应用于数字视频接收器的低功耗高速流水线模数转换器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字机顶盒、数字高清电视和液晶平板电视的迅猛发展,日常消费电子产品中的数字视频解调接收器和视频图像处理信号接收前端的重要模块-模数转换器的应用越来越广泛,而且随着整机产品的功能和性能要求越来越高,功耗低面积小的数字视频片上系统(SoC)单芯片已经成为10位分辨率、多通道模数转换器的主要应用芯片,例如3通道采集RGB和YUV信号的视频模拟前端。但是由于片上系统单芯片集成了大量的模拟电路和数字逻辑电路,内部时钟频率也非常高,因此导致电路噪声偏大,影响模数转换器的性能。如何使模数转换器既拥有较强的抗干扰能力,同时达到低功耗的要求,越来越成为模拟集成电路研究的热点和难点。
     论文主要研究了兼容0.18um 1.8V标准数字逻辑CMOS工艺应用于数字视频领域的流水线模数转换器,通过matlab的分析和优化,建立了系统级的设计框架,然后根据系统需求的采样率、输出分辨率等要求计算出影响模数转换器性能参数的限制指标。再根据工艺参数和EDA工具设计出了晶体管级电路并进行了全电路性能仿真。最后设计了整个模数转换器和测试芯片的布局及版图,完成了整个芯片设计的全部流程。期间主要的研究成果和工作有以下几个方面:
     (1) 一般流水线模数转换器常用的动态比较器需要从外部输入参考源与输入信号进行比较然后输出数字域的结果,而本文提出的无输入参考源动态比较器不需要在比较器之外引入参考源而是利用比较器输入对管的差别产生比较阈值,这样减轻了参考源驱动电路的负载,排除了外部电路对动态比较器组成的子模数转换器模块的干扰,另外减少了外部引入参考源走线的数量进而减小了硅面积。
     (2) 论文设计的低功耗高速模数转换器使用了1.8V电源,为了减少开关电容电路采样的信号失真,提出了一种新型的开关栅增压电路,使得信号开关器件的栅电压与输入信号无关,保持开关的导通电阻是常数,而且在增压传输路径中的开关导通电阻也与信号无关,从而降低了信号的谐波失真,提高了电路的动态范围。此外,所有的NMOS开关电路的衬底始终接在电路的最低电平上,这样就使该电路可以在普通的0.18um 1.8V数字标准逻辑CMOS工艺上实现,从而降低了芯片制造成本。
     (3) 虽然流水线模数转换器的冗余位数字校正(RSD)能够消除一定的误差,但是在低电压应用中,由于信号输入幅度相对较高,因此冗佘校正后的误差仍较大,为了保证整个模数转换器依然有良好的线性度和良好的信噪比,论文提出了内插冗余校正技术。该技术的原理是:由于根据系统定义的噪声限制指标和制造工厂提供的工艺匹配参数可以计算出第i级之后插入一级冗余校正级。因此内插冗余校正级可以把第i级的输出大于正常输入范围数倍之内的信号做为输入(主要是第1级到第i级累积的误差并被MDAC电路放大引起的)然后输出时校正到后级能接受的正常输入范围,这样就可以避免最终模数转换器输出钳位和饱和引起整个ADC的线性度和动态范围的下降。
     (4) 为了兼容标准数字逻辑工艺,MDAC中没有使用线性度较高的MiM电容,而是选
    择了三明治式金属层间电容(stack capacitor),这需要通过仔细提取金属层间电容的寄生参数以确保电容的线性度能保证整个ADC的性能。
     (5) 为了优化电路的功耗和面积,论文设计的流水线模数转换器采用了运算放大器复用技术,这样可以让相邻的两个MDAC共用一个运算放大器,有效地降低了功耗和面积。
     论文进行了两次硅实验,实验一是使用0.5um 2层多晶硅3层金属CMOS混合信号工艺实现了1MHz采样的10位流水线模数转换器电路,验证满足静态参数特性和动态参数性能的设计方法;实验二是使用0.18um 1.8V单层多晶硅6层金属标准逻辑工艺实现了100MHz采样的10位流水线模数转换器。在模数转换器的测试方面主要设计了高速电路应用的PCB板和整个测试平台环境搭建。实验一和实验二的DNL分别为0.71 LSB和0.47LSB;INL分别为0.8LSB和0.55LSB;实现的有效位(ENOB)分别为9.7位(1MHz采样)和9.3位(100MHz采样);芯片面积分别为1.7mm~2和0.98mm~2;功耗分别为45mW和63mW,其中实验二的功耗优质因子(FOM)和面积优质因子(FOM_A)分别为0.995pJ.V/Sa和1.55e-11mm~2/Sa,这两个指标达到了近几年收录在JSSC和ISSCC等国际核心刊物的流水线模数转换器的研究成果,能够实现低功耗低硅面积数字视频及SoC嵌入式应用。
Nowadays, DVB-X, Set-top box and high definition TV market are progressively calling for analog-to-digital converter. Since high performance and various functions applied in multimedia systems are required, 10-bit resolution, low power and low cost analog front-end solution handling dense multi-channel operates on a single chip, for example, triple channel application like YUV or RGB capture. As a result of integration of analog and digital circuit with high frequency operation on a single die, high frequency noise is the significant source to degrade the performance of analog-to-digital converter. Low power, low cost and noise free is a hot research on the field of analog-to-digital converter.
    This work is focusing on pipelined ADC applied for the digital video with 0.18 um 1.8-V logic CMOS process. Above all, system architecture is defined by matlab, according to system requirements, limited parameters of ADC's sub circuits are modeled mathematically. Secondly, based on process characteristics and spice tools, this work presents the transistor level of pipelined ADC. Finally, layout and chip testing are described. The main contributions can be concluded as following:
    1. There are lots of input reference wires connected to sub ADC of every pipeline stage if sub ADC is operated by conventional dynamic comparator so that reference buffer is significantly disturbed by coupling noise between reference wires. Another big problem is that dynamic comparator bumps up frequently under high-speed switching. Conventional solution is to design a RC filter to eliminate kickback noise with large silicon area. A new circuit is proposed in this work. There is not any input reference in dynamic comparator, so the mentioned problems are eliminated.
    2. In order to deal with high frequencies inputs, the SHA requires sampling switches with very low and constant on-resistance. A proposed gate-bootstrapping circuit is suitable for low power supply that is 1.8-V power supply used in this work. This circuit decreases the output distortion of switched capacitor circuit. Otherwise, this circuit can be used in logic CMOS process to reduce silicon cost.
    3. An important problem, conventional 1.5-bit per-stage pipelined ADC operated in low power supply although there is 0.5 bit redundant correction (RSD) in the range of ± 1/4Vref, is that overall linearity of the converter is degraded by deceasing power supply. This work proposed an interpolated-redundance correction to enhance overall linearity of pipelined ADC. Based on definition of system level and process characteristics, The solution is to insert an interpolated-redundance correction stage, and then convert an input range larger than ± V_(vef) that is accumulated from first stage to the i~(th) stage into norminal range from -V_(vef) and +V_(vef) to avoid the overall distortion.
    4. Being compatible with logic CMOS process, MDAC has not high linear MiM capacitor but stack capacitor. Be careful layout extraction to guarantee the overall linearity of analog-to-digital converter.
    5. Operational amplifier sharing is based on the fact that in switched-capacitor architecture, the amplifier is used for only one half of a clock cycle, which is during the amplification phase. This way, the same amplifier could be used during different clock phases. This sharing technique can reduce power consumption and silicon area significantly.
    This dissertation has two silicon experiments. One is fabricated by 0.5um DPTM CMOS process for 10-bit 1MS/s pipelined ADC. The experimental results prove the error analysis and matlab models suitable for pipelined ADC. The other silicon experiment is fabricated by 0.18um 1.8-V single poly six metals logic CMOS process for 10-bit 100MS/s pipelined ADC. For testing environment, this work sets up testing environment of high-speed ADC and PCB design. These two experiments present two sampling rate 10-bit pipelined ADC with different process, featuring 0.8/0.55 LSB INL and 0.71/0.47 LSB DNL, 9.7/9.3 ENOB, 1.7/0.98 mm~2, 45/63 mW. The second Experiment shows 0.995 pJ. V~2/Sa FOM and 1.55e-11 mm~2/Sa FOM_A, Such the level of performance reach high level of research on pipelined ADC reported in JSSC and ISSCC et al during the recent years and is sufficient for video analog front-end and other receiver operations.
引文
[1] Mikael Gustavsson, J. Jacob Wiker, Nianxiong Tan. CMOS data converters for communications [M]. Kluwer Academic Publishers, 2000.
    [2] Rudy van de Plassche. CMOS integrated analog-to-digital and digital-to-analog converters [M], 2nd Edition, Kluwer Academic publishers, 2003.
    [3] Paul R. Gray, Paul J. Hurst, S. H. Lewis, etc. Analysis and design of analog integrated circuits [M], 4th Edition, John Wiley & Sons, Inc, 2000.
    [4] Behzad Razvi. Principles of data conversion system design [M], The institute of Electrical and Electronics Engineers, Inc, 1995.
    [5] Stephen H. Lewis and Paul R. Gray. A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter [J]. IEEE J. Solid-State Circuits, 1987, SC-22(6): 954-961.
    [6] Stephen H Lewis. Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video-rate applications [J]. IEEE Trans. Circuits and Systems II:Analog and digital signal processing, 1992, 39(8): 516-523.
    [7] K. Dyer, D. Fu, S. Lewis, and P. Hurst. Analog background calibration of a 10b 40Msample/s parallel pipelined ADC[C], IEEE International Solid-State Circuits Conference, February 1998, XLI: 142-143.
    [8] Won-Chul Song, Hae-Wook Choi, Sung-Ung Kwak, and Bang-Sup Song. A 10-b 20-Msample/s low-power CMOS ADC [J]. IEEE Journal of Solid-State Circuits, May 1995, 30: 514-521.
    [9] Katsufumi Nakamura, Masao Hotta, L. Richard Carley, and David J. Allstot. An 85 mW, 10b, 40 Msample/s CMOS parallel-pipelined ADC [J]. IEEE Journal of Solid-State Circuits, March 1995, 30: 173-183.
    [10] Thomas Byunghak Cho and Paul R. Gray. A 10 b, 20 Msample/s, 35 mW pipeline AdD converter [J]. IEEE Journal of Solid-State Circuits, March 1995, 30: 166-172.
    [11] David William Cline. Noise, Speed, and Power Trade-offs in Pipelined Analog to Digital Converters[D]. Ph. D thesis, UC, Berkeley 1995.
    [12] Paul C. Yu and Hae-Seung Lee. A 2.5V 12b 5Msample/s pipelined CMOS ADC [J]. IEEE International Solid-State Circuits Conference, February 1996, ⅩⅩⅨⅩ: 314-315.
    [13] K. Nagaraj, H. S. Fetterman, J. Anidjar, S.H. Lewis, etc. A 250-roW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers [J]. IEEE Journal of Solid-State Circuits, March 1997, 32: 313-320.
    [14] Hui Pan, Masahiro Segami, Michael Choi, Jing Cao, Fumitoshi Hatori, and Asad Abidi. A 3.3V, 12b, 50Msample/s A/D converter in 0.6μm CMOS with over 80dB SFDR[J]. IEEE International Solid-State Circuits Conference, February 2000, ⅩLⅢ: 40-41.
    [15] Klaas Bult and Aaron Buchwald. An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm~2[J]. IEEE Journal of Solid-State Circuits, December 1997, 32: 1887-1895.
    [16] Ion E. Opris, Laurence D. Lewicki, and Bill C. Wong. A single-ended 12-bit 20 Msample/s self-calibrating pipeline A/D converter[J]. IEEE Journal of Solid-State Circuits, December 1998, 33: 1898-1903.
    [17] Andrew M. Abo and Paul R. Gray. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter[J]. IEEE Journal of Solid-State Circuits, May 1999, 34: 599-606.
    [18] Lauri Sumanen, Mikko Waltari, and Kari A. I. Halonen. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter [J]. 1EEE Journal of Solid-State Circuits, July 2001, 36: 1048-1055.
    [19] Jong-Bum Park, Sang-Min Yoo, Se-Won Kim, Young-Jae Cho, Seung-Hoon. A 10-b 150-MSample/s 1.8-V 123-row CMOS AdD converter with 400-MHz input bandwidth [J]. IEEE Journal of Solid-State Circuits, Aug. 2004, 39: 1335-1337.
    [20] Jipeng Li, Un-Ku Moon. A 1.8-V 67-row 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique [J]. IEEE Journal of Solid-State Circuits, Sept. 2004, 39: 1468-1476.
    [21] Xiaoyue Wang, Hurst, P. J., Lewis, S. H.. A 12-bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration [J]. IEEE Journal of Solid-State Circuits, Oct. 2004, 39: 1799- 1808.
    [1] Z. Y. Guan, S. N. Hulyalkar. Bit-precision resquirements on the A/D converter in QAM receiver [J]. IEEE trans. On Consumer electronics, Aug. 1993, 39: 692-695.
    [2] K. Kattmann, J. Barrow. A Technique for Reducing Differential Nonlinearity Errors in Flash A/D Converters [C]. International Solid-State Circuits Conference in Dig. Tech. Papers, Feb. 1991, 170-171.
    [3] K. Bult, A. Buchwald. An Embedded 240-mW 10-b 50-MS/s CMOS ADC in Imm2 [J]. IEEE J. Solid-State Circuits, Dec. 1997, 32: 1887-1895.
    [4] H. Kimura, A. Matsuzawa, T. Nakamura, S. Sewada. A 10-b 300-MHz Interpolated-Parallel A/D Converter [J]. IEEE J. Solid-State Circuits, Apr. 1993, 28: 438-446.
    [5] M. Choi, A. A. Abidi. A 6b 1.3GSample/s A/D Converter in 0.35μm CMOS [C]. in Dig. Tech. Papers International Solid-State Circuits Conference, Feb. 2001, 126-127.
    [6] G. Geelen. A 6b 1.1GSample/s CMOS A/D Converter [C]. in Dig. Tech. Papers International Solid-State Circuits Conference, Feb. 2001, 128-129.
    [7] R. C. Taft, M. R. Tursi. A 100-MS/s 8-b CMOS Subranging ADC with Sustained Parametric Performance from 3.8 V Down to 2.2 V [J]. IEEE J. Solid-State Circuits, Mar. 2001, 36: 331-338.
    [8] M. P. Flynn, B. Sheahan. A 400-Msample/s. 6-b CMOS Folding and Interpolating ADC [J]. IEEE J. Solid-State Circuits, Dec. 1998, 33: 1132-1938.
    [9] Mikko Waltari. CIRCUIT TECHNIQUES FOR LOW-VOLTAGE AND HIGH-SPEED A/D CONVERTERS [D]. Ph.D thesis, Helsinki University of Technology, 2002.
    [1] Rudy van de Plassche. CMOS integrated analog-to-digital and digital-to-analog converters [M]. 2nd Edition, Kluwer Academic publishers, 2003.
    [2] Mikael Gustavsson, J. Jacob Wiker, Nianxiong Tan. CMOS data converters for communications [M]. Kluwer Academic Publishers, 2000.
    [3] Mikko Waltari. CIRCUIT TECHNIQUES FOR LOW-VOLTAGE AND HIGH-SPEED A/D CONVERTERS [D]. Ph. D thesis, Helsinki University of Technology, 2002.
    [4] M. Shinagawa, Y. Akazawa, T.Wakimoto. Jitter Analysis of High-Speed Sampling Systems [J] IEEE J. Solid-State Circuits, Feb. 1990, 25: 220-224.
    [5] R. Gregorian, G. C. Temes. Analog MOS Integrated Circuits for Signal Processing [M]. John Wiley & Sons, Inc. 1986.
    [1] S. H. Lewis, et al. Indirect testing of digital correction circuits in analog-to-digital converters with redundancy [J]. IEEE trans. On circuits and system-Ⅱ, July, 1995, 42: 437-445.
    [2] J. Goes, J. C. Vital et al. Systematic design for optimization of high-speed self-calibrated pipelined A/D converters [J]. IEEE trans, on Circuits and Systems-Ⅱ, Dec. 1998, 45: 1513-1526.
    [3] Mikael Gustavsson, J. Jacob Wiker, Nianxiong Tan. CMOS data converters for communications [M]. Kluwer Academic Publishers, 2000.
    [4] L. A. William, B. A. Wooley. A third-order sigma-delta modulator with extended dynamic range [J]. IEEE J. of solid-state circuits, Mar. 1994, 29: 193-202.
    [5] T. B. Cho, P. R. Gray. A 10 b, 20 Msample/s, 35 mW Pipeline A/D Converter [J]. IEEE J. Solid-State Circuits, Mar. 1995, 30(3): 166-172.
    [6] L. Sumanen, M. Waltari, K. Halonen. A Mismatch Insensitive CMOS Dynamic Comparator for Pipeline A/D Converters [C]. in Proceedings of the IEEE International Conference on Circuits and Systems (ICECS'00), Dec. 2000,1-32-35.
    [7] M. Waltari, K. Halonen. 1-V, 9-Bit Pipelined Switched-Opamp ADC [J]. IEEE J. Solid-State Circuits, Jan. 2001, 36: 129-134.
    [8] P. C. Yu, H.-S. Lee. A 2.5-V, 12-b, 5-MSample/s Pipelined CMOS ADC [J]. IEEE J. Solid-State Circuits, Dec. 1996,31: 1854-1861.
    [9] R. Jewett, K. Poulton, K.-C. Hsieh, J. Doernberg. A 12b 128MSample/s ADC with 0.05LSB DNL [C]. in IEEE Int. Solid-State Circuits Conference Digest of technical Papers, Feb. 1997: 138-139.
    [10] I. E. Opris, B. C. Wong, S.W. Chin. A Pipeline A/D Converter Architecture with Low DNL [J]. IEEE J. Solid-State Circuits, Feb. 2000, 35(2): 281-285.
    [11] K. R. Laker, W. M. C. Sansen, Design of Analog Integrated Circuits and Systems[M]. McGraw-Hill International Editions, Singapore, 1996.
    [12] K. Gulati, H.-S. Lee. A High-Swing CMOS Telescopic Operational Amplifier [J]. IEEE J. Solid-State Circuits, Dec. 1998, 33 (12): 2010-2019.
    [13] R. Hogervorst, J. H. Huijsing, Design of Low-Voltage Low-Power Operational Amplifier Cells [M]. Kluwer Academic Publishers, Dordrecht, 1999.
    [14] S.-H. Lee, B.-S. Song. Interstage Gain Proration Technique for Digital-Domain Multi-Step ADC Calibration [J]. IEEE Trans, on Circuits and Systems-II, Jan. 1994, 41: 12-18.
    [15] Lauri Sumanen. Pipeline Analog-to-Digital Converters for Wide-Band Wireless Communications [D]. Ph. D thesis, Helsinki University of Technology, 2002.
    [16] B. J. Sheu, C. Hu. Switch-Induced Error Voltage on a Switched Capacitor," IEEE J. Solid-State Circuits, Aug. 1984, 19: 519-525.
    [17] W. B. Wilson, H. Z. Massoud, E. J. Swanson, R. T. George, Jr., R. B. Fair. Measurement and Modelling of Charge Feedthrough in n-Channel MOS Analog Switches [J]. IEEE J. Solid-State Circuits, Dec. 1985,20: 1206-1213.
    [18] B. J. Sheu, J-H. Shieh, M. Patil. Modeling Charge Injection in MOS Analog Switches [J]. IEEE Trans. Circuits and Systems, Feb. 1987, 34: 214-216.
    [19] G. Wegmann, E .A. Vittoz, F. Rahali. Charge Injection in Analog MOS Switches," IEEE J. Solid-State Circuits, Dec. 1987, sc-22: 1091-1097.
    [20] A. M. Abo, P. R. Gray. A 1.5-V, 10-bit, 14-MS/s CMOS Pipeline Analogto-Digital Converter [J]. IEEE J. Solid-State Circuits, May 1999, 34: 599-606.
    [21] M. Dessouky, A. Kaiser. Input switch configuration for rail-to-rail operation of switched opamp circuits [J], Electronics Letters, Jan 1999, 35 (1): 8-10.
    [22] D. J. Sauer. Constant Impedance Sampling Switch for an Analog to Digital Converter [P]. U.S. Patent 5 500 612, David SarnoffResearch Center Inc., Mar. 16, 1996.
    [23] J. L. Gorecki. Dynamic Input Sampling Switch for CDACS [P]. U.S. Patent 5 084 634, Burr-Brown Corporation, Jan. 28, 1992.
    [24] J. R. Naylor, M. A. Shill. Bootstrapped FET Sampling Switch [P]. U.S. Patent 5172 019, Burr-Brown Corporation, Dec. 15, 1992.
    [25] T. L. Brooks, D. H. Rebertson, D. F. Kelly, A. D. Muro, S. W. Harston. A Cascaded Sigma-Delta A/D Converter with 1.25 MHz Signal Bandwidth and 89 dB SNR [J]. IEEE J. Solid-State Circuits, Dec. 1997, 32: 1896-1906.
    [26] L. Singer, T. L. Brooks. Two-Phase Bootstrapped CMOS Switch Drive Technique and Circuit [P]. U.S. Patent 6 060 937, Analog Devices Inc., May 9, 2000.
    [27] J. Blake, A. Gribben, C. Price. Back Gate Switched Sample and Hold Circuit [P]. U. S. Patent 5 422 583, Jun. 6, 1995.
    [28] J. Steensgaard. Bootstrapped Low-Voltage Analog Switches [J]. In Proc. IEEE International Symposium on Circuits and Systems, 1999, vol. Ⅱ: 29-32.
    [29] H. Pan, M. Segami, M. Choi, J. Cao, A. Abidi. A 3.3-V 12-b 50-MS/s A/D Converter in 0.6-μm CMOS with over 80-dB SFDR [J]. IEEE J. Solid-State Circuits, Dec. 2000, 35: 1769-1780.
    [30] 张剑云等.一种适用于开关电容电路的MOS开关栅增压电路[J].半导体学报,2005年26(9):1808-1812.
    [31] Jian Li, Jianyun Zhang, et al. A 10BIT 30MSPS CMOS A/D Converter For High Performance Video Applications [C]. Proceedings of ESSCIRC, 2005, 523-526.
    [1] Joey Doemberg, HAE-SEUNG LEE, David A. Hodges. Full-speed testing of A/D converters[J]. IEEE J. of Solid-state circuits, Dec. 1984, 19 (6): 820-827.
    [2] "Methods and draft standards for the DYNamic characterisation and testing of Analogue to Digital converters", European project DYNAD - SMT4-CT98-2214 Programme Standards, measurements, and Testing.
    [3] Shinagawa, M., Akazawa, Y., and Wakimoto, T.. Jitter analysis of high-speed sampling systems [J]. IEEE J. Solid-State Circuits, 1990, 25(1): 220-224.
    [4] INL/DNL measurements for high-speed analog-to-digital converters (ADCs) [EB/OL]. http://www.maxim-ic.com/appnotes.cfm/appnote_number/283/ln/en.
    [5] Coherent sampling vs. Window sampling [EB/OL]. http://www.maxim-ic.com/appnotes.cfm/appnote_number/1040/ln/en.
    [6] Abramowitz, M. and Stegun, I.. Handbook of mathematical functions [M]. Dover publications, INC., New York, 1970.
    [1] W. Yang, D. Kelly, I. Mehr, M. Sayuk, and L. Singer. A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at nyquist input[J]. IEEE Journal of Solid-State Circuits, December 2001, 36 (12): 1931-1936.
    [2] J. Shyu, G. Temes, and K. Yao. Random errors in MOS capacitors [J]. IEEE Journal of Solid-State Circuits, December 1982, SC-17 (6): 1070-1076.
    [3] Charles Grant Myers. Design of High-Performance Pipeline Analog-to-Digital converters in Low-Voltage Processes [D]. MSc. thesis, Oregon State University, 2005.
    [4] Behzad Razavi. Design of Analog CMOS integrated circuits [M]. Mc Graw-Hill, 2001.
    [5] Lauri Sumanen. Pipeline Analog-to-Digital Converters for Wide-Band Wireless Communications [D]. Ph. D thesis, Helsinki University of Technology, 2002.
    [6] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, etc. A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers [J]. IEEE Journal of Solid-State Circuits, March 1997, 32: 313-320.
    [7] D. J. Sauer. Constant Impedance Sampling Switch for an Analog to Digital Converter [P]. U.S. Patent: 5 500 612, David Sarnoff Research Center Inc., Mar. 16, 1996.
    [8] J. L. Gorecki. Dynamic Input Sampling Switch for CDACS [P]. U. S. Patent: 5 084 634, Burr-Brown Corporation, Jan. 28, 1992.
    [9] J. R. Naylor, M. A. Shill. Bootstrapped FET Sampling Switch [P] U. S. Patent: 5172 019, Burr-Brown Corporation, Dec. 15, 1992.
    [10] T. L. Brooks, D. H. Rebertson, D. F. Kelly, A. D. Muro, S. W. Harston. A Cascaded Sigma-Delta A/D Converter with 1.25 MHz Signal Bandwidth and 89 dB SNR [J]. IEEE J. Solid-State Circuits, Dec. 1997, 32: 1896-1906.
    [11] L. Singer, T. L. Brooks. Two-Phase Bootstrapped CMOS Switch Drive Technique and Circuit," U.S. Patent: 6 060 937, Analog Devices Inc., May 9, 2000.
    [12] J. Blake, A. Gribben, C. Price. Back Gate Switched Sample and Hold Circuit [P]. U.S. Patent: 5422583, Jun. 6, 1995.
    [13] J. Steensgaard "Bootstrapped Low-Voltage Analog Switches [C]. in Proc. IEEE International Symposium on Circuits and Systems, 1999, Ⅱ: 29-32.
    [14] H. Pan, M. Segami, M. Choi, J. Cao, A. Abidi. A 3.3-V 12-b 50-MS/s A/D Converter in 0.6-μm CMOS with over 80-dB SFDR [J]. IEEE J. Solid-State Circuits, Dec. 2000, 35: 1769-1780.
    [15] Mikko Waltari. CIRCUIT TECHNIQUES FOR LOW-VOLTAGE AND HIGH-SPEED A/D CONVERTERS [D]. Ph. D thesis, Helsinki University of Technology Department of Electrical and Communications Engineering, 2002.
    [16] 张剑云、李建等.一种适用于开关电容电路的MOS开关栅增压电路[J].半导体学报,2005年,26(9):1808-1812.
    [17] 张剑云,张卫等.一种流水线模数转换器的动态比较器电路结构[P].中国:专利号:ZL 2004 2 0019862.0,2005年2月.
    [18] Terje Nortvedt Andersen, Bjφmar Hernes, Atle Briskemyr, Frode Telstφ, Johnny Bjφrnsen, Thomas E. Bonnerud, and φystein Moldsvor. A Cost-Efficient High-Speed 12-bit Pipeline ADC in 0.18 um Digital CMOS [J]. IEEE Journal of Solid-State Circuits, July 2005, 40: 1506-1513.
    [19] Arash Loloee, Alfio Zanchi, Huawen Jin, Shereef Shehata, Eduardo Bartolome. A 12b 80Msps pipelined ADC core with 190 mW consumption from 3 V in 0.18um digital CMOS [C]. ESSCIRC, 2002, 467-470.
    [20]Jian Li, Jianyun Zhang, et al. A 10BIT 30MSPS CMOS A/D Converter For High Performance Video Applications [C]. Proceedings of ESSCIRC, 2005, 523-526.
    [1] Behzad Razavi. Design of Analog CMOS integrated circuits [M]. Mc Graw-Hill, 2001.
    [2] Lauri Sumanen. Pipeline Analog-to-Digital Converters for Wide-Band Wireless Communications [D]. Ph. D thesis, Department of Electrical and Communications Engineering, Helsinki University of Technology, Dec., 2002.
    [3] Y. M. Lin, B. Kim, P. R. Gray. A 13 bit 2.5MHz Self-calibrated pipelined A/D Converter in 3 μm CMOS [C]. Syrup. VLSI Circuits Dig. 4, June 1990, 33-34.
    [4] Tatsuji Matsuura, Masao Hotta, Kunihiko Usui, Eiki Imaizumi, and Seiichi Ueda. A 95-mW, 10-b 15-MHz low-power CMOS ADC using analog double-sampled pipelining scheme [C]. Syrup. VLSI Circuits Dig. 6, June 1992, 98-99.
    [5] Cormac S. G. Conroy, David W. Cline, and Paul R. Gray. A high-speed parallel pipelined ADC Technique in CMOS [C]. Symp. VLSI Circuits Dig. 6, June 1992, 96-97.
    [6] Naoki Kumazawa, Noriyuki Fukushima, Takayoshi Fujiwara, Kiyokazu Motoyama, and Naomi Akui. A CMOS 3V 24mW 20MSPS 10bit A/D converter with self calibration unit [C]. Symp. VLSI Circuits Dig. 8, June 1994, 15 - 16.
    [7] Larry A. Singer and Todd L. Brooks. A 14-bit 10-MHz calibration-free CMOS Pipelined A/D converter[C]. Symp. VLSI Circuits Dig. 10, June 1996, 94 - 95.
    [8] Thomas B. Cho, George Chien, Francesco Brianti, and Paul R. Gray. A power-optimized CMOS Baseband channel filter and ADC for ordless applications [C]. Symp. VLSI Circuits Dig. 10, June 1996,64-65.
    [9] Behzad Razavi and Bruce A. Wooley. A 12b 5MS/s two-step CMOS A/D converter [C]. IEEE International Solid-State Circuits Conference, February 1992, XXXV: 36 - 37.
    [10] Pieter Vorenkamp and Johan P. M. Verdaasdonk. A 10b 50MS/s pipelined ADC[C]. IEEE International Solid-State Circuits Conference, February 1992, XXXV: 32-33.
    [11] William T. Colleran, Tuonglong H. Phan, and Asad A. Abidi. A 10b, 100 Ms/s pipelined A/D converter [C].IEEE International Solid-State Circuits Conference, February 1993, XXXVI: 68 - 69.
    [12] Kazuya Sone, Naotoshi Nakadai, Yoshio Nishida, Masaki Ishida, Yumi Sekine, and Michio Yotsuyanagi. A 10b 100-Ms/s pipelined subranging BiCMOS ADC [C]. IEEE International Solid-State Circuits Conference, February 1993, XXXVI: 66 - 67.
    [13] Keiichi Kusumoto, Kenji Murata, Akira Matsuzawa, Shoichiro Tada, Masakatsu Maruyama, Kohji Oka, and Hiroyuki Konishi. A 10b 20MHz 30mW pipelined interpolating CMOS ADC [C]. IEEE International Solid-State Circuits Conference, February 1993, XXXVI: 62 - 63.
    [14] Andrew N. Karanicolas, Hae-Sung Lee, and Kantilal L. Bacrania. Andrew N. Karanicolas, Hae-Sung Lee, and Kantilal L. Bacrania [C]. IEEE International Solid-State Circuits Conference, February 1993, XXXVI: 60-61
    [15] Shin-Il Lim, Seung-Hoon Lee, and Sun-Young Hwang. A 12b 10MHz 250mW CMOS A/D converter [C]. IEEE International Solid-State Circuits Conference, February 1996, XXXIX: 316 - 317.
    [16] Paul C. Yu and Hae-Seung Lee. A 2.5V 12b 5Msample/s pipelined CMOS ADC [C]. IEEE International Solid-State Circuits Conference, February 1996, XXXIX: 314-315.
    [17] Michael K. Mayes and Sing W. Chin. Monolithic low-power 16b lMsample/s self-calibrating pipeline ADC [C]. IEEE International Solid-State Circuits Conference, February 1996, XXXIX: 312-313.
    [18] Joseph Ingino Jr. and Bruce Wooley. A continuously-calibrated 10Msample/s 12b 3.3V ADC [C]. IEEE International Solid-State Circuits Conference, February 1998, XLI: 144 - 145.
    [19] K. Dyer, D. Fu, S. Lewis, and P. Hurst. Analog background calibration of a 10b 40Msample/s parallel pipelined ADC [C]. IEEE International Solid-State Circuits Conference, February 1998, XLI: 142-143.
    [20] Hui Pan, Masahiro Segami, Michael Choi, Jing Cao, Fumitoshi Hatori, and Asad Abidi. A 3.3V, 12b, 50Msample/s A/D converter in 0.6um CMOS with over 80dB SFDR[C]. IEEE International Solid-State Circuits Conference, February 2000, XLIII: 40-41.
    [21] Sang-Min Yoo, Jong-Bum Park, Hee-Suk Yang, Hyuen-Hee Bae, Kyoung-Ho Moon, Ho-Jin Park, Seung-Hoon Lee, Jae-Hwui Kim. A 10 b 150 MS/s 123 mW 0.18 um CMOS pipelined ADC [C]. 2003 IEEE International Solid-State Circuits Conference, 2003, 1: 326 - 497.
    [22] Hernes, B., Briskemyr, A., Andersen, T.N., Telste, F., Bonnerud, T.E., Moldsvor, O. A 1.2V 220MS/s 10b pipeline ADC implemented in 0.13um digital CMOS [C]. IEEE International Solid-State Circuits Conference, 2004, 1: 256 - 526.
    [23] Ahuja, B.K., Hoffman, E.G., Gower, R.L., Rogers, C.A., Salcedo, J.A.. A 30 Msample/s 12b 110 mW video analog front end for digital camera[C]. IEEE International Solid-State Circuits Conference, Feb. 2002, 1: 438-479, 3-7.
    [24] Miyazaki, D., Furuta, M., Kawahito, S. A 16 mW 30 MSample/s 10 b pipelined A/D converter using a pseudo-differential architecture [C]. IEEE International Solid-State Circuits Conference, Feb., 2002, 1: 174-458.
    [25] Dong-Young Chang, Lei Wu, Un-Ku Moon. Low-voltage pipelined ADC using opamp-reset switching technique [C]. Custom Integrated Circuits Conference, Proceedings of the IEEE 2002, 461-464.
    [26] Amourah, M., Bilhan, H., Feng Ying, Lieyi Fang, Gonggui Xu, Chandrasekaran, R., Geiger, R. A 9b 165MS/s 1.8V pipelined ADC with all digital transistors amplifier [C]. Custom Integrated Circuits Conference, Proceedings of the IEEE, Sept. 2003, 421 - 424.
    [27] Hisano, S., Sapp, S.E. A 16-bit, 20MSPS CMOS pipeline ADC with direct INL detection algorithm [C]. Custom Integrated Circuits Conference, Proceedings of the IEEE 2003, 417 - 420.
    [28] Hirotomo Ishii, Ken Tanabe, Tetsuya Iida. A 1.0V 40mW 10b 100MS/s pipeline ADC in 90nm CMOS [C]. Custom Integrated Circuits Conference, Proceedings of the IEEE 2005, 388 - 391.
    [29] Katsufumi Nakamura, Masao Hotta, L. Richard Carley, and David J. Allstot. An 85 mW, 10b, 40 Msample/s CMOS parallel-pipelined ADC [J], IEEE Journal of Solid-State Circuits, March 1995,30: 173-183.
    [30] Thomas Byunghak Cho and Paul R. Gray. A 10 b, 20 Msample/s, 35 mW pipeline A/D converter [J]. IEEE Journal of Solid-State Circuits, March 1995, 30: 166 - 172.
    [31] Won-Chul Song, Hae-Wook Choi, Sung-Ung Kwak, and Bang-Sup Song. A 10-b 20-Msample/s low-power CMOS ADC [J]. IEEE Journal of Solid-State Circuits, May 1995, 30: 514-521.
    [32] Douglas A. Mercer. A 14-b 2.5 MSPS pipelined ADC with on-chip EPROM [J]. IEEE Journal of Solid-State Circuits, January 1996, 31: 70 - 76.
    [33] David W. Cline and Paul R. Gray. A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 μm CMOS [J]. IEEE Journal of Solid-State Circuits, March 1996, 31: 294-303.
    [34] Gil-Cho Ahn, Hee-Choel Choi, Shin-Ⅱ Lim, Seung-Hoon Lee, and Chul-Dong Lee. A 12-b, 10-MHZ, 250-mW CMOS A/D converter [J]. IEEE Journal of Solid-State Circuits, December 1996, 31: 2030-2035.
    [35] Michael K. Mayes and Sing W. Chin. A 200 mW, 1 Msample/s, 16-b pipelined A/D converter with on-chip 32-b microcontroller [J]. IEEE Journal of Solid-State Circuits, December 1996, 31: 1862-1872.
    [36] Paul C. Yu and Hae-Seung Lee. A 2.5-V, 12-b, 5-Msample/s pipeline CMOS ADC [J]. IEEE Journal of Solid-State Circuits, December 1996, 31: 1854-1861.
    [37] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger. A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers [J]. IEEE Journal of Solid-State Circuits, March 1997, 32: 312-320.
    [38] Klaas Bult and Aaron Buchwald. An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm~2 [J]. IEEE Journal of Solid-State Circuits, December 1997, 32: 1887-1895.
    [39] Sung-Ung Kwak, Bang-Sup Song, and Kantilal Bacrania. A 15-b, 5-Msample/s low-spurious CMOS ADC [J]. IEEE Journal of Solid-State Circuits, December 1997, 32: 1866-1875.
    [40] Joseph M. Ingino and Bruce A. Wooley. A continuously calibrated 12-b, 10-MS/s, 3.3-V A/D converter [J]. IEEE Journal of Solid-State Circuits, December 1998, 33: 1920-1931.
    [41] Ion E. Opris, Laurence D. Lewicki, and Bill C. Wong. A single-ended 12-bit 20 Msample/s self-calibrating pipeline A/D converter [J]. IEEE Journal of Solid-State Circuits, December 1998, 33: 1898-1903.
    [42] Andrew M. Abo and Paul R. Gray. A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter [J]. IEEE Journal of Solid-State Circuits, May 1999, 34: 599-606.
    [43] Ion E. Opris, Bill C. Wong, and Sing W. Chin. A pipeline A/D converter architecture with low DNL [J]. IEEE Journal of Solid-State Circuits, February 2000, 35: 281-285.
    [44] Iuri Mehr and Larry Singer. A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC [J]. IEEE Journal of Solid-State Circuits, March 2000, 35: 318-325.
    [45] Myung-Jun Choe, Bang-Sup Song, and Kantilal Bacrania. A 13-b 40-Msamples/s CMOS pipelined folding ADC with background offset trimming [J]. IEEE Journal of Solid-State Circuits, December 2000, 35: 1781-1790.
    [46] Hui Pan, Masahiro Segami, Michael Choi, Jing Cao, and Asad A. Abidi. A 3.3-V 12-b 50-MS/s A/D converter in 0.6-μm CMOS with over 80-dB SFDR [J]. IEEE Journal of Solid-State Circuits, December 2000, 35: 1769-1780.
    [47] Mikko Waltari and Kari A. I. Halonen. 1-V 9-Bit Pipelined switched-opamp ADC [J]. IEEE Journal of Solid-State Circuits, January 2001, 36: 129-134.
    [48] Dwight U. Thompson and Bruce A. Wooley. A 15-b pipelined CMOS floating-point A/D converter [J]. IEEE Journal of Solid-State Circuits, February 2001, 36: 299-303.
    [48] Myung-Jun Choe, Bang-Sup Song, and Kantilal Bacrania. An 8-b 100-MSample/s CMOS pipelined folding ADC [J]. IEEE Journal of Solid-State Circuits, February 2001, 36: 184-194.
    [49] Hsin-Shu Chen, Bang-Sup Song, and Kantilal Bacrania. A 14-b 20-MSamples/s CMOS pipelined ADC [J], IEEE Journal of Solid-State Circuits, June 2001, 36: 997-1001.
    [50] Lauri Sumanen, Mikko Waltari, and Karl A. I. Halonen. A 10-bit 200-MS/s CMOS parallel pipeline A/D converter [J]. IEEE Journal of Solid-State Circuits, July 2001, 36: 1048-1055.
    [51] Jun Ming and Stephen H. Lewis. An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration [J]. IEEE Journal of Solid-State Circuits, October 2001, 36: 1489-1497.
    [52] Wenhua Yang, Dan Kelly, Iuri Mehr, Mark T. Sayuk, and Larry Singer. A 3-V 340mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input [J]. IEEE Journal of Solid-State Circuits, December 2001, 36: 1931-1936.
    [53] Shang-Yuan Chuang and Terry L. Sculley. "A digitally self-calibrating 14-bit 10-MHz CMOS pipelined A/D converter [J]. IEEE Journal of Solid-State Circuits, June 2002, 37: 674-683.
    [54] Kaviani, K., Oralkan, O., Khuri-Yakub, P., Wooley, B. A. A multichannel pipeline analog-to-digital converter for an integrated 3-D ultrasound imaging system [J]. IEEE Journal of Solid-State Circuits, July 2003, 38: 1266-1270.
    [55] Blecker, E. B., McDonald, T. M., Erdogan, O. E., Hurst, P. J., Lewis, S. H. Digital background calibration of an algorithmic analog-to-digital converter using a simplified queue [J]. IEEE Journal of Solid-State Circuits, June 2003, 38: 1059-1062.
    [56] Dong-Young Chang, Un-Ku Moon. A 1.4-V 10-bit 25-MS/s pipelined ADC using opamp-reset switching technique [J]. IEEE Journal of Solid-State Circuits, Aug. 2003, 38: 1401-1404.
    [57] Murmann, B., Boser, B. E. A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification [J]. IEEE Journal of Solid-State Circuits, Dec 2003, 38: 2040-2050.
    [58] Byung-Moo Min, Kim, P., Bowman, F. W., Ⅲ, Boisvert, D. M., Aude, A. J. A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC [J]. IEEE Journal of Solid-State Circuits, Dec 2003, 38: 2031-2039.
    [59] Zanchi, A., Tsay, F., Papantonopoulos, I. Impact of capacitor dielectric relaxation on a 14-bit 70-MS/s pipeline ADC in 3-V BiCMOS [J]. IEEE Journal of Solid-State Circuits, Dec 2003, 38: 2077-208.
    [60] Ming-Huang Liu, Kuo-Chan Huang, Wei-Yang Ou, Tsung-Yi Su, Shen-Iuan Liu. A low voltage-power 13-bit 16 MSPS CMOS pipelined ADC [J]. IEEE Journal of Solid-State Circuits, May 2004, 39: 834-836.
    [61] Arias, J., Boccuzzi, V., Quintanilla, L., Enriquez, L., Bisbal, D., Banu, M., Barbolla, J. Low-power pipeline ADC for wireless LANs [J]. IEEE Journal of Solid-State Circuits, Aug. 2004, 39: 1338-1340.
    [62] Jong-Bum Park, Sang-Min Yoo, Se-Won Kim, Young-Jae Cho, Seung-Hoon. A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400-MHz input bandwidth [J]. IEEE Journal of Solid-State Circuits, Aug. 2004, 39: 1335-1337.
    [63] Jipeng Li, Un-Ku Moon. A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique [J]. IEEE Journal of Solid-State Circuits, Sept. 2004, 39: 1468-1476.
    [64] Xiaoyue Wang, Hurst, P. J., Lewis, S. H.. A 12-bit 20-Msample/s pipelined analog-to-digital converter with nested digital background calibration [J]. IEEE Journal of Solid-State Circuits, Oct. 2004, 39: 1799-1808.
    [65] Siragusa, E., Galton, I.. A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC [J]. IEEE Journal of Solid-State Circuits, Dec. 2004, 39: 2126-2138.
    [66] Yun Chiu, Paul R. Gray, Borivoje Nikolic. A 14-b 12-MS/s CMOS Pipeline ADC With Over 100-dB SFDR [J]. IEEE Journal of Solid-State Circuits, Dec. 2004, 39: 2139-2151.
    [67] Hung-Chih Liu, Zwei-Mei Lee, Jieh-Tsomg Wu. A 15-b 40-MS/s CMOS pipelined analog-to-digital converter with digital background calibration [J]. IEEE Journal of Solid-State Circuits, May 2005, 40: 1047-1052.
    [68] Terje Nortvedt Andersen, Bjornar Heroes, Atle Briskemyr, Frode Telstφ, Johnny Bjφrnsen, Thomas E. Bonnerud, and φystein Moldsvor. A Cost-Efficient High-Speed 12-bit Pipeline ADC in 0.18 um Digital CMOS [J]. IEEE Journal of Solid-State Circuits, July 2005, 40: 1506-1513.
    [69] Ahmed, I., Johns, D. A.. A 50-MS/s (35 mW) to 1-kS/s (15/spl mu/W) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation [J]. IEEE Journal of Solid-State Circuits, Dec. 2005, 40: 2446-2455.
    [70] Varzaghani, A., Yang, C. -K. K.. A 600-MS/s 5-bit pipeline A/D converter using digital reference calibration [J]. IEEE Journal of Solid-State Circuits, Feb 2006, 41: 310-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700