背压对AA5083超塑成形性能及变形量对TC4机械性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超塑胀形作为超塑成形的重要应用,已经广泛应用于航空、航天、船舶、汽车、电子通信等行业,但在超塑性机理、力学特性以及应用技术等方面都有待于进一步深入研究。而超塑胀形试验目前被认为是研究板材超塑成形性能的重要手段。
     本文主要研究工作包括两个方面:
     第一,针对AA5083铝合金圆锥件,利用有限元仿真软件获得不同加载方式下的压力-时间曲线进行胀形试验,比较不同背压情况下材料的组织孔洞缺陷以及成形极限,研究背压对于AA5083铝合金的超塑胀形性能的影响。
     第二,针对TC4钛合金圆筒件,利用有限元仿真软件获得压力-时间曲线进行胀形试验,而后在筒底部切割试样,研究了超塑变形量对材料疲劳强度、静力强度、塑性以及晶粒尺寸的影响。
     试验结果表明:对于AA5083铝合金圆锥件,背压有效抑制了孔洞的萌生和长大,提高了材料的成形极限和胀形延伸率,在不加背压情况下,圆锥件顶点处胀形延伸率为266%,在加1.5MPa和3MPa背压时,胀形延伸率分别增长至324%和567%。对于TC4钛合金圆筒件,当胀形延伸率小于100%时,TC4的静力强度有明显的下降,当胀形延伸率e增加至230%时,强度极限和屈服强度基本保持不变;此外,随着超塑胀形延伸率e增加,TC4钛合金的条件疲劳强度降低。
Superplastic pneumatic bulge forming is an important application of superplastic forming, which has been widely appied in the aeronautics, astronautics, shipping, automibiles, electronic communications and etc. However, it is still needed of futher research on the mechanisms, and application technologies of superplastic pneumatic bulge forming. Superplastic bulge experiment is considered to be the best way to investigate the superplastic forming performance of sheets.
     It is mainly researched on two sides in this paper:
     Firstly, finite element simulation is utilized to get the p-t curve for different forming ways, and then caviation and forming limits of the sheets which formed in different conditions are compared to investigate the effect of back pressure on the superplastic forming performance.
     Secondly, finite element simulation is utilized to get the p-t curve and then the superplastic bulge test is conducted. After that, the effects of deformation on condition fatigue strength, static strength, plasticity and the grain size of TC4 are evaluated.
     It is shown by the experiment that back pressure can effectively restrain the generating and growing of the caviation and then the forming limit of AA5083 aluminium alloy cone workpiece is improved. The bulging elongation of the vertex of the cone workpiece is 266% without back pressure while they increase to 324% under the condition of 1.5MPa back pressure and 567% under the condition of 3MPa back pressure. And that for the TC4 titanium cylinder parts, static strength declines when bulge elongation is less than 100% while strength limit and yield strength are keep constant proximately. Besides this, condition fatigue strength declines as the elongation increases.
引文
[1]林兆荣.金属超塑性成形原理及应用.北京:航空工业出版社,1990.
    [2]何景素,王燕文.金属的超塑性.北京:科学出版社,1986.
    [3]马龙翔.近代超塑材料研究工作的发展与动向.东北工学院学报,1983,4:102~125.
    [4]文九巴,杨蕴林,杨永顺,等.超塑性应用技术.北京:机械工业出版社,2005.
    [5]王旭.国外钛合金超塑性成形应用现状及发展趋势.航天工艺,1988,4:20~25.
    [6]李连清.大型钛合金薄壳球底超塑成形技术.宇航材料工艺,1997,4:4~4.
    [7] Heinz A,et al.Recent development in aluminum alloys for aerospace applications.Mater Sci Eng,2000,A280:102.
    [8] Staley James T,Lie John,Hunt Warren H Jr.Aluminum alloys for aerostructures.Adv Mater Proc,1997,10:17 .
    [9]杨守杰,戴圣龙.航空铝合金的发展回顾与展望.材料导报,2005,19(2):76~80.
    [10]邱惠中,吴志红.铝合金超塑成形技术的发展及其在航空航天领域的应用.宇航材料工艺,1994,6:38~43.
    [11] John R. Bradley.Bulge Testing of Superplastic AA5083 Aluminum Sheet.Advances in Superplasticity and Superplastic Forming,2004:109~118.
    [12] Z.P. Chen,P.F. Thomson.A study of post-form static and fatigue properties of superplastic 7475-SPF and 5083-SPF aluminium alloys Discussions on constitutive equations of superplastic 5083 aluminum alloy.Journal of Materials Processing Technology,2004,148:204~219.
    [13] Kyung-Tae Park, Duck-Young Hwang,Young-Kook Lee.High strain rate superplasticity of submicrometer grained 5083 Alalloy containing scandium fabricated by severe plastic deformation.Materials Science and Engineering,2003,A341:273~281.
    [14] M.H. Hojjati,M. Zoorabadi,S.J. Hosseinipour.Optimization of superplastic hydroforming process of Aluminium alloy 5083. journal of materials processing technology,2008,205:482~488.
    [15] YANG Shoujie,LI Shusuo,DAI Shenglong.Superplasticity of Spray Deposited 5083 Al2Mg Alloy.Chinese Journal of Aeronautics,2004,17(1) :47~52.
    [16] YAN Honghua,ZHANG Kaifeng.Superplasticity and Fracture Behavior of Fine Grained 5083 Al Alloy.Journal of Wuhan University of Technolotgy-Mater,2009,24(5) :800~804.
    [17] K. Kannan,C.H. Johnson,C.H. Hamilton.A Study of Superplasticity in a Modified 5083Al-Mg-Mn Alloy.Metallurgical and Materials Transactions,1998,29A:1211~1220.
    [18] Hajime Iwasaki,Hiroyuki Hosokawa,Takasuke Mori,et al.Quantitative assessment of superplastic deformation behavior in a commercial 5083 alloy . Materials Science and Engineering,1998,A252:199~202.
    [19] Pin-houSun,Horng-yuWu,Wei-songLee,et al.Cavitation behavior insuperplastic 5083 Alalloy during multiaxial gas blow forming with lubrication.International Journal of Machine Tools & Manufacture,2009,49:13~19.
    [20] Masataka Tokuda,Tadashi Inaba,Hiroyuki Ohigashi,et al.Discussions on constitutive equations of superplastic 5083 aluminum alloy.International Journal of Mechanical Sciences,2001,43:2035~2046.
    [21]杨阳,罗兵辉,柏振海.镁、锰、铁元素含量对5083铝合金超塑性行为的影响.铝加工,2007,5:26~29 .
    [22]窦小丽.铝合金三层板结构搅拌摩擦焊/超塑成形的数值模拟及工艺研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [23]徐雪峰,童国权.5083铝合金在400℃的超塑性变形行为和硬化特征.机械工程材料,2009,33(7) :45~51.
    [24]赵祖德,徐雪峰,童国权.5083铝合金壳体超塑胀形加载曲线优化控制.材料科学与工艺,2008,16(2) :228~231.
    [25]江志强,杨合,詹梅.钛合金管材研制及其在航空领域应用的现状与前景.塑性工程学报,2009,16(4) :44~50.
    [26]李重河,朱明,王宁.钛合金在飞机上的应用.稀有金属,2009,33(1) :84~91.
    [27]杨健.钛合金在飞机上的应用.航空制造技术,2006,11:41~43.
    [28]彭艳萍,曾凡昌,王俊杰.国外航空钛合金的发展应用及其特点分析.材料工程,1997,10:3~6.
    [29]李志强,郭和平.超塑成形扩散连接技术的应用与发展现状.航空制造技术,2004,11:50~52.
    [30]郎利辉,刘宝胜.钛合金板材成形技术及其在航空领域的应用.航空制造技术,2009,10:28~31.
    [31]李枫,陈明和,范平.超塑成形/扩散焊接组合工艺的技术概况与应用.新技术新工艺·热加工工艺技术与材料研究,2008,4:70~73.
    [32]王卫英,张中元,李靖谊,等.板料超塑胀形过程仿真及其应用.机械科学与技术,1999,18(5):696~797.
    [33]谢水生,李雷.金属塑性成形的有限元模拟技术及应用.北京:科学出版社,2008.
    [34]陈火红,于军泉,席源山.MSC.Marc/Mentat 2003基础与应用实例.北京:科学出版社,2004.
    [35]王中阳,王国峰,赖小明.控制厚度分布的正反向超塑胀形的有限元分析.材料科学与工艺,2004,12(3) :082~282.
    [36]张凌云.改善超塑性气压胀形零件壁厚分布的工艺方法.金属成形工艺,2004,20:13~24.
    [37]葛永成.锥形件超塑胀形试验研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [38] Ravi Verma,Sooho Kim.Superplastic behavior of copper-modified 5083 aluminum alloy. Materials Engineering and Performance,2007,16(2):185~191.
    [39]高文民.金相试验基本知识.北京:中国铁道出版社,1989.
    [40]金相图谱编写组.变形铝合金金相图谱.北京:冶金工业出版社,1975.
    [41]肖纪美.合金金相与相变.北京:冶金工业出版社,1987.
    [42]丁新玲,安孟长.超塑成形技术研究及其在航空航天上的应用.航天制造技术,2009,2:1~5.
    [43]刘莹,曲周德,王本贤.钛合金的研究开发与应用.兵器材料科学与工程,2005,28(1) :47~50.
    [44]王荣华,陈明和,陈国亮.TC4钛合金盒形件超塑成形工艺.金属铸锻焊技术,2008,6:46~48.
    [45]杨晓红.材料成形性能研究.工业技术,2008,33:50.
    [46]哈尔滨工业大学理论力学教研室.理论力学.北京:高等教育出版社,2003.
    [47] R.A.C.斯莱特.工程塑性理论及其在金属成形中的应用.北京:机械工业出版社,1983.
    [48]张德荣.超塑性力学.北京:航空工业出版社,1990.
    [49]金相图谱编写组.金相图谱.北京:水利电力出版社,1986.
    [50]威廉.劳斯特克,詹姆斯R.德伏莱克.金相组织解说.上海:上海科学技术出版社,1984.
    [51]上海市机械制造工艺研究所.金像分析技术.上海:上海科学技术文献出版社,1987.
    [52]于兰兰,毛小南,李辉.温度对TC4- DT损伤容限型钛合金.稀有金属快报,2007,26(12) :20~23.
    [53]曾立英,赵永庆,李丹柯.超塑性在钛合金压力加工和焊接方面的应用.钛工业进展,2004,21(6):10~13.
    [54]王新南,朱知寿,童路.锻造工艺对TC4- DT和TC21损伤容限型钛合金疲劳裂纹扩展速率的影响.稀有金属快报,2008,27(7) :12~16.
    [55]吴欢,赵永庆,曾卫东.疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征.稀有金属快报,2007,26(7) :1~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700