies for improving pre-harvest sprouting resistance in cereal. Fifth International Symposium on Pre-harvest Sprouting in Cereals [C]. Westview Press, 1990, p96-97
    91 West M A L, Harada J J. Embryogenesis in higher plants: an overview [J]. Plant Cell,1993, 5: 1361-1369
    92 Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds [J]. Plant J., 2000, 21: 143-155
    93 Lopez-Molina L, Mongrand S, Chua N H. A post-germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factors in Arabidopsis [J]. Proc. Natl. Acad. Sci., 2001, 98: 4782-4787.
    94 Lopez-Molina L, Mongrand S, McLachlin D T. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination [J]. Plant J., 2002, 32: 317-328.
    95 Rohde A, De Rycke R, Beeckman T. ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings [J]. Plant Cell, 2000a, 12: 35-52
    96 Rohde A, Kurup S, Holdsworth M. ABI3 emerges from the seed [J]. Trends Plant Sci., 2000b, 5: 418-419
    97 Rohde A, Prinsen E, De Rycke R. PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar[J]. Plant Cell, 2002, 14: 1885-1901
    98 Rohde A, Van Montage M, Boerjan W. The ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis [J]. Plant Cell Environ, 1999, 22: 261-270
    99 Brady S M, Sarkar S F, Bonetta D. The ABSCISIC ACID INSESITIVE (ABI3) gene is modulated by farnesylation and is involved in auxin signalling and lateral root development in Arabidopsis. Plant J, 2003, 34: 67-75
    100 Suzuki M, Kao C Y, Cocciolone S, McCarty D R. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots [J]. Plant J., 2001, 4: 409-418.
    101 Suzuki M, Kao C Y, Cocciolone S, McCarty D R. Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots [J]. Plant J., 2001, 4: 409-418.
    102 Hattori T, Terada T, Hamasuna S T. Sequence and functional, analyses of the rice gene homologous to the maize Vp1 [J]. Plant. Mol. Biol., 1994, 24: 805-810
    103 Bobb A J, Eiben H G, Bustos M M. PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters [J]. Plant J., 1995, 8: 331-343
    104 Jones H D, Holdsworth M J, Holdsworth M J. Genotype and environment interact to control dormancy and differential expression of the VIVIPAROUS1 homologue in embryos of Avena fatus [J]. Plant J., 1997, 12: 911-920
    105 Shiota H, Watabe K, Watabe K. C-ABI3, the carrot homologue of the Arabidopsis ABI3,is expressed during both zygotic and somatic enbryogenesis and functions in the regulation of embryo-specific ABA-inducible genes [J]. Plant Cell Physiol, 1998, 39: 1184-1193
    106 Rohde A, VanMontagu M, VanMontagu M. Isolation and expression analysis of an ABSCISIC ACID-INSENSITIVE3 (ABI3) homologue from Populus trichocarpa [J]. J. Exp. Bot., 1998, 49: 1059-1060
    107 Shingo N. Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars [J]. J. Exp. Bot., 2001, 52: 875-876
    108 Giraudat J Valon C Valon C. Isolation of Arabidopsis ABI3 gene by positional cloning [J]. Plant Cell, 1992, 4: 1251-1261
    109 Suzuki M, McCarty D R, McCarty D R. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity [J]. Plant Cell, 1997 9: 799-807
    110 Ezcurra I, Nehlin L, Nehlin L. Transactivation of the Brassia napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ARBE, whereas B3 interact with an RY/G-box [J]. Plant J., 2000, 24: 57-66
    111 Stone S L, Yee K M. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development [J]. Proc. Natl. Acad Sci. USA, 2001, 98: 11806-11811
    112 Bumlein H, LuerBen H. The FUS3 gene of Arabidopsis athaliana is a regulator of gene expression during late embryogenesis [J]. Plant J., 1994, 3: 379-387
    113 Reidt W, Ellerstrom M, Ellerstrom M. Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product [J]. Plant J., 2000, 21: 1-8
    114 Kroj T, Valon C, Valon C. Gene regulation of storage protein gene expression in Arabidopsis [J]. Development, 2003, 130: 6065-6073
    115 Lewin B. Genes Ⅷ [M]. 2004, Pearson, Prentice Hall
    116 Yutzey K E, Kline R L. An internal regulatory element controls troponin I gene expression [J]. Mol. Cell Bio., 1998, 9: 1397-1405
    117 Fiume E, Christou P. Introns are key regulatory elements of rice tubulin expression [J]. Planta, 2004, 218: 693-703
    118 Kapranov P, Routt S M. Nodule-specific regulation of phosphatidylinositoltransfer protein expression in Lotus japonicus [J]. Plant Cell, 2001, 13:1369-1382
    119 Gazzani S, Gendali A R. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions [J]. Plant Physiol, 2003,132: 1107-1114
    120 Michaels S D, He Y. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behaviour in Arabidopsis [J]. Proc. Natl. Acad Sci. USA,2003, 100:10102-10107
    121 Sheldom C C, Conn A B. Different regulatory regions are required for the vernalization –induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression[J]. Plant Cell, 2002,14: 2527-2537
    122 Wang H Y, Lee M M. Regulation of the cell expansion gene RHD3 during Arabidopsis development [J]. Plant Physiol., 2002, 129: 638-649
    123 Fu D, Szücs P. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barely and wheat [J]. Mol. Genet. Genomics, 2005, 273:54-65
    124 Erkkil? M J, Leah R. Alleledependent barely grain β-amylase activity [J]. Plant Physiol., 1998, 117: 679-685
    125 Chang K C. Critical regulatory domains in introns 2 of a porcine sarcomeric myosin heavy chain gene [J]. Journal of Muscle Research and Cell Motility, 2000, 21: 451-461
    126 Kim C H, Kim H S. A previously underscribed intron and extensive 5’ upstream sequence, but not Phox2a-mediated transactivation , are necessary for high level cell type-specific expression of the human no repinephrine transporter gene [J]. J. Biol. Chem., 1999, 274: 6507-6518
    127 Klett C P, Bonner T L. Identification and characterization of the rat M1 muscacarinic receptor promoter [J]. J. Neurochem, 1999, 72: 900-909
    128 Donath C P, Mendel R. Intron-dependent transient expression of maize GapA1 gene [J]. Plant Mol. Bio., 1995, 28: 667-676
    129 Borokov A Y. Role of the leader intron in regulation of the exoression of the potato sucrose synthase gene [J]. Plant Physiol., 1997, 114(Suppl): 64-71
    130 谢先芝,吴乃虎. 番茄蛋白酶抑制剂 II 基因的分离及其内含子功能 [J]. 科学通报, 2001, 46(11):934-938
    131 王金发. 人雄激素芳香化酶基因内含子中启动子的研究[J]. 中山大学学报, 1997, 36(6): 6-9
    132 Sheriar G, Hormuzdi. A gene-targeting approach identifies a function for the first intron in expression of the α1 (I) cillagen gene [J]. Mol. Cell Biol., 1998, 18: 3368-337
    133 Walker-Simmons M. K. Enhancement of ABA responsiveness in wheat embryos at higher temperature [J]. Plant, Cell and Environment, 1998, 11: 769-775
    134 Gale KR, Ma W. Simple high-throughput DNA markers for genotyping in wheat[C] In: Eastwood R, Hollamby G,Rathgen A, Gororo N, eds. Breeding of 10th Assembly of the Wheat Breeding Society of Australian, 2001, p26-31
    135 Yan L, Bhave M. The gene encoding granule-bound starch syntheses at the waxy loci of the A, B, and D progenitors of common wheat [J]. Genome, 2000, 43: 264-272
    136 Alexei F, Scott R. Mystery of intron gain [J]. Genome Res., 2003, 13: 2236-2241
    137 Wilkinson M, Lenton J. Transcripts of VP-1 homologues are alternatively spliced within the Triticeae tribe [J]. Euphytica, 2005, 143: 243-246
    138 Fedoroff N, Wessler S. Isolation of the transposable maize controlling elements Ac and Ds [J]. Cell, 1983, 85: 235-242
    139 Wessler S R, Varagona M J. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map [J]. Proc. Natl Acad Sci. USA, 1985, 82: 4177-418
    140 Wessler S R, Baran G. The maize transposable Ds element is spliced from RNA [J]. Science, 1987, 237: 916-918
    141 Patron N J, Smith A M. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5 -non-coding region [J]. Plant Physiol., 2002, 130: 190-198
    142 Domon E, Fujita M. The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from East Asia [J]. Theor. Appl.Genet., 2002, 104: 132-138
    143 McKibbin RS, Wilkinson MD, B. Transcripts of Vp-1 homologues are misspliced in modern wheat and ancestral species [J]. Proc Natl Acad Sci USA, 2002, 99: 10203-10208
    144 Suzuki M, Ketterling M G. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling [J]. Plant Physiol., 2003, 132: 1664-77
    145 McCarty DR, Hattori T. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator [J]. Cell, 1991, 66: 895-90
    146 Warner R, Kudrna D. Dormancy in wheat grain-mutant of Chinese Spring wheat (Triticum aestivum L.) [J]. Seed Sci. Res., 2000, 10: 51-60
    147 Nambara E, Keith K. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene [J]. Plant Cell Physiol., 1994, 35: 509-13
    148 Walker-Simmons M, Sesing J. Temperature effects on embryonic abscisic acid levels during development of wheat grain dormancy [J]. J. Plant Growth Regul., 1990, 9: 51-56
    149 Zhang H P, Chang C. Proteomic analysis on abscisic acid signal transduction in embryo dormancy of wheat (Triticum aestivum L.) [J]. Acta Agron. Sin, 2006a, 32: 690-697
    150 Zhang X R, Garreton V. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation [J]. Genes & Development, 2006b, 19:1532-1543
    151 Bassam, BJ, Caetano-Anolles G. Fast and sensitive sliver staining of DNA in polyacrylamide gels [J]. Analytical Biochem., 1991, 196: 80-83
    152 Xiao SH, Yan CS, Zhang HP. Studies for Preharvest Sprouting of Wheat [M]. Beijing ,China Press of Agricultural Science and Technology, 2002, p: 266-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700