超疏水微/纳米二级结构涂层的制备及其结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以自然界中超疏水性现象为基础,从仿生学角度出发,研究了一系列基于不同种类材料的超疏水表面制备方法。
     以γ-氨丙基三乙氧基硅烷(硅烷偶联剂KH550)为连接剂,利用硅氧烷水解形成硅羟基的自组装功能,将聚四氟乙烯(PTFE)烧结形成的纳米级纤维与硅氧烷团聚的微米级粒子结合,制备了具有仿荷叶表面形貌的超疏水涂层,其静态水接触角达152°,滚动角约为5°。通过扫描电镜观察涂层的表面微观形貌,发现该涂层具有微/纳米二级结构。通过接触角的测试,探讨了表面微观结构和涂层疏水性能之间的关系。用电化学交流阻抗谱(EIS)分析覆有涂层的试样在模拟腐蚀环境下的腐蚀行为,结果表明该试样的腐蚀电流比裸钢片降低了3-4个数量级,具有较好的防腐性能。
     以可溶性酚醛树脂为前驱体、F127为模板剂,在不锈钢基体上制备了有序介孔碳膜,并以此为基底,分别以经过活化分散处理后的碳纳米管及所合成的葡萄糖碳球为填充相,构筑了超疏水表面所要求的微纳米复合结构,并通过表面化学修饰获得了超疏水涂层。通过场发射扫描电镜等了所制备的超疏水材料的表面结构以及表面化学成分,并考察了其在腐蚀环境下的腐蚀防护性能。其中以碳纳米管为填充相的复合涂层,表面具有竖直生长的碳纳米阵列结构,内部俘获大量空气,实际接触面积仅为6.82%,其接触角高达165°,具有极好的自清洁性,相比于非超疏水的普通涂层,具有更优异的防护性能。
Inspired by the super-hydrophobic phenomenon in the nature, a series of synthesis techniques, based on the bionics, were explored to prepare various materials featured by super-hydrophobic surface. In addition, detailed structure characterization and the relevant performance tests were also performed.
     Super-hydrophobic coatings, characteristic of Lotus-resembled surface morphology, were prepared usingγ?aminopropyltriethoxylsilane (KH550) as a linker, the self-assembly of silanol group hydrolyzed from siloxane, the mixture of the nano-fibers derived from the sintered PTFE and the micro-particles achieved by the aggregation of siloxane. The static contact angle approached 152°, and the roll angle approximated to 5°. SEM showed its secondary structure for as-made coatings.
     Contact angle tests were undertaken to investigate the relationship between surface microscopic strutcute and hydrophobic performance of the coatings. EIS was utilized to analyze the corrosion behavior of samples covered by coatings under simulated corrosion conditions. The results showed that the corrosion current of samples was decreased by 3-4 orders of magnitude than mere stainless steel, signifying an excellent corrosion protective performance. Ordered mesoporous carbon film was prepared on the stainless steel substrate using soluble phenolic resins as carbon precursor and F127 as template-directing agent. The following micro-nano composite structure was constructed using carbon film as substrate together with the as-synthesized glucose carbon spheres and activated dispersion-treated carbon nanotubes as filler via homogenous and non-homogenous methods. SEM technology was employed to characterize the surface strucute and chemical components of as-made superhydrophobic materials. And the corrosion protective performance was conducted under the corrosion conditons. The composite coating, using carbon nanotubes as filler, exhibited carbon nanotubes arrayed structure upright to the surface. Wherein the contact angle reached as high as 165°, suggesting much more excellent protective performance compared with non-superhydrophobic coatings.
引文
[1]庞启财编著,防腐蚀涂料涂装和质量控制[M].北京:化学工业出版社.2003: 42-56
    [2]杜敏编著.海洋腐蚀与防护技术[M].青岛:青岛海洋大学出版社. 2000:9-20,22-27,127-129,275-28
    [3]魏宝明主编.金属腐蚀理论及应用[M].北京:化学工业出版社. 1984:3-5
    [4]吴萌顺等,腐蚀试验方法与防腐蚀检测技术[M].化工出版社, 1996.
    [5]曹楚南.腐蚀电化学[M].北京:化学工业出版社, 2004
    [6]顾惕人,马季铭,表面化学,北京:科学出版社,2001
    [7] P. G. De Gennes. Wetting :statics and dynamics. Rev.Mod.Phys.1985, 57(3):923-967
    [8] L Feng , L Jiang. Adv. Mater. , 2002 ,14 :857~18601
    [9] Wenzel R.N. Resistance of solid surface to wetting by water. Ind. Eng. Chem. 1936.28(8)988-994.
    [10] Cassie A., Baxter S. Wettability of porous surface. Trans. Faraday. Soc.1944.40:546-551.
    [11] Patankar N A. On the modeling of hydrophobic contact angles on rough surfaces [J] . Langmuir 2003, 19(4): 1249-1253
    [12] Cyranoski D. Chinese plan pins big hopes on small science [J]. Nature, 2001,414:240-240
    [13] Guo Z, Zhou F, Hao J et al. Stable Biomimetic super-hydrophobic engineering materials[J].2005,127(45):15670-15671
    [14] Watanabe K, Yanuar H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall.[J] Fluid. mech.. 1999,381(1):225-238
    [15] Watanabe K, Udagawa H. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall.. AIchE [J].2001,47(2):256-262
    [16] P. G. De Gennes. Wetting :statics and dynamics[M]. Rev.Mod.Phys.1985, 57(3):827-863
    [17] Johnson R.E. Jr., Dettre R.H.. Contact angle hysteresis, Part 1, Study of an idealized rough surface[J]. Adv. Chen.Ser.,1964,43:112-135
    [18] Kijlstra J, Reihs K, Klamt A. Roughness and topology of ultra-hydrophobic surface[J]. Colloids and Surface A: Physic. Chem. Eng. Aspects, 2002, 206(1-3):521-529
    [19] Kijlstra J.,Reish K.,Klamt A..Roughness and topology of ultra-hydrophobic surfaces[J].Colloids and Surface A: Physicochemical and Engineering Aspects.2002,206:521-529
    [20] Extrand C.W. Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces [J].Langmuir, 2002,18:7991-7999
    [21] Onda T., Shibuchi S.,Satoh N. Super-water-Repellent Fractal Surfaces[J]. Langmuir, 1996,12(9):2125-2127
    [22] Drelich J., Miller Jan D. Modification of the Cassie equation[J]. Langmuir. 1993, 9(9): 619-621
    [23] Swain P.S., Lipowsky R. Contact Angles on Heterogeneous Surfaces: A New Look at Cassie’s and Wenzel’s Laws [J]. Langmuir 1998,14(23):6772-6780
    [24] Wolansky G., Marmur A. The actual contact angle on a heterogeneous rough surface in three dimensions [J]. Langmuir 1998, 14, 5292-5297
    [25] F.E. Bartell, J.W. Shepard, Surface roughness as related to hysteresis of contact angle. I. The system paraffin-water-air[J]. J. Phys. Chem., 1953, 57 (2): 211-215
    [26] C.G.L. Furmidge, Studies at phase interfaces I. The sliding of liquid dropson solid surfaces and a theory for spray retention[J]. J. Colloid Sci., 1962,17: 309-324
    [27] Z. Yoshimitsu, A.Nakajima,T. Watanabe, K. Hashimoto, Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18: 5818-5822
    [28] J. Zhang, J. Li, Y, Han. Super-hydrophobic PTFE surfaces by extension. Macromol[J] .Rapid common .2004,25:1105-1108
    [29] D. Richard, C. Claret, D. Quere, Contact time of a bouncing drop[J]. Nature, 2002, 417: 811-814
    [30] A.Torkkeli, J.Saarilahti, A, Haara, H.Harma, T.Soukka, P.Tolemen.Electrostatic transportation of water droplets on super-hydrophobic surfaces[J]. IEEE Trans. Ind, App.1998,34(4):732-737
    [31] M.T.Khorasani, H.Mirzadeh, Z.Kermani,Wettability of porous polydimethylsiloxane surface morphology study[J].Appl. Surf. Sci., 2005, 242: 339-345
    [32] B.He, N.A. Patarnkar, J.Lee. Multiple epuilibrium droplet shapes and design criterion for rough hydrophobic surfaces[J].Langmuir. 2003,19:4999-5003
    [33] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Wetting and wetting transitions on copper-based super-hydrophobic surfaces[J]. Langmuir, 2005, 21(3): 937-943
    [34] M.T.Khorasani, H.Mirzadeh, Z.Kermani,Wettability of porous polydimethylsiloxane surface morphology study[J].Appl. Surf. Sci., 2005, 242: 339-345
    [35] M.T.Khorasani, H.Mirzadeh, P.G.Sanunes, Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material[J].Radiat. Phys. Chem., 1996, 47(6): 881-888
    [36] Xiaoyan Song, Jin Zhai, Yilin Wang,and Lei Jiang,Fabrication of Superhydrophobic Surfaces bySelf-Assembly and Their Water-Adhesio Properties [J].J. Phys. Chem. B 2005, 109, 4048-4052
    [37] X. Song, J. Zhai, Y. Wang, L. Jiang, Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. J. Phys. Chem. B., 2005, 109(9): 4048-4052
    [38] T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jung, D. Zhu, Reversible switching between superhydrophilicity and superhydrophobicity[J]. Angew.Chem. Int. Ed., 2004, 43: 357-360
    [39] A. Duparr, M. Flemming, J. Steinert, K. Reihs,optical coatings with enhanced roughness for ultrahydrophobic, low scatter applications[J].Appl.Optics,2002, 41(6): 3294-3298
    [40] Tsoi S., Fok E., Sit C., et al. Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface fimctionalization[J]. Langmuir, 2004, 20: 10771-10774.
    [41] A. Chen, X. Peng, K. Koczkur, B. Miller. Super-hydrophobic tinoxide nanoflowers[J], Chem. Commun., 2004:1964-1965
    [42] A. Hozumi, O. Takai, Preparation of ultra water-repellent films microwave plasma-enhanced CVD[J].Thin Solid Films, 1997, 303: 222-225
    [43] Y. Wu, M. Bekke, Y. moue, H. Sugimura, H. Kitaguchi, C. Liu, O. Takai, Mechanical durability of ultra-water-repellent thin film with microwave plasma-enhanced CVD[J].Thin Solid Films, 2004, 457: 122-127
    [44] Hozumi A., O. Takai.. Thin solid Films.997,303:222-225
    [45] H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Reversible wettability of a chemical vapor deposition prepared Zn0 film between superhydrophobicity and superhydrophilicity[J].Langmuir, 2004, 20(14),5659-5661
    [46] Li M., Zhai J., Liu H. et al. Electrochemical deposition of conductive superhydrophobic zinc oxide thin films[J]. J. Phys. Chem. B, 2003, 107: 9954-9957.
    [47] Wang S., Feng L., Liu H. et al. Manipulation of surface wettability between superhydrophobicity and superhydrophilicity on copper films[J]. Chem Phys Chem, 2005, 6: 1475-1478
    [48] Jiang Y., Wang Z., Yu X. et al. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces[J]. Langmuir, 2005, 21(5): 1986-1990
    [49] Yu X., Wang Z., Jiang Y. et al. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity[J], Adv. Mater., 2005, 17: 1289-1293
    [50] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuichi. Super oil-repellent of ultrahydrophobic properties of aluminum-a first step to self-cleaning transparently coated metal surfaces[J]. Adv. Eng.Mater. 2001, 3(9):691-695.
    [51] S. Pilotek, H.K. Schmidt, Wettability of microsiruchrred hydrophobic sol-gelcoatings[J].J. Sol-Gel.Sci.Techn., 2003, 26, 789-792
    [52] Tadanaga K., Kitamuro K., Matsuda A., et al. Formation of Superhydrophobic AluminaCoating Films with High Transparency on Polymer Substrates by the Sol-Gel Method[J]. Journal of Sol-Gel and Technology, 2003, 26: 705-708
    [53] Nakajima A., Abe K., Hashimoto K. et al. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Filins, 2000, 376: 140-143.
    [54] Nakajima A., Saiki C., Hashimoto K. et al. Processing of roughened silica film by colloidal silica for super-hydrophobic coating[J]. J. Mater. Sci. Lett., 2001, 20: 1975-1977.
    [55] Pilotek S., Schmidt H.K. Wettability of Microstructured Hydrophobic Sol-Gel Coatings[J].Journal of Sol-Gel and Technology, 2003, 26: 789-792
    [56] Erbil H. Y., Demirel A. L., Avci Y., et al. Transformation of a simple plastic into a superhydrophobic surface[J], Science 2003, 299, 1377
    [57]翟锦,李欢军,李英顺等。碳纳米管阵列超双疏性质的发现.物理. 2002, 31(8):483-485
    [58]侯智敏.水下航行器低表面能涂层减阻研究.:(硕士学位论文)西安:西北工业大学,2007
    [59]钱柏太.金属基体上超疏水表面的制备: (博士学位论文)大连:大连理工大学,2005
    [60] Shibuichi S., Onda T., Tsujii K., et al. Super Water-Repellent Surfaces Resulting from Fractal Structure[J]. J. Phys. Chem. 1996, 100: 19512-19517.
    [61] Shibuichi S., Yamamoto T., Tsujii K., et al. Super Water and Oil-Repellent Surfaces Resulting from Fractal Structure[J]. J. Colloid Interf. Sci. 1998, 208: 287-294
    [62] Veeramasuneni S., Drelich J., Miller J.D. et al. Hydrophobicity of ion-plated coatings[J]. Prog. Org. Coat., 1997, 31: 265-270.
    [63] Miller J.D., Veeramasuneni S., Drelich J. et al. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films[J]. Polym Eng. Sci., 1996, 36: 1849-1853.
    [64] Yuce M.Y., Demirel A.L., Menzel F. Tuning the Surface Hydrophobicity of Polymer[J]. Langmuir, 2005,21:5073-507
    [65] Shouj Imitsuyosh I, Hamada Tomoyuki. Super water - repellent coatingmaterial and superwater - repellent coating film using the same: US, 6068911 [ P ]. 2000 - 05 - 30.
    [66] Hsieh C T, Chen J M, Kuo R R, et al. Influence of surface roughness on water and oil - repellent surface coated with nanoparticles[J]. App l Surf Sci, 2005 (240) : 318 - 326.
    [67] L I H J, Wang X B, Song Y L, et al. Super -“amphiphobic”aligned carbon nanotube films[J ].Angew Chm Int Ed, 2001 (40) : 1 743 - 1 746.
    [68] Hozumi A, Ushiyama K, Sugimura H, et al. Fluoroalkylsilane monolayers formed by chemical vapor surface modification on hydroxylated oxide surfaces [J]. Langmuir, 1999 ( 15 ) : 7 600 - 7 604.
    [69] Nishino T, Megurom, Nakamaek, et al. The lowest surface free energy based on -CF3 alignment[J]. Langmuir, 1999 (15) : 4321 - 4323.
    [70] Erbil Y H, Demirei A L, Avci Y, et al. Transformation of a simp le-plastic into a superhydrophobic surface [J]. Science, 2003 (299) : 1377 - 1380.
    [71] Sasakih, Shoujim. Control of hydrophobic character of super - water - repellent surface by UV irradiation [J]. Chem Lett, 1998 (27) : 293 - 294.
    [72] Jung D H, Park I J, Choi Y K, et al. Perfluorinated polymer monolayers on porous silica for materials with super liquid repellentp roperties[J]. Langmuir, 2002 (18) : 6 133 - 6 139.
    [73] Pilotek S, Schmidt H K. Wettability of microstructured hydro phobic Sol - Gel coatings[J]. J Sol - Gel Sci Technol, 2003 ( 6) : 789 - 792.
    [74] Shang H. M, Wang Y, Limmer S J, et al. Optically transparent superhydrophobic silica - based films [J]. Thin Solid Films, 2005 (472) : 37 - 43.
    [75] Pu Z, Mark J E, Li Z, et al. Some block copolymers illustrating the effects of siloxane and silane units on the roperties of terephthalate - glycol thermop lastics [J]. Polymer, 1999 ( 40 ) : 4 695 - 4 701.
    [76] L Feng , L Jiang. Adv. Mater. , 2002 ,14 :857~18601
    [77] Barthlott, W. Neinhuis, C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces Plant[J] 1997,202,1
    [78] Yue Li, Xing Jiu Huang, Sung Hwan Heo, Cun Cheng Li, Yang Kyu Choi, Wei Ping Cai,and Sung Oh Cho. Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays[J]. Langmuir 2007, 23, 2169-2174
    [79] Kerstin K., Bharat B., Yong C. J., et al. Soft Matter [J] 2009,5:1386-1393
    [80] Pavel A.L., Frantisek S., and Jean M. J., et al. Adv. Funct. Mater. [J] 2009, 19:1-6.
    [81] Girifalco L.A., Good R.J. A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension[J]. J Phys Chem,1957,61:904-909
    [82] Atsushi H. Fluoroalkylsilane Monolayers Formed by Chemical Vapor Surface Modification on Hydroxylated Oxide Surfaces[J]. Langmuir,1999,15:7600-7604
    [83] Zhuangzhu Luo, Zhaozhu Zhang, Litian Hu, Weimin Liu, Zhiguang Guo, Huijuan Zhang, andWenjing Wang. Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process[J]. Adv. Mater. 2008, 20, 970–974
    [84] Zhang X., Shi F., Yu X, et al. Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface[J], J. Am. Chem. Soc. 2004, 126, 3064.
    [85] Sun T L, Feng L, Gao X F, et al. Bioinspired Surfaces with Special Wettability [J]. Acc. Chem. Res., 2004, 38(8): 644?652.
    [86] Zhuangzhu Luo, Zhaozhu Zhang,* Litian Hu, et al. Stable Bionic Superhydrophobic Coating Surface Fabricated by a Conventional Curing Process[J].Advanced Materials, 2008 (20),970-974.
    [87] Marmur A.Langmuir,2004,20(9):3517-3519.
    [88] Michele M., Alessandro C., Luisa D.M., et al. Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing[J].Langmuir.
    [89] Iijima S. Helical microtubules of graphitic carbon[J].Nature, 1991,354(6348):56-58
    [90] Asif R, Mark D D, Lia I, et al. Imp roving dispersion of single-walled carbon nanotubes in a polymer matrix using specific interactions [ J ]. Chem Mater, 2006, 18: 3513 - 3522.
    [91]宁金威.碳纳米管(CNT)石英基复合材料的制备及性能研究[D].上海:上海硅酸盐研究所, 2004.
    [92] Li G Y,Wang PM, Zhao X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi2walled carbon nanotubes [J]. Carbon, 2005, 43: 1239 -1245.
    [93] Li G Y,Wang P M, Zhao X H. Pressure2sensitive p roperties and microstructure of carbon nanotube reinforced cement composites [J]. Cem Concr Compos 2007; 29: 377 - 382.
    [94] Meisha L S,ValeryN K, Enrique V B. Processing and mechanical properties of fluorinated single - walled carbon nanotube - polyethylene composites [J]. Chem Mater, 2006, 8: 906 - 913.
    [95] Vladimir A, Sinani,Muhammed K, et al. Aqueous dispersions of single2wall and multiwall carbonnanotubes with designed amphiphilic polycations [J]. J Am Chem Soc, 2005, 127: 3465 -3472.
    [96]吴彬,白录,巩前明,梁吉.非离子表面活性剂对多壁碳纳米管在乙醇中高浓度分散的作用.物理化学学报.2009, 25(6):1065-1069
    [97] Liu Jie ,et al . [J ] . Science , 1998 , 280 : 1253-1256.
    [98] Chen J ,et al . [J ] . Science ,1998 ,282 (1) :95-98.
    [99] Mark A , Hamon , et al . [J ] . Adv Mater ,1999 ,11 : 834-840.
    [100] Pang J, Li X, Wang D, et al. Silica-templated continuous mesoporous carbon films by aspin-coating technique[J]. Adv. Mater., 2004, 16(11): 884-886.
    [101] Lau, K.K.S. Bico, J. Teo, K.B. Superhydrophobic Carbon Nanotube Forests. Nano Lett.2003, 3, 1701.
    [102] Nakajima A., Abe K., Hashimoto K. et al. Preparation of hard super-hydrophobic films with visible light transmission[J]. Thin Solid Filins, 2000, 376: 140-143
    [103] Erbil H. Y., Demirel A. L., Avci Y., et al. Transformation of a simple plastic into a superhydrophobic surface[J], Science 2003, 299, 1377
    [104] Xu J, Jiang L, Xie Q D, et al. Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure[J]. Adv. Mater., 2004,16:302-30
    [105] Genzer J., Efimenko K. Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers[J]. Science 2000, 290, 2130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700