交直流电力系统恢复控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着电网互联和远距离交直流输电技术的发展,电力系统的规模日益扩大,网络结构更趋复杂,电力市场的发展和经济调度的日趋广泛又使电力系统的运行越来越接近于稳定运行的极限,从而导致大电网的安全运行存在更大的隐患,不可能绝对避免因各种原因造成的事故扩大和大面积停电事故等。为确保系统在停电事故后能快速、安全地恢复供电,本文着重对系统恢复过程中的电压和频率控制问题进行了研究。主要内容包括:
     (1)对电力系统恢复过程的仿真问题进行了分析,建立了发电机、负荷等元件在恢复过程中的仿真模型,对输电线路和变压器的恢复、厂用负荷的起动以及发电机的带负荷过程等的仿真方法进行了研究,以对系统恢复过程中的稳态、暂态和动态行为等进行全面的分析,为制订系统恢复计划和实际的恢复控制操作提供指导。
     (2)针对系统恢复初期由于空载和轻载线路的恢复所引起的工频过电压问题,提出了基于灵敏度分析的方法快速确定有效控制变量及其调节量,并通过引入有效因子的概念,综合考虑设备本身和系统运行条件的约束及其当前状态的调节裕度,确保了以最少的控制操作对过电压进行校正的同时,不会产生新的电压越限。
     (3)对系统恢复初期由变压器等非线性设备的恢复引起的谐波谐振过电压问题进行了分析,通过控制变压器励磁涌流和改善系统频率响应特性等实现对谐波谐振过电压的控制。通过灵敏度分析确定能最有效改善系统频率响应特性的负荷位置,实现以最少的负荷投入量和系统操作数目对谐波谐振过电压进行有效控制,并在灵敏度中引入权值反映变压器励磁涌流各次谐波分量的影响,以更精确地反映谐波谐振过电压对系统负荷的灵敏度。同时,采用信号能量的概念对电压波形的变化趋势进行判断,实现以最短时间的时域仿真对谐波谐振过电压的大小进行快速估计和有效控制。
     (4)建立了考虑冷负荷特性的最优负荷恢复模型,其中考虑了系统的频率、电压和发电机有功出力等动态约束条件,以确保在恢复尽可能多负荷的同时,使系统的运行频率和网络电压等维持在合理的允许范围内。利用PSS/E软件提供的二次开发语言IPLAN,引入适用于工程优化问题的粒子群优化算法对所建的最优负荷恢复问题进行求解,并采用罚函数法对动态约束条件进行处理,以快速求得在满足系统安全稳定约束条件下可恢复的最大负荷量及负荷位置。
     (5)对基于电压源换流器(VSC)的直流输电系统在电力系统恢复中的应用进行了研究,提出通过新型直流输电技术(VSC-HVDC)实现相邻系统或黑起动机组对停电系统中被起动电厂的厂用负荷进行恢复供电。在对dq0坐标系下VSC的暂态数学模型进行分析的基础上,建立了用于系统恢复过程中厂用电动机负荷起动的VSC-HVDC仿真模型,对VSC-HVDC两端系统的控制器分别进行了设计,并对给水泵等大型异步电动机负荷的起动过程进行了仿真验证,结果表明VSC-HVDC能够为异步电动机的起动提供有效的无功功率支持,并确保了电动机起动过程中的厂用母线电压能维持在合理的水平,以实现厂用电动机负荷的顺利起动。
     (6)对南方电网因直流故障切机后的恢复策略进行了研究,提出通过降低其它运行机组出力的控制策略,使被切机组能在短时间内投入,达到在保持系统稳定的前提下使被切机组快速恢复的目标。利用PSS/E软件的用户自定义计算功能对发电机的出力调节过程进行建模,对南方电网发生贵广直流双极闭锁故障后被切机组并网后的带负荷过程进行仿真,结果表明,在被切机组的带负荷过程中,适当降低其它运行机组的出力,可以保持送端系统输出功率基本不变,不会对系统的稳定性造成影响,从而证明了该方法的可行性和有效性。
In recent years, power systems have increased in both size and complexity due to the rapid growth of interconnections and widespread application of long distance HVDC transmission. Meanwhile, with development of power market and extensive operation of economic dispatch, power systems tend to be operated closer and closer to their stability limits. These factors have issued big challenges to system secure operation so that bulk power systems are more vulnerable to potential disturbances and even blackouts. In order to minimize adverse impact on the public, the system needs to be restored to normal operation as quickly and reliably as possible in case of a complete or partial blackout. This dissertation mainly deals with the voltage and frequency control problems during power system restoration process. The main work is organized as follows:
     Modeling and simulation issues pertaining to system restoration process are addressed, which covers various stages of restoration including the static, transient and dynamic behavior of power system during restoration. Models for cold load pickup and generation ramping process of generators are developed. Simulation studies are carried out for energization of transmission lines and transformers, start-up of auxiliary motors and generation ramping process, which are indispensable for development of power system restoration plan and real system restoration.
     A sensitivity analysis based method is presented for control of power frequency overvoltages caused by energization of lightly loaded transmissions lines during early restoration stages. The efficient control variables are identified by means of sensitivity analysis to ensure that the minimum shifts are needed for control of overvoltages. Efficiency Coefficient (EC) is defined to take into account both voltage sensitivity to control variables and other factors including equipment limitations, system operation constraints and current adjusting margins as well. The control variables selected according to their ECs guarantee that no new voltage violations will be generated during the control process.
     The harmonic overvoltages originating from switching of the nonlinear devices such as transformers are of great concern during early stages of power system restoration. Based on detailed analysis on the cause of harmonic overvoltages, control of harmonic overvoltages is accomplished through control of the transformer inrush current and improvement of the system frequency response characteristics. Sensitivity analysis is performed to find the most efficient loads for improvement of the system frequency response characteristics so that the harmonic overvoltages can be controlled with the minimum loads and operations. Weighting factors are introduced to take into consideration the harmonic characteristics of the transformer inrush current so as to get sensitivity of the harmonic overvoltages to system load with enough accuracy. In order to reduce the large amount of simulation time, the energy of the signal is applied to predict the tendency of the voltage waveform and an algorithm is developed to terminate the electromagnetic transient simulation in a minimum amount of time, which enables fast assessment and efficient control of the harmonic overvoltages.
     The optimal load restoration model considering cold load pickup is formulated as an optimization problem subjected to system operation constraints including frequency, voltage and generation output, so that the maximum load may be picked up while maintaining reasonable frequency and voltage profiles. With IPLAN programming language provided by PSS/E, particle swarm optimization algorithm is applied to solve the proposed optimization problem. In addition, penalty is introduced to handle system operation constraints. The proposed method is able to determine the load positions and amounts that can be picked up without disturbing system security and stability.
     Application of voltage source converter (VSC) based HVDC transmission during power system restoration is investigated. VSC based HVDC (VSC-HVDC) technology is proposed to supply the auxiliary motors of the steam plant that is to be hot restarted by the adjacent system or black-start generator. Based on the transient model of VSC in dq0 reference frame, a simulation model of VSC-HVDC system for start-up of the auxiliary motors is developed and different control strategies are adopted for controllers at rectifier and inverter sides respectively. Simulation is performed to verify the effectiveness of the proposed VSC-HVDC scheme for start-up of large induction motors such as boiler feed pump and induced draft fan motors. The results show that VSC-HVDC is able to provide effective reactive power support for start-up of induction motors and voltage drop at the auxiliary bus can maintain reasonable profiles during start-up process of induction motors as well, which are indispensable for successful start-up of the auxiliary motors.
     A restoration strategy is proposed for China Southern Power Grid (CSPG) when some generating units have to be tripped following severe DC system contingencies. In case the tripped units go through a shutdown and cold start cycle for long duration, this dissertation presents a control strategy that power generation of some running units should be reduced during this process to permit the tripped units to be resynchronized to the system without changing the power level at the sending end, which enables the tripped units to be restored to load rapidly without disturbing system stability. With user models developed in PSS/E, simulations are performed on CSPG to investigate the system behavior during reloading process of those thermal units which have been tripped following DC block fault. The results show that power generation at the sending end can be maintained at a reasonable steady level when output of some running units are appropriately reduced during the reloading process of the thermal units, thus having little impact on the system stability, which demonstrates the feasibility and effectiveness of the proposed scheme.
引文
[1] 薛禹胜.现代电网稳定理论和分析技术的研究方向.电力系统自动化,2004,24(7):pp.1-6
    [2] 周孝信.全国电网互联及联网关键技术.面向21世纪电力科学技术讲座.北京:中国电力出版社,2000
    [3] 卢强,梅生伟.面向21世纪的电力系统重大基础研究.自然科学进展,2000,10(10):pp.870-876
    [4] 韩祯祥,曹一家.电力系统的安全性及防治措施.电网技术,2004,28(9):pp.1-6
    [5] 王梅义,吴竞昌,蒙定中.大电网系统技术.北京:水利电力出版社,1991
    [6] 吕伟业,汪建平.中国电力工业发展的思考—电力产业结构调整.电力建设,2002,23(11):pp.1-8
    [7] M. Sitarchyk, J. Coleman. System Restoration. Pennsylvania, USA: PJM Interconnection, L.L.C., 2003
    [8] DL/T723-2000,电力系统安全稳定控制技术导则.2000
    [9] M.M.Adibi, L.H.Fink. Power system restoration planning. IEEE Trans. on Power Systems, 1994, 9(1): pp. 22-28
    [10] M.M.Adibi, L.H.Fink, C.J.Andrews et al. Special considerations in power system restoration. IEEE Trans. on Power Systems, 1992, 7(4): pp. 1419-1427
    [11] Jerry J. Ancona. A framework for power system restoration following a major power failure. IEEE Trans. on Power Systems, 1995,10(3): pp. 1480-1485
    [12] M.M.Adibi, P.Clelland, L.Fink et al. Power system restoration—a task force report. IEEE Trans. on Power Systems, 1987, PWRS-2(2): pp. 271-277
    [13] 杨卫东,徐政,韩祯祥.电力系统灾变防治系统研究的现状与目标.电力系统自动化,2000,24(1):pp.7-12
    [14] M.M.Adibi, L.H.Fink, J. Girl et al. New approaches in power system restoration. IEEE Trans. on Power Systems, 1992, 7(4): pp.1428-1434
    [15] F.F.Wu, A. Monticelli. Analytical tools for power system restoration—conceptual design. IEEE Trans. on Power Systems, 1988,3(1): pp. 10-16
    [16] L.H.Fink, Kan-Lee Liou, Chen-Ching Liu. From generic restoration actions to specific restoration strategies. IEEE Trans. on Power Systems, 1995, 10(2): pp. 745-752
    [17] M.M.Adibi, R.J.Kafka. Power system restoration issues. IEEE Computer Applications in Power, 1991,4(2): pp. 19-24
    [18] U.G.Knight. Power systems in emergencies: from contingency planning to crisis management. England: John Wiley & Sons Ltd, 2001
    [19] Kan-Lee Liou, Chen-Ching Liu, R.F.Chu. Tie line utilization during power system restoration. IEEE Trans. on Power Systems, 1995,10(1): pp. 192-199
    [20] CIGRE TF 38.02.02. Modelling and simulation of black start and restoration of electric power systems. ELECTRA, 1993,147:pp.21-42.
    [21] NPCC Task Force. NPCC inter-area power system restoration procedure. New York: Northeast Power Coordinating Council, 2006
    [22] ISO New England. System restoration guidelines, http://www.iso-ne.com/rules_proceds/operating/isone/op6/OP6 A_RTO_FIN.doc
    [23] 王洪涛,刘玉田,栾兆文,等.空载线路合闸对发电机励磁回路的影响.中国电力,2002,35(7):pp.31-34
    [24] N.A.Fountas, N.D.Hatziargyriou, C.Orfanogiannis et al. Interactive long-term simulation for power system restoration planning. IEEE Trans. on Power Systems, 1997, 12(1): pp. 61-68
    [25] M.M.Adibi. Remote blackstart of steam electric station. 2002 IEEE Power Engineering Society Summer Meeting, Chicago,USA, July 21-25, 2002, 3:pp.1229-1232
    [26] M.M.Adibi, D.P.Milanicz, T.L.Volkmann. Remote cranking of steam electric stations. IEEE Trans. on Power Systems, 1996,11(3): pp. 1613-1618
    [27] M.M.Adibi, D.P.Milanicz, T.L. Volkmann. Simulating transformer taps for remote cranking operations. IEEE Computer Applications in Power, 1996,9(3): pp. 24-29
    [28] 房鑫炎,郁惟镛,熊惠敏,等.电力系统黑启动的研究.中国电力,2000,33(1):pp.40-43.96
    [29] 张其明,王万军.陕西电网黑启动方案研究.电网技术,2002,26(4):pp.42-48
    [30] M.M.Adibi, R.W.Alexander, D.P.Milanicz. Energizing high and extra-high voltage lines during restoration. IEEE Trans. on Power Systems, 1999, 14(3): pp. 1121-1126
    [31] M.M.Adibi, J.N.Borkoski, R.J.Kafka. Power system restoration—the second task force report. IEEE Trans. on Power Systems, 1987, PWRS-2(4): pp. 927-933
    [32] M.M.Adibi, R.W.Alexander, B.Avramovic. Overvoltage control during restoration. IEEE Trans. on Power Systems, 1992, 7(4): pp. 1464-1470
    [33] M.M.Adibi, D.P.Milanicz. Reactive capability limitation of synchronous machines. IEEE Trans. on Power Systems, 1994, 9(1): pp. 29-40
    [34] M.M.Adibi, D.P.Milanicz, T.L.Volkmann. Optimizing generator reactive power resources. IEEE Trans. on Power Systems, 1999, 14(1): pp. 319-326
    [35] Power System Restoration Working Group. Special consideration in power system restoration: the second working group report. IEEE Trans. on Power Systems, 1994, 9(1): pp. 15-21
    [36] E.Kenneth Nielsen, M.M.Adibi, D.Barrie et al. System operations challenges. IEEE Trans. on Power Systems, 1988, 3(1): pp. 118-126
    [37] Chen-Ching Liu, Kan-Lee Liou, Ron F.Chu et al. Generation capability dispatch for bulk power system restoration: a knowledge-based approach. IEEE Trans. on Power System, 1993, 8(1): pp. 316-325
    [38] A.Ketabi, H.Asmar, A.M.Ranjbar et al. An approach for optimal units start-up during bulk power system restoration. 2001 Large Engineering Systems Conference on Power Engineering, Halifax, Nova Scotia, Canada, July 11-13, 2001: pp. 190-194
    [39] Ozair H. Mirza. Usage of CLPU curve to deal with the cold load pickup problem. IEEE Trans. on Power Delivery, 1997, 12(2): pp. 660-667
    [40] E.Agneholm. The restoration process following a major breakdown in a power system. GOTEBORG, Sweden: Chalmers University of Technology, 1996
    [41] NERC Operating Committee. Electric system restoration. New Jersey: North American Electric Reliability Council, 1993
    [42] 天津大学编.电力系统继电保护原理.北京:电力工业出版社,1980
    [43] M.M.Adibi, D.P.Milanicz. Protective system issues during restoration. IEEE Trans. on Power Systems, 1995, 10(3): pp. 1492-1497
    [44] M.M.Adibi, J.N.Borkoski, R.J.Kafka. Analytical tool requirements for power system restoration. IEEE Trans. on Power Systems, 1994, 9(3): pp. 1582-1591
    [45] 诸骏伟.电力系统分析.北京:水利电力出版社,1995
    [46] M.M.Adibi, D.P.Milanicz, T.L.Volkmann. Asymmetry issues in power system restoration. IEEE Trans. on Power Systems, 1999, 14(3): pp. 1085-1091
    [47] M.M.Adibi, Gerry Adamski, Ronaldo Jenkins et al. Nuclear plant requirements during power system restoration. IEEE Trans. on Power Systems, 1995, 10(3): pp. 1486-1491
    [48] M.Rioual, C.Sicre. Energization of a no-load transformer for power restoration purposes: modeling and validation by on site tests. 2000 IEEE Power Engineering Society Winter Meeting, Singapore, Jan. 23-27, 2000, 3: pp. 2239-2244
    [49] H.Kuisti. Energisation of an unloaded transmission grid as part of restoration process. International Conference on Power Systems Transients, New Orleans, USA, Sep. 28-Oct. 2, 2003
    [50] E.Portales, Q. Bui-Van. New control strategy of inrush transient during transformer energization at Toulnustouc hydropower plant using double-break 330-kV circuit breaker. International Conference on Power Systems Transients, New Orleans, USA, Sep. 28-Oct. 2, 2003
    [51] C.P.Cheng, Shihe Chen. Simulation of resonance over-voltage during energization of high voltage power network. International Conference on Power Systems Transients, New Orleans, USA, Sep. 28-Oct. 2, 2003
    [52] L.Prikler, G.Banfai, G.Ban et al. Reducing the magnetizing inrush current by means of controlled energization and de-energization of large power transformers. International Conference on Power Systems Transients, New Orleans, USA, Sep. 28-Oct. 2, 2003
    [53] C.Saldana, G.Calzolari. Methodology utilized in black-start studies on EHV power networks. International Conference on Power Systems Transients, Rio de Janeiro, Brazil, June 24-28, 2001
    [54] G.Morin. Service restoration following a major failure on the HYDRO-QUEBEC power system. IEEE Trans, on Power Delivery, 1987, PWRD-2(2): pp. 454-463
    [55] D.Povh, W. Schultz. Analysis of overvoltages caused by transformer magnetizing inrush current. IEEE Trans, on Power Apparatus and Systems, 1978, PAS-97(4): pp. 1355-1365
    [56] D. Lindenmeyer. A framework for power system restoration. Canada: the University of British Columbia, 2000
    [57] K.Furukawa, A.Izena, T.Shimojo et al. Governor control study at the time of a black start. IEEE Power Engineering Society General Meeting, Denver, Colorado USA, June 6-10, 2004, 2: pp.1521-1526
    [58] F.P.de Mello, J.C.Westcott. Steam plant startup and control in system restoration. IEEE Trans. on Power Systems, 1994,9(1): pp. 93-101
    [59] M.M.Adibi, J.N.Borkoski, R.J.Kafka et al. Frequency response of prime movers during restoration. IEEE Trans, on Power Systems, 1999,14(2): pp. 751-756
    [60] A.Ketabi, A.M.Ranjbar, R.Feuillet. A new method for dynamically calculation of load steps during power system restoration. 2000 Canadian Conference on Electrical and Computer Engineering, Halifax, Canada, May 7-10, 2000,1: pp. 158-162
    [61] 周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):pp.74-79
    [62] Ding Xu. Optimal load shedding and restoration. South Carolina: Clemson University, 2001
    [63] J.E.McDonald, A.M.Bruning, W.R.Mahieu. Cold load pickup. IEEE Trans. on Power Apparatus and Systems, 1979, 98(4): pp. 1384-1386
    [64] S.Ihara, F.C.Schweppe. Physically based modeling of cold load pickup. IEEE Trans. on Power Apparatus and Systems, 1981, 100(9): pp. 4142-4150
    [65] D.Athow, J.Law. Development and applications of a random variable model for cold load pickup. IEEE Trans. on Power Delivery, 1994, 9(3): pp. 1647-1653
    [66] E.Agneholm, J.Daalder. Cold load pick-up of residential load. IEE Proceedings—Generation, Transmission and Distribution, 2000, 147(1): pp. 44-50
    [67] E.Agneholm, J.Daalder. Load recovery in different industries following an outage, IEE Proceedings—Generation, Transmission and Distribution, 2002, 149(1): pp. 76-82
    [68] E.Agneholm, Jaap E.Daalder. Load recovery in the pulp and paper industry following a disturbance. IEEE Trans. on Power Systems, 2000, 15(2): pp. 831-837
    [69] H.B.You, V.Vittal, Z.Yang. Self-healing in power systems: an approach using islanding and rate of frequency decline-based load shedding. IEEE Trans. on Power Systems, 2003,18(1): pp.174-181.
    [70] Shyh-Jier Huang, Chin-Chyr Huang. An automatic load shedding scheme including pumped-storage units. IEEE Trans. on Energy Conversion, 2000, 15(4): pp. 427-432
    [71] B.Qiu, Y.Liu, E.K.Chan et al. LAN-based control for load shedding. IEEE Computer Applications in Power, 2001, 14(3): pp. 38-43
    [72] M.A.Caballer, J.H.Kassebaum, R.P.Stratford. Computer controlled load-shedding for a co-generation facility. Industry Applications Society 39th annual Petroleum and Chemical Industry Conferency, San Antonio, Texas USA, Sept. 28-30, 1992: pp. 247-254
    [73] S.Wunderlich, M.M.Adibi, R.Fischl et al. An approach to standing phase angle reduction. IEEE Trans. on Power Systems, 1994, 9(1): pp. 470-478
    [74] D.Hazarika, A.K.Sirlha. Standing phase angle reduction for power sytem restoration. IEE Proceedings—Generation, Transmission and Distribution, 1998, 145(1): pp. 82-88
    [75] O.H.Mirza. Usage of CLPU curve to deal with the cold load pickup problem. IEEE Trans. on Power Delivery, 1997, 12(2): pp. 660-667
    [76] M.M.Saha, J.P.Wang, O. Werner-Erichsen. The challenges for emergency control and system restoration in power systems. Sixth International Conference on AC and DC Power Transmission, London, UK, April 29-May 3, 1996: pp. 226-232
    [77] C.Y.Teo, Wei Shen. Development of an interactive rule-based system for bulk power system restoration. IEEE Trans, on Power Systems, 2000, 15(2): pp. 646-653
    [78] J.A.Huang, L.Audette, S.Harrison. A systematic method for power system restoration planning. IEEE Trans, on Power Systems, 1995, 10(2): pp. 869-875
    [79] J.A.Huang, F.D.Galiana, G.T.Vuong. Power system restoration incorporating interactive graphics and optimization. Power Industry Computer Application Conference. Baltimore, Maryland, May 7-10, 1991: pp. 216-222
    [80] N.A.Fountas, N.D.Hatziargyriou, C.Orfanogiannis et al. Interactive long-term simulation for power system restoration planning. IEEE Trans, on Power Systems, 1997, 12(1): pp. 61-68
    [81] Power System Restoration Training Task Force. Power system restoration training questionnaire results. IEEE Trans, on Power Systems, 1996, 11(3): pp. 1630-1635
    [82] M.M.Adibi, D.P.Milanicz. Estimating restoration duration. IEEE Trans, on Power Systems, 1999, 14(4): pp. 1493-1498
    [83] Al Bassam A A, Gervais R. Blackout restoration techniques for Saudi Electric Company-Central Branch. 2000 IEEE 9th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance Proceedings. Montreal, Canada, Oct. 8-12, 2000: pp.89-93
    [84] R.F.Chu, E.J.Dobrowolski, E.J.Barr et al. Restoration simulator prepares operators for major blackouts. IEEE Computer Applications in Power, 1991, 4(4): pp. 46-52
    [85] Current Operational Problems Working Group. Dispatcher training simulators lessons learned. IEEE Trans, on Power Systems, 1991, 6(2): pp. 594-604
    [86] J.G.Waight, K.Nodehi, M.Rafian et al. An advanced transportable operator training simulator. Power Industry Computer Application Conference, Baltimore, Maryland, May 7-10, 1991: pp. 164-170
    [87] Operator Training Working Group, Power System Restoration Working Group. Bulk power system restoration training techniques. IEEE Trans, on Power Systems, 1993, 8(1): pp. 191-197
    [88] Operator Training Working Group, J.D.Willson. System restoration guidelines: how to set-up, conduct, and evaluate a drill. IEEE Trans, on Power Systems, 1996, 11(3): pp. 1619-1629
    [89] T.Kobayashi, D.Moridera, S.Fukui et al. Verification of an advanced power system restoration support system using an operator training simulator. IEEE Trans, on Power Systems, 1994, 9(2): pp. 707-713
    [90] M.Rafian, D.Kirschen, P.Sigari et al. Evaluating a restoration tool using consolidated Edison's training simulator. IEEE Trans, on Power Systems, 1996, 11(3): pp. 1636-1642
    [91] M.Sforna, V.C.Bertanza. Restoration testing and training in Italian ISO. IEEE Trans, on Power Systems, 2002, 17(4): pp. 1258-1264
    [92] Y.Hain, I.Schweitzer. Analysis of the power blackout of June 8, 1995 in the Israel Electric Corporation. IEEE Trans, on Power Systems, 1997, 12(4): pp. 1752-1758
    [93] A.Jhutty, J.Stalmans. Experience of blackouts in the Middle East. Godalming, UK: Kennedy &Donkin Ltd, 1998
    [94] U.S.-Canada Power System Outage Task Force. Final report on the August 14, 2003 blackout in the United States and Canada: causes and recommendations. https://reports.energy.gov/BlackoutFinal-Web.pdf, April 2004
    [95] C.-H.Lee, S.-C. Hsieh. Lessons learned from the power outages on 29 July and 21 September 1999 in Taiwan. IEE Proceedings-Generation, Transmission and Distribution, 2002, 149(5): pp. 543-549
    [96] E.J.Simburger, F.J.Hubert. Low voltage bulk power system restoration simulation. IEEE Trans, on Power Apparatus and Systems, 1981, 100(11): pp. 4479-4484
    [97] B.Delfino, G.B.Denegri, E.Cima Bonini et al. Black-start and restoration of a part of the Italian HV network: modelling and simulation of a field test. IEEE Trans, on Power Systems, 1996, 11(3): pp. 1371-1379
    [98] P.Omahen, F.Gubina. Simulations and field tests of a reactor coolant pump emergency start-up by means of remote gas units. IEEE Trans, on Energy Conversion, 1992, 7(4): pp. 691-697
    [99] Randy R.Lindstrom. Simulation and field tests of the black start of a large coal-fired generating station utilizing small remote hydro generation. IEEE Trans, on Power Systems, 1990, 5(1): pp. 162-168
    [100] R. Salvati, M.Sforna, M.Pozzi. Restoration project. IEEE Power & Energy Magazine. 2004, 2(1): pp. 44-51
    [101] S.Quaia, A.Marchesin, B.Marsigli et al. Using pumped storage loads in restoration paths: a field test in the Italian national grid. IEEE Trans, on Power Systems, 2005, 20(3): pp. 1580-1587
    [102] O.Y.Bong, M.R.Lee, N.H.Lee. Development of automatic power restoration system in KEPCO real power system. IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, Oct. 6-10, 2002, 3: pp. 1691-1694
    [103] Paulo Gomes, Antonio Carlos Siqueira de Lima, Antonio de Padua Guarini. Guidelines for power system restoration in the Brazilian system. IEEE Trans, on Power Systems, 2004, 19(2): pp. 1159-1164
    [104] T.Sakaguchi, K.Matsumoto. Development of a knowledge-based system for power system restoration. IEEE Trans, on Power Apparatus and Systems, 1983, PAS-102(2): pp. 320-326
    [105] F.F.Wu, A.Monticelli. Analytical tools for power system restoration - conceptual design. IEEE Trans, on Power Systems, 1988, 3(1): pp. 10-16
    [106] Y.Kojima, S.Warashina, S.Nakamura et al. Development of a guidance method for power system restoration. IEEE Trans, on Power Systems, 1989, 4(3): pp. 1219-1227
    [107] Y.Kojima, S.Warashina, M.Kato et al. The development of power system restoration method for a bulk power system by applying knowledge engineering techniques. IEEE Trans, on Power Systems, 1989, 4(3): pp. 1228-1235
    [108] K.Hotta, H.Nomura, H.Takemoto et al. Implementation of a real-time expert system for a restoration guide in a dispatching center. IEEE Trans, on Power Systems, 1990, 5(3): pp. 1032-1038
    [109] D.S.Kirschen, T.L.Volkmann. Guiding a power system restoration with an expert system. IEEE Trans, on Power Systems, 1991, 6(2): pp. 558-566
    [110] Ta-Kang Ma, Ruth Rogers, Chen-Ching Liu et al. Operational experience and maintenance of an on-line expert system for customer restoration and fault testing. IEEE Trans, on Power Systems, 1992, 7(2): pp. 835-842
    [111] K.Shimakura, J.Inagaki, Y.Matsunoki et al. A knowledge-based method for making restoration plan of bulk power sytem. IEEE Trans, on Power Systems, 1992, 7(2): pp. 914-920
    [112] K.Matsumoto, T.Sakaguchi, R.J.Kafka et al. Knowledge-based systems as operational aids in power system restoration. Proceedings of the IEEE, 1992, 80(5): pp. 689-697
    [113] M.M.Adibi, R.J.Kafka, D.P.Milanicz. Expert system requirements for power system restoration. IEEE Trans, on Power Systems, 1994, 9(3): pp. 1592-1600
    [114] T.Nagata, H.Sasaki, R.Yokoyama. Power system restoration by joint usage of expert system and mathematical programming approach. IEEE Trans, on Power Systems, 1995, 10(3): pp. 1473-1479
    [115] T.Kostic, R.Cherkaoui, A.Germond et al. Decision aid function for restoration of transmission power systems: conceptual design and real time considerations. IEEE Trans. on Power Systems, 1998, 13(3): pp. 923-929
    [116] A.S.Bretas. Robust electric power infrastructures, response and recovery during catastrophic failures. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 2001
    [117] Jaw-Shyang Wu, Chen-Ching Liu, Kan-Lee Liou et al. A Petri Net algorithm for scheduling of generic restoration actions. IEEE Trans. on Power Systems, 1997, 12(1): pp. 69-76
    [118] N.A.Fountas, N.D.Hatziargyriou, K.P.Valavanis. A novel framework for the process control of the restoration of electrical industrical systems. Electric Power Systems Research, 1999, 50(3): pp. 163-167
    [119] T.Nagata, H.Sasaki. A multi-agent approach to power system restoration. IEEE Trans. on Power Systems, 2002, 17(2): pp. 457-462
    [120] 张徐东.长距离交直流混合输电安全稳定控制系统的配置原则.电力系统自动化,2002,26(14):pp.55-58,72
    [1] D.Lindenmeyer, H.W.Dommel, A.Moshref et al. A framework for black start and power system restoration. 2000 Canadian Conference on Electrical and Computer Engineering, Halifax, Nova Scotia, May 7-10, 2000, 1: pp. 153-157
    [2] D.Lindenmeyer, A.Moshref, C.Schaeffer et al. Simulation of the start-up of a hydro power plant for the emergency power supply of a nuclear power station. IEEE Trans. on Power Systems, 2001, 16(1): pp. 163-169
    [3] P.G.Boliaris, J.M.Prousalidis, N.D.Hatziargyriou et al. Simulation of long transmission lines energization for black start studies. Proceedings of the 7th Mediterranean Electrotechnical Conference, Antalya, Turkey, Apr. 12-14, 1994, 3: pp. 1093-1096
    [4] M.Rioual, C.Sicre. Energization of a no-load transformer for power restoration purposes: modeling and validation by on site tests. 2000 IEEE Power Engineering Society Winter Meeting, Singapore, Jan. 23-27, 2000, 3: pp. 2239-2244
    [5] B.Delfino, G.B.Denegri, E.Cima Bonini et al. Black-start and restoration of a part of the Italian HV network: modelling and simulation of a field test. IEEE Trans. on Power Systems, 1996, 11(3): pp. 1371-1379
    [6] N.A.Fountas, N.D.Hatziargyriou, C.Orfanogiannis et al. Interactive long-term simulation for power system restoration planning. IEEE Trans. on Power Systems, 1997, 12(1): pp. 61-68
    [7] M.M.Adibi, J.N.Borkoski, R.J.Kafka. Analytical tool requirements for power system restoration. IEEE Trans. on Power Systems, 1994, 9(3): pp. 1582-1591
    [8] M.M.Adibi, L.H.Fink. Power system restoration planning. IEEE Trans. on Power Systems, 1994,9(1): pp. 22-28
    [9] M.M.Adibi. Remote blackstart of steam electric station. 2002 IEEE Power Engineering Society Summer Meeting, Chicago,USA, July 21-25, 2002, 3: pp. 1229-1232
    [10] CIGRE TF 38.02.02. Modelling and simulation of black start and restoration of an electric power system: results of a questionnaire. ELECTRA, 1990, 131 : pp. 156-169
    [11] J.A.Huang, F.D.Galiana, G.T.Vuong. Power system restoration incorporating interactive graphics and optimization. Power Industry Computer Application Conference. Baltimore, Maryland, May 7-10, 1991: pp. 216-222
    [12] 周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):pp.74-79
    [13] CIGRE TF 38.02.02. Modelling and simulation of black start and restoration of electric power systems. ELECTRA, 1993, 147: pp. 21-42
    [14] N.A.Fountas, N.D.Hatziargyriou, C.Orfanogiannis et al. Interactive long-term simulation for power system restoration planning. IEEE Trans. on Power Systems, 1997, 12(1): pp. 61-68
    [15] M.M.Adibi, J.N.Borkoski, R.J.Kafka. Power system restoration--the second task force report. IEEE Trans. on Power Systems, 1987, PWRS-2(4): pp. 927-933
    [16] M.M.Adibi, R.W.Alexander, B.Avramovic. Overvoltage control during restoration. IEEE Trans. on Power Systems, 1992, 7(4): pp. 1464-1470
    [17] 解广润.电力系统过电压.北京:水利电力出版社,1985
    [18] A.Ketabi, A.M.Ranjbar, R.Feuillet. Analysis and control of temoporary overvoltages for automated restoration planning. IEEE Trans. on Power Delivery, 2002, 17(4): pp. 1121-1127
    [19] Power Technologies Inc. PSS/E program application guide, PSS/E brochure. Power Technologies Inc, 2002
    [20] 傅知兰.电力系统电气设备选择与实用计算.北京:中国电力出版社,2004
    [21] 杨冠城.电力系统自动装置原理.北京:水利电力出版社,1995
    [1] D.Lindenmeyer, H.W.Dommel, A.Moshref et al. A framework for black start and power system restoration. 2000 Canadian Conference on Electrical and Computer Engineering, Halifax, Nova Scotia, May 7-10, 2000, 1: pp. 153-157
    [2] M.M.Adibi, R.W.Alexander, D.P.Milanicz. Energizing high and extra-high voltage lines during restoration. IEEE Trans. on Power Systems, 1999, 14(3): pp. 1121-1126
    [3] D. Lindenmeyer. A framework for power system restoration. Canada: the University of British Columbia, 2000
    [4] A.Gomez Exposito, J.L.Martinez Ramos, J.L.Ruiz Macias et al. Sensitivity-based reactive power control for voltage profile improvement. IEEE Trans. on Power Systems, 1993, 8(3): pp. 937-945
    [5] M.M.Adibi, P.Clelland, L.Fink et al. Power system restoration—a task force report. IEEE Trans. on Power Systems, 1987, PWRS-2(2): pp. 271-277
    [6] M.M.Adibi, R.W.Alexander, B.Avramovic. Overvoltage control during restoration. IEEE Trans. on Power Systems, 1992, 7(4): pp. 1464-1470
    [7] NERC Operating Committee. Electric system restoration. New Jersey: North American Electric Reliability Council, 1993
    [8] M.M.Adibi, J.N.Borkoski, R.J.Kafka. Power system restoration—the second task force report. IEEE Trans. on Power Systems, 1987, PWRS-2(4): pp. 927-933
    [9] M.M.Adibi, R.J.Kafka. Power system restoration issues. IEEE Computer Applications in Power, 1991,4(2): pp. 19-24
    [10] 王尔智,赵玉环.电力网络灵敏度分析与潮流计算.北京:机械工业出版社,1992
    [11] 王祖佑.电力系统稳态运行计算机分析.北京:水利电力出版社,1987
    [12] A.Ketabi, H.Asmar, A.M.Ranjbar et al. An approach for optimal units start-up during bulk power system restoration. 2001 Large Engineering Systems Conference on Power Engineering, Halifax, Nova Scotia, Canada, July 11 - 13, 2001 : pp. 190-194
    [13] M.M.Adibi, D.P.Milanicz. Reactive capability limitation of synchronous machines. IEEE Trans. on Power Systems, 1994, 9(1): pp. 29-40
    [1] 王梅义,吴竞昌,蒙定中.大电网系统技术.北京:水利电力出版社,1991
    [2] M.M.Adibi, R.W.Alexander, B.Avramovic. Overvoltage control during restoration. IEEE Trans. on Power Systems, 1992, 7(4): pp. 1464-1470
    [3] B.Delfino, G.B.Denegri, E.Cima Bonini et al. Black-start and restoration of a part of the Italian HV network: modelling and simulation of a field test. IEEE Trans. on Power Systems, 1996, 11(3): pp. 1371-1379
    [4] R. Salvati, M.Sforna, M.Pozzi. Restoration project. IEEE Power & Energy Magazine. 2004, 2(1): pp. 44-51
    [5] M.Sforna, V.C.Bertanza. Restoration testing and training in Italian ISO. IEEE Trans. on Power Systems, 2002, 17(4): pp. 1258-1264
    [6] D.Povh, W. Schultz. Analysis of overvoltages caused by transformer magnetizing inrush current. IEEE Trans. on Power Apparatus and Systems, 1978, PAS-97(4): pp. 1355-1365
    [7] G.Morin. Service restoration following a major failure on the HYDRO-QUEBEC power system. IEEE Trans. on Power Delivery, 1987, PWRD-2(2): pp. 454-463
    [8] O.Bourgault, G.Morin. Analysis of a harmonic overvoltage due to transformer saturation following load shedding on Hydro-Quebec-NYPA 765kV interconnection. IEEE Trans. on Power Delivery, 1990, 5(1): pp. 397-405
    [9] D. Lindenmeyer. A framework for power system restoration. Canada: the University of British Columbia, 2000
    [10] 周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):pp.74-79
    [11] 周云海,闵勇.恢复控制中的系统重构优化算法研究.中国电机工程学报,2003,23(4):pp.67-70,188
    [12] 顾雪平,赵书强,刘艳,等.一个实用的电力系统黑启动决策支持系统.电网技术,2004,28(9):pp.54-57,74
    [13] G.J.Wakileh著,徐政译.电力系统谐波—基本原理、分析方法和滤波器设计.北京:机械工业出版社,2003
    [14] 程改红,徐政.电力系统故障恢复过程中的过电压控制.电网技术,2004,28(11):pp.29-33
    [15] IEEE Std 519-1992. IEEE recommended practices and requirements for harmonic control in electrical power systems. 1993
    [16] D.C.Robertson, O.I.Camps, J.S.Mayer et al. Wavelets and electromagnetic power system transients. IEEE Trans. on Power Delivery, 1996, 11(2): pp. 1050-1058
    [17] 胡昌华,李国华,刘涛,等.基于MATLAB 6.x的系统分析与设计—小波分析.西安:曲安电子科技大学出版社,2004
    [18] C.H.Kim, R.Aggarwal. Wavelet transforms in power systems: Part 1 General introduction to the wavelet transforms. Power Engineering Journal, 2000, 14(2): pp. 81-87
    [1] M.M.Adibi, J.N.Borkoski, R.J.Kafka et al. Frequency response of prime movers during restoration. IEEE Trans. on Power Systems, 1999, 14(2): pp. 751-756
    [2] A.Ketabi, A.M.Ranjbar, R.Feuillet. A new method for dynamically calculation of load steps during power system restoration. 2000 Canadian Conference on Electrical and Computer Engineering, Halifax, Canada, May 7-10, 2000,1: pp. 158-162
    [3] 周云海,闵勇.负荷的快速恢复算法研究.中国电机工程学报,2003,23(3):pp.74-79
    [4] Ding Xu. Optimal load shedding and restoration. South Carolina: Clemson University, 2001
    [5] B.Delfino, G.B.Denegri, E.Cima Bonini et al. Black-start and restoration of a part of the Italian HV network: modelling and simulation of a field test. IEEE Trans. on Power Systems, 1996, 11(3): pp. 1371-1379
    [6] Power Technologies Inc. IPLAN program mannual, PSS/E brochure. Power Technologies Inc, 2004
    [7] J.Kennedy, R.Eberhart. Particle swarm optimization. 1995 IEEE International Conference on Neural Networks proceedings, Perth, Western Australia, Nov. 27-Dec. 1, 1995, 4: pp. 1942-1948
    [8] J.Kennedy. The particle swarm: social adaptation of knowledge. Proceedings of 1997 IEEE International Conference on Evolutionary Computation, Indianapolis, USA, Apr. 13-16, 1997: pp. 303-308
    [9] A.Ketabi, H.Asmar, A.M.Ranjbar et al. An approach for optimal units start-up during bulk power system restoration. 2001 Large Engineering Systems Conference on Power Engineering, Halifax, Nova Scotia, Canada, July 11-13, 2001: pp. 190-194
    [1] 杨卫东,徐政,韩祯祥.电力系统灾变防治系统研究的现状与目标.电力系统自动化,2000,24(1):pp.7-12
    [2] 浙江大学发电教研组直流输电科研组.直流输电.北京:水利电力出版社,1985
    [3] Anna-Karin Skytt, Per Holmberg, Lars-Erik Juhlin. HVDC Light for connection of wind farms. Second International Workshop on Transmission Networks for Offshore Wind Farms Royal Institute of Technology Stockholm, Sweden, March 29-30, 2001
    [4] U.Axelsson, A.Holm, C.Liljegren et al. The Gotland HVDC Light project-experiences from trial and commercial operation. CIRED conference, Amsterdam, The Netherlands, June 18-21, 2001
    [5] Kent H.Sobrink, Peter Christensen, Kjell Eriksson et al. DC feeder for connection of a wind farm. Cigre Symposium, Kuala Lumpur, Malaysia, Sept. 1999
    [6] Nils Horle, Asmund Maeland, Kjell Eriksson et al. Electrical supply for offshore installations made possible by use of VSC technology. CIGRE, 2002, Paris
    [7] Jan O.Lamell, Timothy Trumbo, Tom F.Nestli. Offshore platform powered with new electrical motor drive system. Fifty-Second Annual Technical Conference of the Petroleum and Chemical Industry Committee Denver, CO, USA, Sept. 12-14, 2005
    [8] B.D.Railing, G.Moreau, L.Ronstrom et al. Cross sound cable project: second generation VSC technology for HVDC. CIGRE, 2004, Paris
    [9] I.Mattsson, B.D.Railing, B.Williams et al, Murrylink, the longest underground HVDC cable in the world. CIGRE, 2004, Paris
    [10] Lars Stendius, Kjell Eriksson. HVDC Light: an excellent tool for city center infeed. PowerGen Conference, Singapore, Sept. 1999
    [11] Vijay K.Sood著,徐政译.高压直流输电与柔性交流输电控制装置—静止换流器在电力系统中的应用.北京:机械工业出版社,2006
    [12] 张桂斌.新型直流输电及其相关技术研究.杭州:浙江大学,2001
    [13] 夏道止.电力系统分析(下册).北京:水利电力出版社,1995
    [14] 周鹗.电机学.北京:水利电力出版社,1995
    [1] P.Kundur.电力系统稳定与控制.北京:中国电力出版社,2001
    [2] 王梅义,吴竞昌,蒙定中.大电网系统技术.北京:水利电力出版社,1991
    [3] 刘隽,李兴源,许秀芳.互联电网的黑启动策略及相关问题.电力系统自动化,2004,28(5):pp.93-97
    [4] F.P.de Mello, J.C.Westcott. Steam plant startup and control in system restoration. IEEE Trans. on Power Systems, 1994, 9(1): pp. 93-101
    [5] Power Technologies Inc. PSS/E program operation manual, PSS/E brochure. Power Technologies Inc, 2002
    [6] 徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2004
    [7] 徐政,蔡晔,刘国平.大规模交直流电力系统仿真计算的相关问题.电力系统自动化,2002,26(15):pp.4-8
    [8] 浙江大学.直流输电.北京:水利电力出版社,1985
    [9] 杨卫东,薛禹胜,荆勇,等.直流系统的控制策略对南方电网暂态稳定性的影响.电力系统自动化,2003,27(18):pp.57-60
    [10] 甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考.电力系统自动化,2004,28(3):pp.1-4,9
    [11] 王加璇,姚文达.电厂热力设备及其运行.北京:中国电力出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700