根际氧水平对不同类型水稻形态与生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以中旱221、中浙优1号和深水稻IR45765-3B-4-3-2(以下简称深水稻)为试验材料,采用水上种植的方法,以氮气罐和充气泵为溶解氧调节源,利用溶解氧在线控制仪设定五个供氧水平,分别为CK(全生育期不做溶解氧调节)、2 mg/l、4mg/l、6mg/l和8mg/l溶解氧浓度,研究不同根际氧浓度对不同类型水稻根系生长、地上部群体建成、花后衰老进程以及光合特性和产量的影响,探讨根际氧水平对不同类型水稻形态与生理特性的影响以及不同类型水稻适宜的根际溶解氧浓度。主要试验结果如下:
     1、不同类型水稻最长根长都随氧浓度升高而降低;不同氧浓度对根条数和根系体积、单株根系总长度的影响一致,较高的氧浓度对旱稻有利,而杂交水稻和深水稻对氧浓度有个最适范围,杂交水稻为4-6mg/l,深水稻为2-4mg/l;始蘖期、最大分蘖期、齐穗期中旱221根系总吸收面积和活跃吸收面积均随氧浓度的增加而增加,中浙优1号和深水稻随着氧浓度升高表现出先升后降的趋势,中旱221在8mg/l氧浓度下达到最大值,中浙优1号在6mg/l氧浓度下达到最大值,而深水稻在4mg/l氧浓度下达到最大值。
     2、不同的溶解氧浓度处理对三种类型水稻的株高均无明显影响,株高随生育进程的变化趋势受氧浓度的影响也不明显。不同氧浓度处理对于不同需氧类型水稻的分蘖在分蘖盛期前影响不大,适宜的氧浓度可以提高成穗率,增加有效穗数,提高结实率,三种水稻分别在8mg/l、6mg/l和4mg/l氧浓度处理下获得最高产量。中旱221在8mg/l溶解氧处理下干物重最大,中浙优1号6mg/l处理下最大,深水稻为4mg/l处理下最大。适宜的氧浓度(中旱221为8mg/l,中浙优1号为6mg/l,深水稻为4mg/l)会提高水稻主要生育时期不同部位的含氮量,提高成熟期籽粒中氮的含量,增加齐穗期功能叶片的氮含量。
     3、综合分析叶片和根系衰老过程中的SOD、POD活性、叶绿素含量、MDA含量、可溶性糖含量和可溶性蛋白等各项生理指标可以得出,对中旱221衰老延缓作用大小的氧浓度处理排列为8mg/l>6mg/l>4mg/l>2mg/l>CK ,而浙优1号为6mg/l>4mg/>2mg/l>8mg/l>CK ,深水稻为4mg/l>2mg/l>6mg/l>8mg/l>CK。
     4、中旱221在8mg/l氧浓度下、中浙优1号在6mg/l的氧浓度下、深水稻在4mg/l氧浓度下顶三叶获得最高的净光合速率、气孔导度以及蒸腾速率和最低的胞间CO2浓度。同一类型水稻在最大分蘖期和齐穗期的荧光参数对根际氧浓度的响应一致,但不同类型水稻间差异明显。光合特性和荧光特性各项参数分析表明,不同氧浓度处理对水稻光能利用率的影响在不同类型水稻间不同,中旱221随氧浓度升高光能利用率升高,中浙优1号光能利用率随氧浓度升高呈先升高后下降的趋势,在6mg/l氧浓度处理下达到最大值;深水稻光能利用率的随氧浓度升高的变化趋势与中浙优1号相似,但在4mg/l氧浓度处理下即达到最大。
Water culture experiments were conducted with Zhongzheyou 1, Zhonghan 221 and Deep water rice IR45765-3B-4-3-2(hereinafter referred to as Deep water rice) to study the effect of different dissolved oxygen concentration in rhizosphere on the root development characteristics, crop population structure, senescence after flowering , yield and photosynthesize and yield of rice. Set five treatments of dissolved oxygen concentration (8mg/l, 6mg/l, 4mg/l and 2 mg/l and CK) by dissolved oxygen controlling instrument online, with nitrogen cylinders and aerating pump as dissolved oxygen adjusting source. The main results showed as follow:
     1. The longest root of different types of rice is decreased with the oxygen concentration increases, high concentration of oxygen increase total root length. Root number and volume had the same trend with oxygen concentration increased.in different types of rice. Upland rice need higher concentration of oxygen, hybrid rice and deep water rice have the optimal range, hybrid rice is 4~6mg/l, while the deep water rice is 2~4mg/l. In initial tillering, maximum tillering and full panicle stage, the total root absorption area and root active absorption area of Zhonghan 221 were increased when oxygen concentration increased, while the total root absorption area and root active absorption area of Zhongzheyou 1and deep water rice first increased and then decreased when oxygen concentration increased. Zhonghan 221 reached maximum in 8mg/l oxygen treatment, Zhongzheyou 1 reached maximum in 6 mg/l oxygen treatment, while deep water rice reached maximum in 4 mg/l oxygen treatment.
     2. Different dissolved oxygen levels have no obvious effect on the plant height and its development process in three types of rice. Different dissolved oxygen levels have no obvious effect on tiller of different types of rice before maximum tillering stage, but higher oxygen concentration increased effective panicles. Zhonghan 221 reached maximum dry matter weight in 8mg/l oxygen treatment, Zhongzheyou 1 reached maximum dry matter weight in 6mg/l oxygen treatment, while Deep water rice reached maximum dry matter weight in 4mg/l oxygen treatment. Suitable oxygen concentration (Zhonghan 221: 8mg/l, Zhongzheyou 1: 6mg/l, and deep water rice: 4mg/l ) improved the nitrogen content of different parts of the rice during the main growth period; and also improved nitrogen nitrogen content in grain and the nitrogen content in function leaves at full panicle stage.
     3. Integrated the SOD and POD activity, chlorophyll content, MDA content, soluble sugar content and soluble protein content in leaves and roots after flowering in different treatment, The order of five treatments delayed senescence process of different types are different. The order of Zhonghan 221 is 8 mg/l>6 mg/l>4 mg/l>2 mg/l>CK,Zhongzheyou 1 is 6 mg/l>4 mg/>2 mg/l>8 mg/l > CK,while Deep water rice is 4 mg/l>2 mg/l>6 mg/l>8 mg/l>CK.
     4. Zhonghan 221 in the 8mg/l oxygen treatment, Zhongzheyou 1 in the 6 mg/l oxygen treatment, and Deep water rice in the 4 mg/l oxygen treatment, top trilobites have the highest net photosynthetic rate, stomatal conductance and transpiration rate and the lowest intercellular CO2 concentration. And in this oxygen treatment three types of rice also obtained the highest yield. The fluorescent parameters in different types of rice with oxygen concentration trend of increased in maximum tillering stage and full panicle stage is consistent. Comprehensive photosynthetic fluorescence various parameters, different oxygen concentration have different positive influence on three types of rice, the order of Zhonghan221 is 8 mg/l > 6 mg/l > 4 mg/l >2 mg/l > CK, Zhongzheyou 1 is 6 mg/l > 4 mg/l > 2 mg/l > 8 mg/l > CK, and Deep rice is 4 mg/l >2 mg/l > 6 mg/l >8 mg/l > CK.
引文
1.曹树青,邓志瑞,翟虎渠,等.杂交水稻根系活力机器衰退特性的配合力及杂种优势分析.中国水稻科学,2002,16(1):19-23.
    2.蔡永萍,左震东,杨其光.杂交稻开花后根系活力与旗叶衰老和产量形成的关系.中国农学通报,1998,(14):17- 20
    3.蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系.华南农业大学学报(自然科学版),2003,24(3):1-4.
    4.陈光仪,傅家瑞.花生种子劣变过程中一些酶活性变化.植物学报,1987,29(2):164-170.
    5.程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响.应用生态学报,2006,17(10):1859-1865.
    6.川田信一郎.水稻的根系.北京:农业出版社,1984.
    7.董桂春,王余龙,吴华.水稻主要根系形状对施氮时期反应的品种间差异.作物学报,2003,29(6):871-877.
    8.邓丹,吴可为,邓泓.根区通氧状况对水稻幼苗生长及吸收镉的影响.生态学报,2009,29(5):2520-2526.
    9.邓环,曹凑贵,程建平,等.不同灌溉方式对水稻生物学特性的影响.中国生态农业学报,2008,16(3):602-606.
    10.丁铮,李合松.植物叶片衰老的影响因素及调控研究进展.湖南农业大学学报,2004,12 (30):20–31.
    11.丁昌璞.中国自然土壤、旱作土壤、水稻土的氧化还原状况和特点.土壤学报,2008,45(1):66-75.
    12.何强,邓华凤,舒服.杂交水稻苗期发根性状与生育后期根系活力及穗部性状的关系.杂交水稻,2006,21(3):75–77.
    13.胡名力,张根贤,江苏,等.水稻好气栽培法的应用效果及增产原理.中国稻米,2008,(4):46-49.
    14.金松恒,蒋德安,王品美.水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性.中国水稻科学,2004 ,18 (5):443–448.
    15.柯学莎,李伟.激素对水生植物生理生态的影响及其应用.生态学报,2006,26(5):1543-1549
    16.孔祥生,易现峰.植物生理学实验技术.北京:中国农业出版社. 2008.
    17.凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究.中国农业科学,1984,17(5):3-11.
    18.李平,李晓萍,陈贻竹,等.低温光抑制胁迫对不同耐冷性的籼稻抽穗期剑叶叶绿素荧光的影响.中国水稻科学,2000,14(2):88 - 92.
    19.李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系.植物生理学报1989,15(1):6-12.
    20.李合松,黄见良,邹应斌.双季稻超高产栽培条件下根系特性的研究.激光生物学报,1999,(3):36-42.
    21.李峤,孙骏威,李海霞.缺钾对水稻叶片叶绿素荧光参数的影响.中国计量学院学报,2006,17(3):79-83.
    22.林衫,张达,曹一平.通气状况与氮素形态对水稻和旱稻生长的影响.哈尔滨师范大学自然科学学报,2002,18(4):97-101.
    23.刘艳丽,张斌,胡锋,等.干湿交替对水稻土碳氮矿化的影响.土壤,2008,40(4):554-560.
    24.刘学.不同氧供给处理对水稻生育特性与产量形成的影响.硕士学位论文.北京:中国农业科学院,2009C.
    25.刘学,朱练峰,陈琛,等.超微气泡增氧灌溉对水稻生育特性及产量的影响.灌溉排水学报,2009,28(5):89-91.
    26.李乐农,郭宝江,彭克勤,等.淹水处理对杂交水稻产量及生理生化特性的影响.广东农业科学,1998,(3):5-6.
    27.陆定志,邱鸿步.杂交水稻汕优6号伤流强度的研究.浙江农业科学,1982(4):194-196.
    28.凌启鸿,陆卫平.水稻不同层次根系的功能及对产量形成作用的研究.中国农业科学,1984,(4):3-11.
    29.凌启鸿,张国平,朱庆森,等.水稻根系对水分和养分的反应.江苏农学院学报,1990,11(1):23-27.
    30.聂先舟,刘道宏,徐竹生.水稻剑叶脂质过氧化作用与叶龄的关系.植物生理学通讯,1989(2):32-34.
    31.黄发松.水稻根系生长生理与根系遗传育种研究.作物育种学术论文集.北京:中国农业出版社,1998.
    32.黄耀祥.水稻生态育种科学体系的构建及新进展.广东农业科学,1999 (5):2-6.
    33.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12 (6):1-6.
    34.刘桃菊,唐建军,胡岳峰,等.水稻根系建成对高产形成的模拟模型与调控决策研究.江西农业大学学报,1999,(1):1-5.
    35.刘艳丽,张斌,胡锋,等.干湿交替对水稻土碳氮矿化的影响.土壤,2008,40(4):554-560.
    36.梁建生,张建华.杂交水稻叶片的若干生理指标与根系伤流强度关系.江苏农学院学报,1995,14(4):25-30.
    37.金成忠.根系对叶片生长和活力作用的物质基础.植物生理学通讯,1963,(1):1-16.
    38.刘桃菊,戚昌瀚,唐建军.水稻根系建成与产量及其构成关系的研究.中国农业科学,2002,35(11):416-419.
    39.林贤青,朱德峰,阮关海,等.水稻不同灌溉方式下的高产生理特性.中国水稻科学,2005,19(4):328-332.
    40.孙永健,孙圆圆,刘凯,等.水氮互作对结实期水稻衰老和物质转运及产量的影响.植物营养与肥料学报,2009,15(6):1339-1349。
    41.孙静文,陈温福,臧春明,等.水稻根系研究进展.沈阳农业大学学报,2002,12,33(6):466-470.
    42.司森田茂纪.根的形成.农学大事典,养贤堂,1987.
    43.石庆华,李木英,徐益群,等.水稻根系特征与地上部关系的研究初报.江西农业大学学报,1995,17(2):110-115.
    44.沈波,王熹.籼粳亚种间杂交水稻根系伤流强度的变化规律及其与叶片生理的相互关系.中国水稻科学,2000,14(2):122-124.
    45.邵玺文,刘红丹,杜震宇,等.不同事情水分处理对水稻生长及产量的影响.水土保持学报,2007,21(1):193-196.
    46.滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662?1666.
    47.谈健康,张亚丽,沈其荣,等.不同形态氮素比例对水稻苗期水分利用效率及其生物效应的影响.南京农业大学学报,2002,25(3):49-52.
    48.童平,杨世民,马均,等.不同水稻品种在不同光照条件下的光合特性及干物质积累.应用生态学报,2008,19(3):505-511.
    49.吴伟明,宋祥甫,孙宗修,等.不同类型水稻的根系分布特征比较.中国水稻科学,2001,15 (4):276-280.
    50.吴伟明,程式华.水稻根系育种的意义和前景.中国水稻科学,2005,19(2):174-180.
    51.吴伟明,王一平,赵航,等.水稻不定根的穿鞘现象及其与叶片衰老的关系.中国农业科学,2005,38(3):474-481.
    52.吴伟明,宋祥甫,邹国燕.利用水上栽培方法研究水稻根系.中国水稻科学,2000,14(3):189-192.
    53.吴朝晖,周建群,青先国,等.水稻根系研究的现状及展望,湖南农业科学2008(6):21-24.
    54.王丹英,赵锋,徐春梅,等.根际增氧模式的水稻形态、生理及产量响应特征.作物学报,2010,36(2):303?312.
    55.王强,温晓刚,卢从明,等.超高产杂交稻‘华安3号冠层不同衰老程度叶片的光合功能.植物生态学报,2004,28(1):39- 46.
    56.王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响.作物学报,2008,34(5):803-809.
    57.韩勃.增氧条件下水稻根系及地上部生长特性研究.硕士学位论文.江苏:扬州大学,2007C.
    58.王金英,江川.综述水稻根系与地上部的关系.福建稻麦科技,1999,17(4):23-25.
    59.汪强,樊小林,刘芳,等.断根和覆草旱作条件下水稻的产量效应.中国水稻科学,2004,18(5):437-442.
    60.王彦荣,华泽田,代贵金,等.北方粳型杂交稻根系生长特征研究.沈阳农业大学学报,2001,32(6):407-410.
    61.许乃霞,杨益花.抽穗后水稻根系活力与地上部叶片衰老及净光合速率相关性的研究.安徽农业科学,2009,37(5):1919-1921.
    62.徐芬芬,曾晓春,石庆华.干湿交替灌溉方式下水稻节水增产机理研究.杂交水稻,2009,24(3):72-75.
    63.严建民,翟虎渠,万建民,等.亚种间重穗型杂交稻光合产物的转运特征及生理机制.中国农业科学,2003,36(5):502-509.
    64.俞爱英,林贤青,曾孝元,等.不同灌溉方式对水稻分蘖成穗规律及产量影响研究.灌溉排水学报,2007,26(1):66-68.
    65.杨建昌,王朋,刘立军,等.中籼水稻品种产量与株型演进特征研究.作物学报,2006,32(7):949-955.
    66.朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34(4):429-432.
    67.朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系.中国水稻科学,2002,16 (4):326- 330.
    68.朱练峰,刘学,禹盛苗,等.增氧灌溉对水稻生理特性和后期衰老的影响.中国水稻科学, 2010,24(3):257-263.
    69.张其德,卢从明,张启峰,等.几种杂交组合杂交稻及其亲本光合特性的比较研究.植物生理学报,1996,12 (3):511– 516.
    70.斋滕久登,田中义明.磷不足对水稻根生育的影响.日本土壤肥料科学杂志,1983,54(6):485-489.
    71.郑景生,林文.超高产水稻根系发育形态学研究.福建农业学报1999,14(3):1-6.
    72.张传胜,王余龙,龙银成,等.影响籼稻品种产量水平的主要根系性状.作物学报,2005(2):137-143.
    73.章永松,林成永,罗安程.水稻根系泌氧对水稻土磷素化学行为的影响.中国水稻科学,2000,14(4):208-212.
    74.翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系.中国科学(c辑),2002,32(3):211-217.
    75.赵锋,王丹英,徐春梅,等.水稻氧营养的生理、生态机制及环境效应研究进展.中国水稻科学,2009,23(4):335-341.
    76.赵锋,徐春梅,张卫建,等.根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响.中国水稻科学,2011,25(2):195-200.
    77.赵世杰,史国安,董新纯.植物生理学实验指导.北京:中国农业出版社,2002.
    78. Airmenta-Soto J L, T T Chang, G T Loresto, J C O, Toole. Genetic analysis of root characters in rice. SABRAO Journal, 1983, 15(2): 102-l16.
    79. Amara. W, Hank G, Campbell J T. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Annals of Botany, 1996, 80: 115-123.
    80. Agarwal S, Kapoor A, Lakshmi O S, Grover A. Production and phenotypic analysis of rice transgenics with altered levels of pyruvate decarboxylase and alcohol dehydrogenase proteins. Plant Physiology and Biochemistry, 2007,45: 637-646.
    81. Albrecht G, Mustroph A, Fox TC. Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots. Physionlogia Plantarum, 2004, 120: 93-105.
    82. Bailey-Serres J, Chang R. Sensing and signaling in response to oxygen deprivation in plants and other organisms. Annals of Botany, 2005, 96: 507-518.
    83. Bolhar-Nordenkampf H R, Long S P, Baker N R. Chlorophyll fluorescence as a probe of thephotosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology, 1989, 3: 497-514.
    84. Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated rice. Agricultural Water Management, 2001, (49): 11-30.
    85. Claus L M, Kaj S J. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna. New Phytol, 2008, 179: 804-825.
    86. Boamfa EI, Verse AH, Ram PC, Jackson MB, Reuss J, Harren FJM. Kinetics of ethanol and acetaldehyde release suggests a role for acetaldehyde production in tolerance of rice seedling to micro-aerobic conditions. Annals of Botany, 2005, 96: 727-736.
    87. Colmer T D, Cox C H, Voesenek L A. Root aeration in rice(Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol, 2006, 170: 767-778.
    88. D.Kim, A.Jugsujinda, A.A.Carbonell-Barrachina, R.D.DeLaune, H.Patrick Jr. Physiological functions and methane and oxygen exchange in Korean rice cultivars grown under controlled soil redox potential.Bot.Bull.Acad.Sin.1999, 40: 185-191.
    89. Frankenberger W T. Factors affecting the fate of urea peroxide added to soil. Bull Environ Contam Toxicol, 1997, 59:50-57.
    90. Gilmore A.,Gofindjee. How higher plants respond to excess light: energy dissipation in photosystem II .The Netherlands: Kluwer Academic Publishing /New Delhi, India:: Narosa Publishers, 1999, 513-548.
    91. Greenway H, Gibbs J. Mechanisms of anoxia tolerance in plants ,Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology 2003.30:735-741.
    92. Jackson MB, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submerge. Plant Bio, 1999, 1:274-287.
    93. Julian M H, John E S, Jane A L. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Current Opinion in Plant Biology, 2007, 10: 1-4.
    94. Jackson MB. Ethylene-promoted elongation: an adaptation to submergence stress. Annals of Botany 2008. 101: 229-248.
    95. Kwak K S, Lijima, M.Yamauchi A. Changes with aging of endogenous abscise acid and zeafin riboside in the root system of rice. Jnp.J.Crop Sci.. 1996.65(4): 686-692.
    96. Kuckenberg J , Tartac hnyk I, Noga G. Detection and differentiation of nitrogen-deficiency,powdery mildew and leaf rust atwheat leaf and canopy level by laser-induced chlorophyll fluorescence .Biosystems engineering, 2009, 103: 121-128.
    97. Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G. Transcript profiling of the anoxic rice coleoptile. Plant Physiology 2007. 144: 218-231.
    98. Leonardo Magneschi. Pierdomenico. PerataRice. Germination and seedling growth in the absence of oxygen. Annals of Botany,2009, 103: 181-196.
    99. Lu Y H, Dirk R, Werner L. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol, 2006, 8(8): 1351-1360.
    100. Ling Q-H, Lu W-P, Cai J-Z. The relationship between root distribution and leaf angle in rice plant. Acta Agronomica Sinica. 1989, 15 (2):123-131.
    101. Masayuki F., Tsuyoshi I., Takashi T. Improvement of water quality by removal of suspended solids and high-speed biological filtration in closed water body. Journal of Water and Environment Technology. 2003, 1(2): 233-238.
    102. Maria S, Kapuganti J G, Robert D H. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta. 2007, 226: 465-474.
    103. Matthieu N B, Fanny T, Martine L F. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of low-land rice (Oryza sativa L.): A microcosm study. Plant and Soil, 2008, 312(1/2):207-218.
    104. Nakamura H, Hakata M, Amano K, Miyao A, Toki N, Kajikawa M. A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system. Plant Molecular Biology, 2007, 65:357-371.
    105. Pezeshki S R, Delaune R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency. Acta Oecol, 1996, 17: 365?378.
    106. Pinson, Li z, S R M, Park W D. Epistasis for their grain yield components in rice(Oryza sativa L.). Genetics,1997, 145: 453-465.
    107. Pezeshki, S.R. Spartina patens to rhizosphere oxygen deficiency. Acta col.1996, 17(5): 365-378.
    108. Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescenceas a non-destructive indicator for rapid assessment of in vivo photosynthesis. Ecological Studies, 1994, 100: 49-70.
    109. Shuman LM,Wang J. Effect of rice variety on zinc,cadmium,iron and manganese contents in rhizosphere and non-rhizosphere soil fractions. Comm. Soil Sci.. Plant Anal.,1997,(28)23-36.
    110. Thompson J. Mid-season drainage of rice is it worth trialing on your crop .IREC Famers News letter, 2006, 173: 54-56.
    111. Wang Y-L, Cai J-Z, He S-J. The relationships between spikelet-root-activity and grain filling and ripening in rice (Oryza sativa).Acta Agronomica Sinica, 1992, 18 (2):81-88.
    112. Zhang Y S, Lin X Y, Luo A C . Chemical behavior of phosphorus in paddy soil as affected by O2 secretion from rice root .Chin J Rice Sci. 2000. 14 (4): 208-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700