隐性遗传性耳聋外显子测序技术基因鉴定及基因型与表型关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传性耳聋严重影响人类学习交流和社会活动,是亟待解决的日益严重的健康问题。预防耳聋出生缺陷,提高人口素质是关系国计民生的重大问题,而预防的根本,就是深入了解遗传基因及其突变谱,发现中国人群的耳聋基因分布和热点突变,从而能够在人们的婚育指导上进行预测,提早进行预防。目前中国大部分聋人表现为隐性遗传性耳聋,而其中60-70%尚无法明确致聋基因。本研究利用了当前蓬勃发展的新一代测序技术,针对非综合征遗传性耳聋的隐性遗传小家系进行了病因研究,发现了在国际上发病率居2-3位的CDH23基因为负责基因,并发现了新突变。同时,在当前很多耳聋基因得到鉴定的背景下,本研究针对常见隐性遗传性耳聋基因GJB2和SLC26A4,对致聋基因型与临床表型进行了关联分析,在一定程度上阐释了基因型对表型的影响及对临床诊疗的指导意义。
     第一部分利用外显子测序技术发现隐性遗传性耳聋致聋基因CDH23
     一、外显子测序技术在3个隐性遗传性耳聋家系中的应用本研究选择了3个隐性遗传性耳聋的核心家系,家系中仅第三代有两例耳聋患者。首先进行了常见隐性耳聋基因和突变的筛查(GJB2、SLC26A4和线粒体DNA1555A>G),未发现携带突变。然后,在784和845家系中,分别选择了两个患者和父母,在855家系中,因父亲亡故,选了两个患者和同胞弟弟,叔叔,及母亲,进行了全外显子测序。
     测序结果的质控报告显示,测序深度达到50X,外显子长度达到3千万碱基左右,达到了人类全部外显子99%以上覆盖率。每个样本经过筛选,高可信度的数据如下:95000个左右的单核苷酸变异(SNP),2500个左右的剪接位点突变(splice site),7000左右的插入缺失突变(indel),58000左右的在外显子临近10bp以内的内含子突变(intron)。
     根据目前已经公开的数据库进行了SNPs过库筛选分析,所采用的数据库包括dbSNP数据库、Hapmap-8数据库、1000Genomes、YanHuang (YH)。首先针对每个家系中每个样本的变异与各个数据库分别比对,筛选出所有数据库均没有报道的罕见变异;然后再把家系的正常人作为对照进行比对,根据疾病表型和基因型共分离的原理,筛选患者中纯合,而在父母或同胞杂合的变异,即得到候选基因的位点。对候选基因位点,选择在多物种间(大鼠、小鼠、狗、猴、鸡、象、X_嗜热病毒、斑马鱼)保守区域的5个碱基以内的插入缺失突变、剪接区、无义突变、经SIFT判定为具有蛋白质功能损害性的(damaging)的错义突变作为首选。
     在784家系中,未发现符合上述条件的候选基因位点。在845家系中,发现了已知致聋基因CDH23的73553127位置发生的G>A突变(c.6442G>A,p.D2148N),是已在多个人种中报道过的致聋错义突变。在855家系中,发现已知致聋基因CDH23的73270943位置发生C>T突变(c.403C>T, p.Q135*),为终止突变,据多物种间序列保守性预测,可对蛋白质功能产生巨大影响。因此,845和855家系均是已知致聋基因CDH23突变导致的,其中c.6442G>A为已知突变,c.403C>T为新突变。
     二、CDH23基因新突变验证及分子流行病学研究
     855号样本经过眼科学检查,发现该患者伴发严重的视网膜色素变性,符合Usher1D综合征的诊断,CDH23基因正是该疾病的负责基因。在100例正常人群对照中,筛查c.403C>T,未发现该突变。
     本课题组收集到来自中国北方地区的108余例隐性遗传聋核心家系(包括855家系),进行常见隐性耳聋基因GJB2、SLC26A4的全测序研究,筛查了线粒体DNA A1555G,未发现携带已知突变。
     鉴于CDH23基因为非综合征型遗传性耳聋(NSHL)较为常见的致病基因,经文献复习,查找到与NSHL中隐性耳聋DFNB12相关的CDH23基因29个突变,广泛分布于美国、德国、荷兰、日本、印度、巴基斯坦和阿尔及利亚等世界范围内的高加索人、非洲人和蒙古人种,人种间突变谱差异较大。利用Sequenom公司的基于质谱原理的MassARRAY时间飞行质谱生物芯片系统,在108个家系的患者中进行了CDH23基因与DFNB12相关的已知突变的筛查,并在855号样本中验证了新突变的存在。结果发现:3例单等位基因突变携带者,再结合外显子测序发现的1例纯合子,则CDH23基因在该样本中的NSHL相关等位基因突变率为2.31%(5/216)。
     第二部分隐性遗传性耳聋患者中常见致聋基因GJB2和SLC26A4基因型与表型关联分析
     一、295例GJB2双等位基因突变耳聋基因型表型分析
     缝隙连接蛋白编码基因GJB2是非综合征型感音神经性耳聋(NSSHI)最常见的致病基因。该基因已有超过100种以上的突变被报道与耳聋相关,耳聋级别表现从轻中度到极重度均有覆盖。为评估中国人群中GJB2基因型对耳聋表型的影响,本研究在中国北方NSSHI人群中进行了横断面研究。
     本研究纳入了295例携带GJB2双等位基因突变的中国北方七省的遗传性耳聋患者。以突变是否导致基因功能缺失将突变分为截短型(T)和非截短型(NT),将双等位基因型分为截短组(T+T),复合杂合截短组(T+NT),和非截短组(NT+NT)。每个基因型组的耳聋纯音测听平均听阈(PTA)进行了χ2卡方检验。发现截短组的耳聋程度显著超过非截短组。同时发现具有基因型c.[79G>A;341A>G]+[79G>A;341A>G]或c.[109G>A]+[79G>A;341A>G]的患者其耳聋程度显著轻于c.235delC纯合子组,而具有c.[235delC]+[176_191del16]基因型的患者则显著重于c.235delC纯合子组。
     二、272例儿童大前庭水管患者的基因型表型分析
     本研究拟初步绘制儿童大前庭水管综合征患者的基因突变谱,并阐释其基因型对耳聋及内耳结构的影响。
     12岁以下的272名大前庭水管综合征患儿纳入研究,进行了SLC26A4基因测序。其中266例接受了全套听力学检查,可获得平均听阈的数据,这其中,有152例患儿的高分辨率颞骨CT进行了详细测量。根据患者携带突变数量,分为双等位基因型,单等位基因型和无突变型,其中双等位基因型,再根据突变性质,分为双等位基因截短组,双等位基因复合杂合截短组,双等位基因非截短组。临床表型数据包括PTA,每个族群患者数量,前庭水管中段和外口直径等。
     使用统计学软件SPSS15.0,将基因型数据和表型数据进行了关联分析,使用方法为计量资料t检验和计数资料卡方检验。
     本组研究人群中,共发现SLC26A4基因的69种突变,其中2种为新突变(c.665G>T和c.1639A>G)。207例患者为双等位基因突变,56例为单等位基因突变,8例未发现突变,1例携带3个突变。经过统计学比较,发现单等位基因组的患者耳聋程度更为稳定(P<0.05)。双等位基因非截短组的患者比双等位基因截短组,复合杂合截短组和单等位基因组更容易出现气骨导差(所有P值<0.05)。
     不同基因型组之间的前庭水管尺寸则没有明显差异(所有P值>0.05)。不同前庭水管尺寸的患者之间耳聋严重程度也没有明显差异(所有P值>0.05)。
     本研究发现前庭导水管综合征的儿童中98%携带SLC26A4基因突变。虽然本研究发现了基因型与表型之间的一些关系,但是真正揭示基因型对表型的影响还有很远的距离。
Hereditary hearing loss will impact the communication and social activities,and is the increasingly severe disease unresolved. Prevention of deafness andimprovement of population is very important for national economy and the people'slivelihood. The root of the prophylaxis was to thoroughly explore the causative geneand mutation spectrum and discover the gene distribution and hot spot, in order toinstruct the marriage and procreation among deafness to avoid the incidence ofdeafness. Most of Chinese hereditary deafness were in recessive mode, andcausative genes in60-70%population were unknown. This study applied the nextgeneration sequencing technique-exome sequencing in autosomal recessivehereditary hearing loss families, and identified CDH23gene to be the causative gene.CDH23gene was the common deafness gene, and occupied the NO.2-3innonsyndromic hearing loss genes. We then srcreened the known mutations ofCDH23related to DFNB12in108recessive deafness families. In the background ofmultiple causative genes identified, this study performed the genotype phenotyperelation analysis about GJB2and SLC26A4genes, and clarified the inpact ofgenotype to phenotype to some extent.
     PART1: CDH23was identified as causative gene in autosomalrecessive hereditary hearing loss and known mutations screening in108probands of recessive families
     To identify the causative gene in3families with autosomal recessive hereditary hearing loss, we performed the common causative gene screening (GJB2、SLC26A4and m.1555A>G), and no mutation was found out. Then, from family784and845,2patients and their parents were recrued respectively, and from family855,2patients,1sibling, their mother and uncle were recrued for the father was dead. Thewhole exome sequencing was applied in the13subjects.
     The quality control report of the sequencing showed: sequencing depth was50X,and about95000SNPs, about2500splice site mutations, about7000indels, about58000introns in10bp near the flanking part of exons.
     Based on the databases, including dbSNP, Hapmap-8,1000Genomes andYanHuang (YH), the raw data were filtered as follows:
     Firstly, the raw data from each subject was filtered by such databasesrespectively, and rare mutations were selected. Then the data from patients werefiltered by the data from normal controls. In the third step, according to theco-segregating principle in autosomal recessive hereditary mode, the mutationsappeared homozygous state in patients and heterozygous state in controls were takenas the candidate genes.
     In the candidate genes, preferred mutations were the indels less than5bp in theconserved region in multiple species, splice site mutations, nonsense mutations, anddamaging missense mutations predicted by SIFT software.
     In family784, no preferred mutations and genes were identified. In family845,preferred mutation was the mutation of G>A(c.6442G>A,p.D2148N)on73553127of CDH23gene. In family855, a novel mutation(c.403C>T, p.Q135*)in CDH23gene was preferred to be the causative mutation. CDH23gene was the knowncausative gene, and the mutation c.6442G>A was the known mutation while thenovel mutation c.403C>T was thought to be damaging by SIFT software. By theophthalmologic examination, the patient with c.403C>T mutation was found withsevere rentitis pigmentosa (RP), and was diagnosed with Usher1D syndrome.
     By literature reviews, about29mutations in CDH23gene related with DFNB12were found out, which were scattering in Caucasians, Africans and Mongolians over the world including America, German, Holland, Japan, India, Pakistan and Algeria.
     c.403C>T was not found in100geographically matched controls.
     108families with autosomal recessive hereditary hearing loss were performedthe common causative gene screening (GJB2、SLC26A4and m.1555A>G), and nomutation was found out. Known mutations screening was applied in the108familiesby MassARRAY system.3monoallelic mutation carriers were found out.Together with2homozygotes found by exome sequencing, and the mutationfrequency was3.24%(7/216).
     PART2: Genotype-phenotype correlation analysis in295deafnesscarrying GJB2biallelic mutations
     Connexin26coding gene (GJB2) is the primary causative gene fornonsyndromic sensorineural hearing impairment (NSSHI). More than100mutationsin this gene have been reported to be linked to hearing impairment, from mild toprofound hearing loss. In order to precisely estimate the impact of GJB2mutationsin Chinese population, a cross-sectional study was performed to analyze the auditorydata of Chinese NSSHI patients.
     295unrelated NSSHI patients with biallelic mutations in GJB2were recruitedfrom7provinces in Northern China from2004to2008. The levels of hearingimpairment (HI) and average pure tone audiometry (PTA) were compared acrossdifferent genotypes by χ2testing. The subjects with the genotypes of combinedtruncating mutations had more cases of severe HI than the subjects with genotype ofnontruncating mutations combination. It was also revealed that subjects carryingeither c.[79G>A;341A>G]+[79G>A;341A>G] or c.[109G>A]+[79G>A;341A>G]had significantly less cases of severe HI than the reference group of homozygousc.235delC, while the subjects carrying c.[235delC]+[176_191del16] had more casesof severe HI than the homozygous c.235delC group.
     This is the first study to clarify the correlations between different GJB2 biallelic genotypes and NSSHI phenotype in Chinese population. The Chinesesubjects with two truncating mutations in GJB2were shown to correlate with moresevere hearing impairment
     PART3: Genotype-phenotype correlation analysis in272childrendeafness with large vestibular aqueduct
     This study was designed to draw a spectrum of SLC26A4gene mutations inchildren with large vestibular aqueduct (LVA) and to study the phenotype genotyperelationship.
     272subjects under age12years with nonsyndromic sensory neural hearing loss(NSSHL) and LVA, received SLC26A4gene screening.266received completeauditory examinations. High-resolution computed tomography (HR-CT) of temporalbone were measured in152subjects. According to genotypes, the phenotypesincluding PTA (pure tone average), distribution of subjects, and diameter of externalaperture and middle portion of vestibular aqueduct, were compared by t test or chisquare tests by SPSS13.0. Further, divided by dilated level of vestibular aqueduct,subject distribution in different hearing loss levels were compared by chi squaretests by SPSS13.0.
     69types of mutations were identified, in which2were novel mutations(c.665G>T and c.1639A>G).170subjects were found with biallelic mutations inSLC26A4gene,56with monoallelic mutation,8with no mutation, and one withthree mutations. The hearing loss was more stable in the subjects with monoallelicmutation than in other genotype groups (P<0.05). The air-bone gap was morefrequently seen in subjects with biallelic missense mutations than those withbiallelic truncating, heterozygous truncating, or monoallelic mutation (all Pvalues<0.05). There is no difference for distribution of diameters distribution indifferent genotypes. And there is no dominant correlation between hearing loss leveland dilated levels of vestibule aqueduct.
     This is the first study to clarify the correlations between different SLC26A4genotypes and phenotype in Chinese children population with LVAS. In childrenwith LVAS,98%carry mutations in SLC26A4gene. Though we found somecorrelation between genotype and phenotype, it is far away from erecting directcorrelation between the mutation genotype and hearing loss level or LVA diameter.
引文
[1] Hilgert N, Smith RJ, Van Camp G Forty-six genes causing nonsyndromichearing impairment: which ones should be analyzed in DNA diagnostics? MutatRes.2009,681:189-196.
    [2] Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I,Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C Otoferlin,defective in a human deafness form, is essential for exocytosis at the auditoryribbon synapse. Cell.2006,127:277-289.
    [3] Xia JH, Liu CY, Tang BS, Pan Q, Huang L, Dai HP, Zhang BR, Xie W, Hu DX,Zheng D, Shi XL, Wang DA, Xia K, Yu KP, Liao XD, Feng Y, Yang YF, XiaoJY, Xie DH, Huang JZ Mutations in the gene encoding gap junction proteinbeta-3associated with autosomal dominant hearing impairment. Nat Genet.1998,20:370-373.
    [4] Wang QJ, Lu CY, Li N, Rao SQ, Shi YB, Han DY, Li X, Cao JY, Yu LM, Li QZ,Guan MX, Yang WY, Shen Y Y-linked inheritance of non-syndromic hearingimpairment in a large Chinese family. J Med Genet.2004,41:e80.
    [5] Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, Li X, Jin Z, Wang Y,Bitner-Glindzicz M, Kong X, Xu H, Kantardzhieva A, Eavey RD, Seidman CE,Seidman JG, Du LL, Chen ZY, Dai P, Teng M, Yan D, Yuan H Loss-of-functionmutations in the PRPS1gene cause a type of nonsyndromic X-linkedsensorineural deafness, DFN2. Am J Hum Genet.86:65-71.
    [6] Schrauwen I, Ealy M, Fransen E, Vanderstraeten K, Thys M, Meyer NC,Cosgarea M, Huber A, Mazzoli M, Pfister M, Smith RJ, Van Camp G Geneticvariants in the RELN gene are associated with otosclerosis in multiple Europeanpopulations. Hum Genet.127:155-162.
    [7] Li Y, Pohl E, Boulouiz R, Schraders M, Nurnberg G, Charif M, Admiraal RJ,von Ameln S, Baessmann I, Kandil M, Veltman JA, Nurnberg P, Kubisch C,Barakat A, Kremer H, Wollnik B Mutations in TPRN cause a progressive formof autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet.86:479-484.
    [8] Shearer AE, Hildebrand MS, Sloan CM, Smith RJ Deafness in the genomics era.Hear Res.282:1-9.
    [9] Cryns K, Orzan E, Murgia A, Huygen PL, Moreno F, del Castillo I, ChamberlinGP, Azaiez H, Prasad S, Cucci RA, Leonardi E, Snoeckx RL, Govaerts PJ, Vande Heyning PH, Van de Heyning CM, Smith RJ, Van Camp G Agenotype-phenotype correlation for GJB2(connexin26) deafness. J Med Genet.2004,41:147-154.
    [10]Azaiez H, Yang T, Prasad S, Sorensen JL, Nishimura CJ, Kimberling WJ, SmithRJ Genotype-phenotype correlations for SLC26A4-related deafness. HumGenet.2007,122:451-457.
    [1] Astuto LM, Bork JM, Weston MD, et al. CDH23mutation and phenotypeheterogeneity: a profile of107diverse families with Usher syndrome andnonsyndromic deafness. Am J Hum Genet.2002,71:262-275.
    [2] Schultz JM, Bhatti R, Madeo AC, Friedman TB Allelic hierarchy of CDH23mutations causing non-syndromic deafness DFNB12or Usher syndromeUSH1D in compound heterozygotes. J Med Genet.48:767-775.
    [3] Biesecker LG Exome sequencing makes medical genomics a reality. Nat Genet.42:13-14.
    [4] Alvarado DM, Buchan JG, Gurnett CA, Dobbs MB Exome sequencingidentifies an MYH3mutation in a family with distal arthrogryposis type1. JBone Joint Surg Am.93:1045-1050.
    [5] Li Q, Dai P, Huang DL, Zhang J, et al.[Prevalence of GJB2mutations in Uigurand Han ethnic populations with deafness in Xinjiang region of China].Zhonghua Yi Xue Za Zhi.2007,87:2977-2981.
    [6] Wei X, Walia V, Lin JC, Teer JK, Samuels Y Exome sequencing identifiesGRIN2A as frequently mutated in melanoma. Nat Genet.43:442-446.
    [7] Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations ofDNA methyltransferase gene DNMT3A in acute monocytic leukemia. NatGenet.43:309-315.
    [8] Akin C Molecular diagnosis of mast cell disorders: a paper from the2005William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn.2006,8:412-419.
    [9] Rehman AU, Morell RJ, Friedman TB Targeted capture and next-generationsequencing identifies C9orf75, encoding taperin, as the mutated gene innonsyndromic deafness DFNB79. Am J Hum Genet.86:378-388.
    [10]Walsh T, Shahin H, Kanaan M Whole exome sequencing and homozygositymapping identify mutation in the cell polarity protein GPSM2as the cause ofnonsyndromic hearing loss DFNB82. Am J Hum Genet.87:90-94.
    [11]Zheng J, Miller KK, Dallos P Carcinoembryonic antigen-related cell adhesionmolecule16interacts with alpha-tectorin and is mutated in autosomal dominanthearing loss (DFNA4). Proc Natl Acad Sci U S A.108:4218-4223.
    [12]Weegerink NJ, Huygen PL, Schraders M, et al. Variable degrees of hearingimpairment in a Dutch DFNX4(DFN6) family. Hear Res.282:167-177.
    [13]Pierce SB, Chisholm KM, King MC Mutations in mitochondrial histidyl tRNAsynthetase HARS2cause ovarian dysgenesis and sensorineural hearing loss ofPerrault syndrome. Proc Natl Acad Sci U S A.108:6543-6548.
    [14]Sirmaci A, Walsh T, Akay H, et al. M MASP1mutations in patients with facial,umbilical, coccygeal, and auditory findings of Carnevale, Malpuech, OSA, andMichels syndromes. Am J Hum Genet.87:679-686.
    [15]Klein CJ, Botuyan MV, Dyck PJ Mutations in DNMT1cause hereditary sensoryneuropathy with dementia and hearing loss. Nat Genet.43:595-600.
    [16]Hilgert N, Smith RJ, Van Camp G Forty-six genes causing nonsyndromichearing impairment: which ones should be analyzed in DNA diagnostics? MutatRes.2009,681:189-196.
    [17]Boeda B, El-Amraoui A, Bahloul A, Petit C,et al. Myosin VIIa, harmonin andcadherin23, three Usher I gene products that cooperate to shape the sensoryhair cell bundle. EMBO J.2002,21:6689-6699.
    [18]Bahloul A, Michel V, Hardelin JP, Nouaille S, Hoos S, Houdusse A, England P,Petit C Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrometype I genes, form a ternary complex and interact with membrane phospholipids.Hum Mol Genet.19:3557-3565.
    [19]Sollner C, Rauch GJ, Siemens J, et al. Mutations in cadherin23affect tip linksin zebrafish sensory hair cells. Nature.2004,428:955-959.
    [20]Schwander M, Xiong W, Tokita J, Muller U A mouse model for nonsyndromicdeafness (DFNB12) links hearing loss to defects in tip links of mechanosensoryhair cells. Proc Natl Acad Sci U S A.2009,106:5252-5257.
    [21]Noben-Trauth K, Zheng QY, Johnson KR Association of cadherin23withpolygenic inheritance and genetic modification of sensorineural hearing loss.Nat Genet.2003,35:21-23.
    [22]Bork JM, Peters LM, Riazuddin S, et al. Usher syndrome1D and nonsyndromicautosomal recessive deafness DFNB12are caused by allelic mutations of thenovel cadherin-like gene CDH23. Am J Hum Genet.2001,68:26-37.
    [23]Sliwinska-Kowalska M, Noben-Trauth K, Pawelczyk M, Kowalski TJ Singlenucleotide polymorphisms in the cadherin23(CDH23) gene in Polish workersexposed to industrial noise. Am J Hum Biol.2008,20:481-483.
    [1] Wang QJ [Hereditary hearing impairment will face opportunity and challengefrom clinic to base]. Zhonghua Yi Xue Za Zhi.2009,89:2809-2813.
    [2] Astuto LM, Bork JM, Weston MD, Askew JW, Fields RR, Orten DJ, Ohliger SJ,et al. CDH23mutation and phenotype heterogeneity: a profile of107diversefamilies with Usher syndrome and nonsyndromic deafness. Am J Hum Genet.2002,71:262-275.
    [3] Wagatsuma M, Kitoh R, Suzuki H, Fukuoka H, Takumi Y, Usami S Distributionand frequencies of CDH23mutations in Japanese patients with non-syndromichearing loss. Clin Genet.2007,72:339-344.
    [4] Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL,Polomeno R, et al. Usher syndrome1D and nonsyndromic autosomal recessivedeafness DFNB12are caused by allelic mutations of the novel cadherin-likegene CDH23. Am J Hum Genet.2001,68:26-37.
    [5] Schultz JM, Bhatti R, Madeo AC, Turriff A, Muskett JA, Zalewski CK, KingKA, Ahmed ZM, Riazuddin S, Ahmad N, Hussain Z, Qasim M, Kahn SN,Meltzer MR, Liu XZ, Munisamy M, Ghosh M, Rehm HL, Tsilou ET, Griffith AJ,Zein WM, Brewer CC, Friedman TB Allelic hierarchy of CDH23mutationscausing non-syndromic deafness DFNB12or Usher syndrome USH1D incompound heterozygotes. J Med Genet.48:767-775.
    [6] Chaib H, Place C, Salem N, Dode C, Chardenoux S, Weissenbach J, el Zir E,Loiselet J, Petit C Mapping of DFNB12, a gene for a non-syndromal autosomalrecessive deafness, to chromosome10q21-22. Hum Mol Genet.1996,5:1061-1064.
    [7] Wayne S, Der Kaloustian VM, Schloss M, Polomeno R, Scott DA, HejtmancikJF, Sheffield VC, Smith RJ Localization of the Usher syndrome type ID gene(Ush1D) to chromosome10. Hum Mol Genet.1996,5:1689-1692.
    [8] Moller CG, Kimberling WJ, Davenport SL, Priluck I, White V,Biscone-Halterman K, Odkvist LM, Brookhouser PE, Lund G, Grissom TJUsher syndrome: an otoneurologic study. Laryngoscope.1989,99:73-79.
    [9] Haim M Epidemiology of retinitis pigmentosa in Denmark. Acta OphthalmolScand Suppl.2002:1-34.
    [10]Schwander M, Xiong W, Tokita J, Lelli A, Elledge HM, Kazmierczak P,Sczaniecka A, Kolatkar A, Wiltshire T, Kuhn P, Holt JR, Kachar B, Tarantino L,Muller U A mouse model for nonsyndromic deafness (DFNB12) links hearingloss to defects in tip links of mechanosensory hair cells. Proc Natl Acad Sci U SA.2009,106:5252-5257.
    [11]Zheng QY, Yan D, Ouyang XM, Du LL, Yu H, Chang B, Johnson KR, Liu XZDigenic inheritance of deafness caused by mutations in genes encoding cadherin23and protocadherin15in mice and humans. Hum Mol Genet.2005,14:103-111.
    [12]Roux AF, Faugere V, Le Guedard S, Pallares-Ruiz N, Vielle A, Chambert S,Marlin S, Hamel C, Gilbert B, Malcolm S, Claustres M Survey of the frequencyof USH1gene mutations in a cohort of Usher patients shows the importance ofcadherin23and protocadherin15genes and establishes a detection rate ofabove90%. J Med Genet.2006,43:763-768.
    [13]Sadeghi M, Cohn ES, Kelly WJ, Kimberling WJ, Tranebjoerg L, Moller CAudiological findings in Usher syndrome types IIa and II (non-IIa). Int J Audiol.2004,43:136-143.
    [14]Guo YF, Liu XW, Guan J, Han MK, Wang DY, Zhao YL, Rao SQ, Wang QJGJB2, SLC26A4and mitochondrial DNA A1555G mutations in prelingualdeafness in Northern Chinese subjects. Acta Otolaryngol.2008,128:297-303.
    [15]Shahin H, Walsh T, Rayyan AA, Lee MK, Higgins J, Dickel D, Lewis K,Thompson J, Baker C, Nord AS, Stray S, Gurwitz D, Avraham KB, King MC,Kanaan M Five novel loci for inherited hearing loss mapped by SNP-basedhomozygosity profiles in Palestinian families. Eur J Hum Genet.18:407-413.
    [16]de Brouwer AP, Pennings RJ, Roeters M, Van Hauwe P, Astuto LM, HoefslootLH, Huygen PL, van den Helm B, Deutman AF, Bork JM, Kimberling WJ,Cremers FP, Cremers CW, Kremer H Mutations in the calcium-binding motifsof CDH23and the35delG mutation in GJB2cause hearing loss in one family.Hum Genet.2003,112:156-163.
    [17]Ouyang XM, Yan D, Du LL, Hejtmancik JF, Jacobson SG, Nance WE, Li AR,Angeli S, Kaiser M, Newton V, Brown SD, Balkany T, Liu XZ Characterizationof Usher syndrome type I gene mutations in an Usher syndrome patientpopulation. Hum Genet.2005,116:292-299.
    [18]Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K, Nothwang HG,Seeliger M, del CSCM, Vila MC, Molina OP, Gal A, Kubisch C Mutation ofCDH23, encoding a new member of the cadherin gene family, causes Ushersyndrome type1D. Nat Genet.2001,27:108-112.
    [19]von Brederlow B, Bolz H, Janecke A, La OCA, Rudolph G, Lorenz B,Schwinger E, Gal A Identification and in vitro expression of novel CDH23mutations of patients with Usher syndrome type1D. Hum Mutat.2002,19:268-273.
    [20]Oshima A, Jaijo T, Aller E, Millan JM, Carney C, Usami S, Moller C,Kimberling WJ Mutation profile of the CDH23gene in56probands with Ushersyndrome type I. Hum Mutat.2008,29:E37-46.
    [21]Leushner J MALDI TOF mass spectrometry: an emerging platform forgenomics and diagnostics. Expert Rev Mol Diagn.2001,1:11-18.
    [22]Breitling LP, Yang R, Korn B, Tobacco-smoking-related differential DNAmethylation:27K discovery and replication. Am J Hum Genet.2010,88:450-457
    [1] Putcha GV, Bejjani BA, Bleoo S, Booker JK, Carey JC, Carson N, Das S, et al.A multicenter study of the frequency and distribution of GJB2and GJB6mutations in a large North American cohort. Genet Med.2007,9:413-426.
    [2] Gabriel H, Kupsch P, Sudendey J, Winterhager E, Jahnke K, Lautermann JMutations in the connexin26/GJB2gene are the most common event innon-syndromic hearing loss among the German population. Hum Mutat.2001,17:521-522.
    [3] Li QZ, Wang QJ, Chi FL, Li LN, Zhao YL, Yuan H, Han DY [The roles ofconnexin genes in sporadic hearing loss population]. Zhonghua Yi Xue Za Zhi.2007,87:1097-1101.
    [4] Usami S, Wagatsuma M, Fukuoka H, Suzuki H, Tsukada K, Nishio S, Takumi Y,Abe S The responsible genes in Japanese deafness patients and clinicalapplication using Invader assay. Acta Otolaryngol.2008,128:446-454.
    [5] Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF,Leigh IM Connexin26mutations in hereditary non-syndromic sensorineuraldeafness. Nature.1997,387:80-83.
    [6] Shahin H, Walsh T, Sobe T, Lynch E, King MC, Avraham KB, Kanaan MGenetics of congenital deafness in the Palestinian population: multiple connexin26alleles with shared origins in the Middle East. Hum Genet.2002,110:284-289.
    [7] Rickard S, Kelsell DP, Sirimana T, Rajput K, MacArdle B, Bitner-Glindzicz MRecurrent mutations in the deafness gene GJB2(connexin26) in British Asianfamilies. J Med Genet.2001,38:530-533.
    [8] Lee KY, Choi SY, Bae JW, Kim S, Chung KW, Drayna D, Kim UK, Lee SHMolecular analysis of the GJB2, GJB6and SLC26A4genes in Korean deafnesspatients. Int J Pediatr Otorhinolaryngol.2008,72:1301-1309.
    [9] Guo YF, Liu XW, Guan J, Han MK, Wang DY, Zhao YL, Rao SQ, Wang QJGJB2, SLC26A4and mitochondrial DNA A1555G mutations in prelingualdeafness in Northern Chinese subjects. Acta Otolaryngol.2008,128:297-303.
    [10]Bruzzone R, Veronesi V, Gomes D, Bicego M, Duval N, Marlin S, Petit C,D'Andrea P, White TW Loss-of-function and residual channel activity ofconnexin26mutations associated with non-syndromic deafness. FEBS Lett.2003,533:79-88.
    [11]Pilipenko V, Lim L, Muhammed A, Chang Q, Bradshaw J, Kenneth L TheRelationship of the V27I/E114G Genotype to GJB2-Related Hearing Loss. TheThietieth Midwinter Research Meeting of Association for Research inOtolaryngology.2007, D14:190.
    [12]Martini A, Mazzoli M Achievements of the European Working Group onGenetics of Hearing Impairment. Int J Pediatr Otorhinolaryngol.1999,49Suppl1:S155-158.
    [13]Yuan Y, Huang D, Dai P, Zhu Q, Liu X, Wang G, Li Q, Wu B [GJB6genemutation analysis in Chinese nonsyndromic deaf population]. Lin Chung Er BiYan Hou Tou Jing Wai Ke Za Zhi.2007,21:3-6.
    [14]Oguchi T, Ohtsuka A, Hashimoto S, Oshima A, Abe S, Kobayashi Y, Nagai K,Matsunaga T, Iwasaki S, Nakagawa T, Usami S Clinical features of patientswith GJB2(connexin26) mutations: severity of hearing loss is correlated withgenotypes and protein expression patterns. J Hum Genet.2005,50:76-83.
    [15]Tsukada K, Nishio S, Usami S A large cohort study of GJB2mutations inJapanese hearing loss patients. Clin Genet.78:464-470.
    [16]Shi GZ, Gong LX, Xu XH, Nie WY, Lin Q, Qi YS GJB2gene mutations innewborns with non-syndromic hearing impairment in Northern China. Hear Res.2004,197:19-23.
    [17]Choi SY, Park HJ, Lee KY, Dinh EH, Chang Q, Ahmad S, Lee SH, Bok J, Lin X,Kim UK Different functional consequences of two missense mutations in theGJB2gene associated with non-syndromic hearing loss. Hum Mutat.2009,30:E716-727.
    [18]Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F, Waligora J,Mueller-Malesinska M, et al. GJB2mutations and degree of hearing loss: amulticenter study. Am J Hum Genet.2005,77:945-957.
    [19]Cryns K, Orzan E, Murgia A, Huygen PL, Moreno F, del Castillo I, ChamberlinGP, Azaiez H, Prasad S, Cucci RA, Leonardi E, Snoeckx RL, Govaerts PJ, Vande Heyning PH, Van de Heyning CM, Smith RJ, Van Camp G Agenotype-phenotype correlation for GJB2(connexin26) deafness. J Med Genet.2004,41:147-154.
    [20]Marlin S, Feldmann D, Blons H, Loundon N, Rouillon I, Albert S, Chauvin P, etal. GJB2and GJB6mutations: genotypic and phenotypic correlations in a largecohort of hearing-impaired patients. Arch Otolaryngol Head Neck Surg.2005,131:481-487.
    [21]Wang QJ, Yang WY, Wu ZM, Li QZ, Guo WW, Qiu CY [Genetic analysis in aChinese deaf-mute family with X linked recessive inheritance]. Yi Chuan.2004,26:579-583.
    [22]Wilcox SA, Saunders K, Osborn AH, Arnold A, Wunderlich J, Kelly T, CollinsV, Wilcox LJ, McKinlay Gardner RJ, Kamarinos M, Cone-Wesson B,Williamson R, Dahl HH High frequency hearing loss correlated with mutationsin the GJB2gene. Hum Genet.2000,106:399-405.
    [23]Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T,Narisawa K, Takasaka T Novel mutations in the connexin26gene (GJB2)responsible for childhood deafness in the Japanese population. Am J Med Genet.2000,90:141-145.
    [24]Denoyelle F, Marlin S, Weil D, Moatti L, Chauvin P, Garabedian EN, Petit CClinical features of the prevalent form of childhood deafness, DFNB1, due to aconnexin-26gene defect: implications for genetic counselling. Lancet.1999,353:1298-1303.
    [25]Sobe T, Vreugde S, Shahin H, Berlin M, Davis N, Kanaan M, Yaron Y,Orr-Urtreger A, Frydman M, Shohat M, Avraham KB The prevalence andexpression of inherited connexin26mutations associated with nonsyndromichearing loss in the Israeli population. Hum Genet.2000,106:50-57.
    [26]Kenneson A, Van Naarden Braun K, Boyle C GJB2(connexin26) variants andnonsyndromic sensorineural hearing loss: a HuGE review. Genet Med.2002,4:258-274.
    [27]Pollak A, Skorka A, Mueller-Malesinska M, Kostrzewa G, Kisiel B, Waligora J,Krajewski P, Oldak M, Korniszewski L, Skarzynski H, Ploski R M34T andV37I mutations in GJB2associated hearing impairment: evidence forpathogenicity and reduced penetrance. Am J Med Genet A.2007,143A:2534-2543.
    [28]Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A Mutations in thegene for connexin26(GJB2) that cause hearing loss have a dominant negativeeffect on connexin30. Hum Mol Genet.2003,12:805-812.
    [29]Hoang Dinh E, Ahmad S, Chang Q, Tang W, Stong B, Lin X Diverse deafnessmechanisms of connexin mutations revealed by studies using in vitroapproaches and mouse models. Brain Res.2009,1277:52-69.
    [30]Lin D, Goldstein JA, Mhatre AN, Lustig LR, Pfister M, Lalwani AKAssessment of denaturing high-performance liquid chromatography (DHPLC)in screening for mutations in connexin26(GJB2). Hum Mutat.2001,18:42-51.
    [31]Hwa HL, Ko TM, Hsu CJ, Huang CH, Chiang YL, Oong JL, Chen CC, Hsu CKMutation spectrum of the connexin26(GJB2) gene in Taiwanese patients withprelingual deafness. Genet Med.2003,5:161-165.
    [32]Wattanasirichaigoon D, Limwongse C, Jariengprasert C, Yenchitsomanus PT,Tocharoenthanaphol C, Thongnoppakhun W, Thawil C, Charoenpipop D,Pho-iam T, Thongpradit S, Duggal P High prevalence of V37I genetic variant inthe connexin-26(GJB2) gene among non-syndromic hearing-impaired andcontrol Thai individuals. Clin Genet.2004,66:452-460.
    [33]Thonnissen E, Rabionet R, Arbones ML, Estivill X, Willecke K, Ott T Humanconnexin26(GJB2) deafness mutations affect the function of gap junctionchannels at different levels of protein expression. Hum Genet.2002,111:190-197.
    [34]Roux AF, Pallares-Ruiz N, Vielle A, Faugere V, Templin C, Leprevost D,Artieres F, Lina G, Molinari N, Blanchet P, Mondain M, Claustres M Molecularepidemiology of DFNB1deafness in France. BMC Med Genet.2004,5:5.
    [35]Choung YH, Moon SK, Park HJ Functional study of GJB2in hereditary hearingloss. Laryngoscope.2002,112:1667-1671.
    [36]Posukh O, Pallares-Ruiz N, Tadinova V, Osipova L, Claustres M, Roux AF Firstmolecular screening of deafness in the Altai Republic population. BMC MedGenet.2005,6:12.
    [37]Lefebvre PP, Van De Water TR Connexins, hearing and deafness: clinicalaspects of mutations in the connexin26gene. Brain Res Brain Res Rev.2000,32:159-162.
    [38]Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC Gap junction systemsin the mammalian cochlea. Brain Res Brain Res Rev.2000,32:163-166.
    [39]Engel-Yeger B, Zaaroura S, Zlotogora J, Shalev S, Hujeirat Y, Carrasquillo M,Saleh B, Pratt H Otoacoustic emissions and brainstem evoked potentials incompound carriers of connexin26mutations. Hear Res.2003,175:140-151.
    [1] Valvassori GE, Clemis JD The large vestibular aqueduct syndrome.Laryngoscope.1978,88:723-728.
    [2] Park HJ, Shaukat S, Liu XZ, Hahn SH, Naz S, Ghosh M, Kim HN, Moon SK,Abe S, Tukamoto K, Riazuddin S, Kabra M, Erdenetungalag R, Radnaabazar J,Khan S, Pandya A, Usami SI, Nance WE, Wilcox ER, Griffith AJ Origins andfrequencies of SLC26A4(PDS) mutations in east and south Asians: globalimplications for the epidemiology of deafness. J Med Genet.2003,40:242-248.
    [3] Usami S, Abe S, Weston MD, Shinkawa H, Van Camp G, Kimberling WJNon-syndromic hearing loss associated with enlarged vestibular aqueduct iscaused by PDS mutations. Hum Genet.1999,104:188-192.
    [4] Tsukamoto K, Suzuki H, Harada D, Namba A, Abe S, Usami S Distribution andfrequencies of PDS (SLC26A4) mutations in Pendred syndrome andnonsyndromic hearing loss associated with enlarged vestibular aqueduct: aunique spectrum of mutations in Japanese. Eur J Hum Genet.2003,11:916-922.
    [5] Li XC, Everett LA, Lalwani AK, Desmukh D, Friedman TB, Green ED, WilcoxER A mutation in PDS causes non-syndromic recessive deafness. Nat Genet.1998,18:215-217.
    [6] Harnsberger HR, Dahlen RT, Shelton C, Gray SD, Parkin JL Advancedtechniques in magnetic resonance imaging in the evaluation of the largeendolymphatic duct and sac syndrome. Laryngoscope.1995,105:1037-1042.
    [7] Pryor SP, Demmler GJ, Madeo AC, Yang Y, Zalewski CK, Brewer CC, ButmanJA, Fowler KB, Griffith AJ Investigation of the role of congenitalcytomegalovirus infection in the etiology of enlarged vestibular aqueducts. ArchOtolaryngol Head Neck Surg.2005,131:388-392.
    [8] Azaiez H, Yang T, Prasad S, Sorensen JL, Nishimura CJ, Kimberling WJ, SmithRJ Genotype-phenotype correlations for SLC26A4-related deafness. HumGenet.2007,122:451-457.
    [9] King KA, Choi BY, Zalewski C, Madeo AC, Manichaikul A, Pryor SP,Ferruggiaro A, Eisenman D, Kim HJ, Niparko J, Thomsen J, Butman JA,Griffith AJ, Brewer CC SLC26A4genotype, but not cochlear radiologicstructure, is correlated with hearing loss in ears with an enlarged vestibularaqueduct. Laryngoscope.120:384-389.
    [10]Martini A, Mazzoli M Achievements of the European Working Group onGenetics of Hearing Impairment. Int J Pediatr Otorhinolaryngol.1999,49Suppl1:S155-158.
    [11]Brookhouser PE, Worthington DW, Kelly WJ Fluctuating and/or progressivesensorineural hearing loss in children. Laryngoscope.1994,104:958-964.
    [12]Boston M, Halsted M, Meinzen-Derr J, Bean J, Vijayasekaran S, Arjmand E,Choo D, Benton C, Greinwald J The large vestibular aqueduct: a new definitionbased on audiologic and computed tomography correlation. Otolaryngol HeadNeck Surg.2007,136:972-977.
    [13]Dewan K, Wippold FJ,2nd, Lieu JE Enlarged vestibular aqueduct in pediatricsensorineural hearing loss. Otolaryngol Head Neck Surg.2009,140:552-558.
    [14]Pryor SP, Madeo AC, Reynolds JC, Sarlis NJ, Arnos KS, Nance WE, Yang Y,Zalewski CK, Brewer CC, Butman JA, Griffith AJ SLC26A4/PDSgenotype-phenotype correlation in hearing loss with enlargement of thevestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromicEVA are distinct clinical and genetic entities. J Med Genet.2005,42:159-165.
    [15]Delange F Iodine deficiency in Europe and its consequences: an update. Eur JNucl Med Mol Imaging.2002,29Suppl2:S404-416.
    [16]Hutchin T, Coy NN, Conlon H, Telford E, Bromelow K, Blaydon D, Taylor G,Coghill E, Brown S, Trembath R, Liu XZ, Bitner-Glindzicz M, Mueller RAssessment of the genetic causes of recessive childhood non-syndromicdeafness in the UK-implications for genetic testing. Clin Genet.2005,68:506-512.
    [17]Prasad S, Kolln KA, Cucci RA, Trembath RC, Van Camp G, Smith RJ Pendredsyndrome and DFNB4-mutation screening of SLC26A4by denaturinghigh-performance liquid chromatography and the identification of eleven novelmutations. Am J Med Genet A.2004,124A:1-9.
    [18]Madden C, Halsted M, Meinzen-Derr J, Bardo D, Boston M, Arjmand E,Nishimura C, Yang T, Benton C, Das V, Smith R, Choo D, Greinwald J Theinfluence of mutations in the SLC26A4gene on the temporal bone in apopulation with enlarged vestibular aqueduct. Arch Otolaryngol Head NeckSurg.2007,133:162-168.
    [19]Wang QJ, Zhao YL, Rao SQ, Guo YF, Yuan H, Zong L, Guan J, Xu BC, WangDY, Han MK, Lan L, Zhai SQ, Shen Y A distinct spectrum of SLC26A4mutations in patients with enlarged vestibular aqueduct in China. Clin Genet.2007,72:245-254.
    [20]Wu CC, Lin SY, Su YN, Fang MY, Chen SU, Hsu CJ Preimplantation geneticdiagnosis (embryo screening) for enlarged vestibular aqueduct due to SLC26A4mutation. Audiol Neurootol.15:311-317.
    [21]Pera A, Villamar M, Vinuela A, Gandia M, Meda C, Moreno F,Hernandez-Chico C A mutational analysis of the SLC26A4gene in Spanishhearing-impaired families provides new insights into the genetic causes ofPendred syndrome and DFNB4hearing loss. Eur J Hum Genet.2008,16:888-896.
    [22]Coyle B, Reardon W, Herbrick JA, Tsui LC, Gausden E, Lee J, Coffey R,Grueters A, Grossman A, Phelps PD, Luxon L, Kendall-Taylor P, Scherer SW,Trembath RC Molecular analysis of the PDS gene in Pendred syndrome. HumMol Genet.1998,7:1105-1112.
    [23]Van Hauwe P, Everett LA, Coucke P, Scott DA, Kraft ML, Ris-Stalpers C,Bolder C, Otten B, de Vijlder JJ, Dietrich NL, Ramesh A, Srisailapathy SC,Parving A, Cremers CW, Willems PJ, Smith RJ, Green ED, Van Camp G Twofrequent missense mutations in Pendred syndrome. Hum Mol Genet.1998,7:1099-1104.
    [24]Campbell C, Cucci RA, Prasad S, Green GE, Edeal JB, Galer CE, Karniski LP,Sheffield VC, Smith RJ Pendred syndrome, DFNB4, and PDS/SLC26A4identification of eight novel mutations and possible genotype-phenotypecorrelations. Hum Mutat.2001,17:403-411.
    [25]Anwar S, Riazuddin S, Ahmed ZM, Tasneem S, Ateeq ul J, Khan SY, GriffithAJ, Friedman TB SLC26A4mutation spectrum associated with DFNB4deafness and Pendred's syndrome in Pakistanis. J Hum Genet.2009,54:266-270.
    [26]Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, SmithRJ, Karniski LP, Sheffield VC Functional differences of the PDS gene productare associated with phenotypic variation in patients with Pendred syndrome andnon-syndromic hearing loss (DFNB4). Hum Mol Genet.2000,9:1709-1715.
    [27]Choi BY, Stewart AK, Madeo AC, Pryor SP, Lenhard S, Kittles R, Eisenman D,Kim HJ, Niparko J, Thomsen J, Arnos KS, Nance WE, King KA, Zalewski CK,Brewer CC, Shawker T, Reynolds JC, Butman JA, Karniski LP, Alper SL,Griffith AJ Hypo-functional SLC26A4variants associated with nonsyndromichearing loss and enlargement of the vestibular aqueduct: genotype-phenotypecorrelation or coincidental polymorphisms? Hum Mutat.2009,30:599-608.
    [28]Lopez-Bigas N, Melchionda S, de Cid R, Grifa A, Zelante L, Govea N, ArbonesML, Gasparini P, Estivill X Identification of five new mutations ofPDS/SLC26A4in Mediterranean families with hearing impairment. Hum Mutat.2001,18:548.
    [29]Taylor JP, Metcalfe RA, Watson PF, Weetman AP, Trembath RC Mutations ofthe PDS gene, encoding pendrin, are associated with protein mislocalization andloss of iodide efflux: implications for thyroid dysfunction in Pendred syndrome.J Clin Endocrinol Metab.2002,87:1778-1784.
    [30]Wu CC, Lu YC, Chen PJ, Yeh PL, Su YN, Hwu WL, Hsu CJ Phenotypicanalyses and mutation screening of the SLC26A4and FOXI1genes in101Taiwanese families with bilateral nonsyndromic enlarged vestibular aqueduct(DFNB4) or Pendred syndrome. Audiol Neurootol.15:57-66.
    [31]Gopen Q, Zhou G, Whittemore K, Kenna M Enlarged vestibular aqueduct:review of controversial aspects. Laryngoscope.121:1971-1978.
    [32]Merchant SN, Nakajima HH, Halpin C, Nadol JB, Jr., Lee DJ, Innis WP, CurtinH, Rosowski JJ Clinical investigation and mechanism of air-bone gaps in largevestibular aqueduct syndrome. Ann Otol Rhinol Laryngol.2007,116:532-541.
    [1] Biesecker LG Exome sequencing makes medical genomics a reality. Nat Genet.2010,42:13-14.
    [2] Alvarado DM, Buchan JG, Gurnett CA, Dobbs MB Exome sequencingidentifies an MYH3mutation in a family with distal arthrogryposis type1. JBone Joint Surg Am.2009,93:1045-1050.
    [3] Li Q, Dai P, Huang DL, Zhang J, Wang GJ, Zhu QW, Liu X, Han DY.Prevalence of GJB2mutations in Uigur and Han ethnic populations withdeafness in Xinjiang region of China. Zhonghua Yi Xue Za Zhi.2007,87:2977-2981.
    [4] Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, Davis S, Stemke-HaleK, Davies MA, Gershenwald JE, Robinson W, Robinson S, Rosenberg SA,Samuels Y Exome sequencing identifies GRIN2A as frequently mutated inmelanoma. Nat Genet.2010,43:442-446.
    [5] Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, ZhangXW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ Exome sequencingidentifies somatic mutations of DNA methyltransferase gene DNMT3A in acutemonocytic leukemia. Nat Genet.2009,43:309-315.
    [6] Shearer AE, Hildebrand MS, Sloan CM, Smith RJ Deafness in the genomics era.Hear Res.2010,282:1-9.
    [7] Rehman AU, Morell RJ, Belyantseva IA, Khan SY, Boger ET, Shahzad M,Ahmed ZM, Riazuddin S, Khan SN, Friedman TB Targeted capture andnext-generation sequencing identifies C9orf75, encoding taperin, as the mutatedgene in nonsyndromic deafness DFNB79. Am J Hum Genet.2009,86:378-388.
    [8] Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM, Roeb W, AbuRayyan A, Loulus S, Avraham KB, King MC, Kanaan M Whole exomesequencing and homozygosity mapping identify mutation in the cell polarityprotein GPSM2as the cause of nonsyndromic hearing loss DFNB82. Am J HumGenet.2010,87:90-94.
    [9] Zheng J, Miller KK, Yang T, Hildebrand MS, Shearer AE, DeLuca AP, ScheetzTE, Drummond J, Scherer SE, Legan PK, Goodyear RJ, Richardson GP,Cheatham MA, Smith RJ, Dallos P Carcinoembryonic antigen-related celladhesion molecule16interacts with alpha-tectorin and is mutated in autosomaldominant hearing loss (DFNA4). Proc Natl Acad Sci U S A.108:4218-4223.
    [10]Weegerink NJ, Huygen PL, Schraders M, Kremer H, Pennings RJ, Kunst HPVariable degrees of hearing impairment in a Dutch DFNX4(DFN6) family.Hear Res.2009,282:167-177.
    [11]Pierce SB, Chisholm KM, Lynch ED, Lee MK, Walsh T, Opitz JM, Li W, KlevitRE, King MC Mutations in mitochondrial histidyl tRNA synthetase HARS2cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome.Proc Natl Acad Sci U S A.2010,108:6543-6548.
    [12]Sirmaci A, Walsh T, Akay H, Spiliopoulos M, Sakalar YB,Hasanefendioglu-Bayrak A, Duman D, Farooq A, King MC, Tekin M MASP1mutations in patients with facial, umbilical, coccygeal, and auditory findings ofCarnevale, Malpuech, OSA, and Michels syndromes. Am J Hum Genet.87:679-686.
    [13]Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, et, al. Mutations inDNMT1cause hereditary sensory neuropathy with dementia and hearing loss.2009, Nat Genet.43:595-600.
    [14]Ku CS, Cooper DN Exome sequencing: a transient technology for moleculardiagnostics? Expert Rev Mol Diagn.2010,12:211-214.
    [1] Franchini LF&Elgoyhen AB. Adaptive evolution in mammalian proteinsinvolved in cochlear outer hair cell electromotility. Molec PhylogenEvol,2006,41:622-635.
    [2] Zheng J, Du GG, Anderson CT, et al. Analysis of the oligomeric structure of themotor protein prestin. J Biol Chem,2006,281:19916–19924.
    [3] He DZ, Jia S&Dallos P. Prestin and the dynamic stiffness of cochlear outer haircells. J Neurosci,2003,23:9089–9096.
    [4] Santos-Sacchi J, Song L, Zheng J&Nuttall AL. Control of mammalian cochlearamplification by chloride anions. J Neurosci,2006,26,:3992–3998.
    [5] Zheng,Guo-Guang Du, Keiji Matsuda.The C-terminus of prestin influencesnonlinearcapacitance and plasma membrane targetingJing Journal of CellScience,2005,118:2987-2996.
    [6] Navaratnam D, Bai JP, Samaranayake H&Santos-Sacchi J.N-terminal-mediated homomultimerization of prestin, the outer hair cell motorprotein. Biophys J2005,89:3345–3352.
    [7] Liberman MC, Gao J, He DZ, et al. Prestin is required for electromotility of theouter hair cell and for the cochlear amplifier. Nature,2002,419:300–304.
    [8] Cheatham MA, Huynh KH, Dallos P,et al. Cochlear function in Prestinknockout mice. J Physiol,2004,560:821–830.
    [9] Cheatham MA, Huynh KH&Dallos P (2006). Nonlinear responses in prestinknockout mice: Implications for cochlear function. In Auditory Mechanisms:Processes and Models, ed. Nuttall AL, pp.311–318, Portland OR. WorldScientific, Singapore.
    [10]Cheatham MA, Zheng J, Dallos P et al. Cochlear function in mice with only onecopy of the prestin gene. J Physiol,2005,569:229–241.
    [11]Lu TK, Zhak S, Dallos P&Sarpeshkar R. Fast cochlear amplification with slowouter hair cells. Hear Res,2006,214:45–67.
    [12]Delprat,B.,Michel,V.,Goodyear,R.,et al. MyosinXVa and whirlin, two deafnessgene products required for hair bundle growth, are located at the stereocilia tipsand interact directly.Hum Mol Genet,2005,14:401–410.
    [13]Siemens,J.,Lillo,C.,Dumont,R.A.,et al..Cadherin23is a component of the tip linkin hair-cell stereocilia.Nature,2004,428:950–955.
    [14]Lagziel,A., Ahmed,Z.M., Schultz,J.M., et al.Spatio temporal patternandiso-forms of cadherin23in wild type and waltzer mice during inner ear haircell development. Dev Biol,2005,280:295–306.
    [15]Gillespie,P.G.,Dumont,R.A.,andKachar,B. Have we found the tip link,transduction channel, and gating spring of the hair cell? Curr Opin Neurobiol,2005,15:389–396.
    [16]Ricci,A.J.;Kennedey,H.J.;Crawford,A.C. et al. The transduction channel filter ofauditory hair cell. J Neurosci,2005,25:7831-7839.
    [17]Meredith Le Masurier and Peter G.Gillespie. Hair cell mechnotransduction andcochlear manifestation. Neuron,2005,48:403-415.
    [18]Wood,J.D.,Muchinsky,S.J.,Filoteo,A.G.,et al. Low endolymph calciumconcentrations in deaf waddler2J mice suggest that PMCA2contributes toendolymph calcium maintenance. J Assoc Res Otolaryngol,2004,5:99–110.
    [19]H.J.Kennedy,A.C.Crawford&R.Fettiplace.Force generation by mammalian hairbundle supports a role in cochlear amplification. Nature,2005,433:880-883.
    [20]Dylan K Chan&A J Hudseth.Ca2+current-driven nonlinear amplication by themammalian cochlea in vitro. Nature neuroscience,2005,8:149-155.
    [21]Helen J.Kennedy,Michael G.Evans,Andrew C.Crawford,et al.Depolarization ofCochlear Outer Hair Cells Evokes Active Hair Bundle Motion by TwoMechanisms.J Neurosci,2006,10:2757-2766.
    [22]Peter Dallos, Jing Zheng and Mary Ann Cheatham.Prestin and the cochlearamplifier.J Physio,2006,576:37-42.
    [23]Zhang M, Kalinec GM, Urrutia R, et al.: ROCK-dependent and ROCKindependent control of cochlear outer hair cell electromotility. J Biol Chem2003,278:35644–35650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700