大规模蛋白质相互作用网络复合物挖掘算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,生命医学研究正处于后基因组时代。系统地分析和全面理解蛋白质之间通过相互作用完成生命活动的规律成为最热的研究问题之一。特别是,从大规模蛋白质相互作用网络中识别蛋白质复合物对预测蛋白质功能、解释特定的生物进程具有重要意义。
     针对算法CPM应用于蛋白质相互作用网络时,蛋白质复合物识别准确率不高等缺陷,我们通过引入距离限制条件约束蛋白质复合物的规模,进而提出了基于团渗透和距离限制的蛋白质复合物识别参数算法CPM-DR与非参数算法CP-DR。基于酵母蛋白质相互作用网络平台的实验结果表明,CPM-DR和CP-DR都比CPM能够更准确、更有效、更全面的识别出具有特定生物意义的蛋白质复合物。
     针对传统的基于密度的局部搜索方法忽略了边缘蛋白质结点、稀疏的真实蛋白质复合物、没有考虑蛋白质对生命活动的基本差异等缺陷,提出了基于关键蛋白质和局部适应的蛋白质复合物识别算法EPOF,并将其应用到加权和非加权的酵母蛋白质相互作用网络。实验结果表明,EPOF相比于其他算法具有更好的性能。此外,EPOF能够识别具有生物意义的低密度蛋白质复合物。更进一步,EPOF验证了关键蛋白质在蛋白质复合物识别研究中具有极其重要的作用。
     针对蛋白质相互作用的动态性、可利用的蛋白质相互作用数据的不完全性和存在噪声等众多问题,通过融合组织特异性的基因表达数据和人类静态蛋白质相互作用网络,提出了基于组织特异性和局部适应的蛋白质复合物识别算法TSOF。将TSOF应用到人类静态蛋白质相互作用网络的实验结果表明,TSOF识别的蛋白质复合物具有很强的生物意义。此外,TSOF验证了组织特异性蛋白质相互作用在蛋白质复合物识别研究中具有极其重要的作用。
     本文提出的几个蛋白质复合物识别算法从不同角度出发,有效地解决了蛋白质相互作用网络聚类过程中存在的一些问题,识别的蛋白质复合物从统计意义上被证明是有生物意义的,对生物实验具有积极的指导意义。
Currently, the biomedical research is in the post-genome era. In the new era, one of the most important challenges is to systematically analyze and comprehensively understand how the proteins accomplish the life activities by interacting with each other. It plays an important role in predicting the protein functions and understanding specific biological processes that identify protein complexes from large-scale protein interaction networks.
     The recognition accuracy of CPM is lowly and CPM is unfit to identify protein complexes with meso-scale when it applied in protein interaction networks. Thus, we introduced distance restriction, developed a novel parameterized algorithm called CPM-DR and a non-parameterized algorithm called CP-DR for identifying protein complexes. CPM-DR and CP-DR are applied to the protein interaction networks of Sacchromyces cerevisiae. The experiment results show that CPM-DR and CP-DR can detect a large number of protein complexes with specific biological significance and biological functions more effectively, more precisely and more comprehensively.
     The traditional density-based and local search algorithms neglect many peripheral proteins that connect to the core protein clusters with few links when identify protein complexes. Thus, biologically meaningful protein complexes that do not have highly connected topologies are ignored. In addition, the previous methods for identifying protein complexes seldom take into account the fundamentality discrepancy of proteins to cellular life. However, the fact is that the importance of proteins to life activities is different. To overcome these disadvantages of previous algorithms, we propose a novel protein complex discovery algorithm based on Essential Protein and lOcal Fitness, named EPOF. The new algorithm EPOF is applied to the unweighted and weighted yeast protein interaction network. Experimental results show that EPOF outperforms other previous competing algorithms. In addition, EPOF could identify the significant protein complexes with low density. Moreover, EPOF verified the importance of essential proteins for identifying protein complexes.
     Due to the dynamic nature of protein-protein interaction, the available protein interaction data high false positives and incomplete, we propose a new protein complex detecting algorithm based on Tissue-Specificity and lOcal Fitness (called TSOF) by integrating tissue-specificity gene expression data and human protein interaction network. TSOF is applied to the static human protein interaction network and the experiment results show that TSOF outperforms other previous competing algorithms. Moreover, TSOF verified the importance of tissue-specificity seed set, which is integrate biological character and network topological feature, for identifying protein complexes.
     The protein complex mining algorithms proposed in this paper starts off from different angles and solves some problems effectively in the processes of clustering in protein interaction networks. The identified protein complexes are proved to be statistically significant, which can provide some references for biologists in their biochemical experiments.
引文
[1]Kitano H. Computational systems biology. Nature,2002,420:206-210.
    [2]Graves P R, Haystead T A. Molecular biologist's guide to proteomics. Microbiology and Molecular Biology Reviews,2002,66(1):39-63.
    [3]Asur S, Ucar D, Parthasarathy S. An ensemble framework for clustering protein-protein interaction networks. Bioinformatics,2007,23(13):i29-i40.
    [4]Gavin A C, Superti-Furga G. Protein complexes and proteome organization from yeast to man. Current Opinion in Chemical Biology,2003,7(1):21-27.
    [5]Bauer A, Kuster B. Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. European Journal of Biochemistry, 2003,270(4):570-578.
    [6]Eisenberg D, Marcotte E M, Xenarios I, et al. Protein function in the post-genomic era. Nature,2000,405(6788):823-826.
    [7]Loregian A, Marsden H S, Palu G. Protein-protein interactions as targets for antiviral chemotherapy. Reviews in Medical Virology,2002,12(4):239-262.
    [8]Wang J. Protein recognition by cell surface receptors:Physiological receptors versus virus interactions. Trends in Biochemical Sciences,2002,27(3): 122-126.
    [9]Sun Jingchun, Xu Jinlin, Li Yixue, et al. Analysis and application of large scale protein-protein interactions. Chinese Science Bulletin,2005, 50(19):2055-2060.
    [10]Ranea JAG, Yeats C, Grant A. Predicting Protein Function with Hierarchical Phylogenetic Profiles:The Gene3D Phylo-Tuner Method Applied to Eukaryotic Genomes. PLoS Computational Biology.2007,3(11):e237.
    [11]Pellegrini M, Marcotte EM, Thompson MJ, et al. Assigning protein functions by comparative genome analysis:Protein phylogenetic profiles. Proc Natl Acad Sci.1999,96:4285-4288.
    [12]Dandekar T, Snel B, Huynen M, et al. Conservation of gene order:a fingerprint of proteins that physically interact. Trends Biochem Sci,1998,23:324.
    [13]Enright AJ, Iliopoulos I, Kyrpides NC, et al. Protein interaction maps for complete genomes based on gene fusion events. Nature,1999,402:86-90.
    [14]Allison FG, Joseph MP, Frankie LP, et al. The Staphylococcus aureus collagen adhesion-encoding gene (cna) is within a discrete genetic element. Gene,1997, 196:239-248.
    [15]Fields S, Song 0. A novel genetic system to detect protein-protein interactions. Nature,1989,340(6230):245-246.
    [16]Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactionsin Saccharomyces cerevisiae. Nature,2000,403(6770):623-627.
    [17]Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology,1999,17(10):1030-1032.
    [18]Gavin A C, Krause R, Grandi P, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature,2002, 415(6868):141-147.
    [19]Gavin A C, Aloy P, Grandi P, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature,2006,440(7084):631-636.
    [20]Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature,2002, 415(6868):180-183.
    [21]Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science,2001,293(5537):2101-2105.
    [22]Xenarios I, Salwinski L, Duan X J, et al. DIP, the Database of Interacting Proteins:a research tool for studying cellular networks of protein interactions. Nucleic Acids Research,2002,30:303-305.
    [23]Mewes H W, Amid C, Arnold R, et al. MIPS:analysis and annotation of proteins from whole genomes. Nucleic Acids Research,2004,32:41-44.
    [24]Bader G D, Donaldson I, Woting C, et al. BIND:The biomelecular interaction network database. Nucleic Acids Research,2001,29:242-245.
    [25]Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, et al. BioGRID: A general repository for interaction datasets. Nucleic Acids Res 34(Database issue):535-539.
    [26]Snel B, Lehmann G, Bork P, et al. STRING:A web-server to retrieve and display the repeatedly occurring neighborhood of a gene. Nucleic Acids Research,2000,28(18):3442-3444.
    [27]B. Aranda P. Achuthan Y. Alam-Faruque, et al. The intact molecular interaction database in 2010, Nucleic Acids Research,2010,38:525-531.
    [28]Zanzoni A., Montecchi-Palazzi L., Quondam M., et al. MINT:a Molecular INTeraction database FEBS Lett,2002,513135-513140.
    [29]Garrels J I. Yeast genomic databases and the chanllenge of the post-genomic era. Functional & Integrative Genomics,2002,2(4-5):212-237.
    [30]Clauset A, Moore C, Newman M. Hierarchical structure and the prediction of missing links in networks. Nature,2008,453:98-101.
    [31]Rives AW, Galitski T. Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA,2003,100:1128-1133.
    [32]Wuchty S, Ravasz E, Barabasi A L. The architecture of biological networks. In: Deisboeck T S, Kresh J Y, Kepler T B, eds. Complex Systems in Biomedicine. New York:Kluwer Academic Publishing,2003,1-30.
    [33]Barabasi A, Oltvai Z. Network biology:Understanding the cells's functional organization. Nature Reviews Genetics,2004,5:101-113.
    [34]Luo F, Yang Y, Chen C F, et al. Modular organization of protein interaction networks. Bioinformatics,2007,23(2):207-214.
    [35]Wagner G, Pavlicev M, Cheverud J. The road to modularity. Nat Rev Genet, 2007,8(12):921-931.
    [36]Oltvai Z, Barabasi A L. Life's complexity pyramid. Science,2002, 298:763-764.
    [37]卢宏超,石秋艳,石宝晨,等.基于蛋白质网络功能模块的蛋白质功能预测.生物化学与生物物理进展,2006,33(5):446-451.
    [38]Spirin, V and Mirny, L A. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA,2003,100:12123-12128.
    [39]Kumar A and Snyder M. Protein complexes take the bait. Nature,2002,415: 123-124.
    [40]Krogan N J, Cagney G, Zhong G, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature,2006,440(7084):637-643.
    [41]King A D, Przulj N, Jurisica I. Protein complex prediction via cost-based clustering. Bioinformatics,2004,20(17):3013-3020.
    [42]Ruan JH, Zhang WX. An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In:Perner P, ed. Proceedings of the 7th IEEE International Conference on Data Mining. 2007,72:643-648.
    [43]Girvan M and Newman M. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA,2002,99:7821-7826.
    [44]Radicchi F, Castellano C, Cecconi F. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA,2004,101(9):2658-2663.
    [45]Przulj N, Wigle D A, Jurisica I. Functional topology in a network of protein interactions. Bioinformatics,2004,20(3):340-348.
    [46]Li M, Wang JX, Chen J, et al. Hierarchical organization of functional modules in weighted protein interaction networks using clustering coefficient. ISBRA2009, LNBI 5542,75-86
    [47]JX Wang, M Li, J Chen, et al. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),2010, 99:1-15.
    [48]Spirin V, Mirny L:Protein complexes and functional modules in molecular networks. Pro Natl Acad Sci 2003,100:12123-12128.
    [49]Bader G D, Hogue C W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics,2003, 4:2-59.
    [50]Bu D, Zhao Y, Cai L, et al. Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Research,2003, 31(9):2443-2450.
    [51]Palla G, Dernyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society. Nature,2005, 435(7043):814-818.
    [52]Adamcsek B, Palla G, Farkas I, et al. CFinder:locating cliques and overlapping modules in biological networks. Bioinformatics,2006,22(8):1021-1023.
    [53]Li XL, Tan SH, Foo CS, et al. Interaction Graph Mining for Protein Complexes Using Local Clique Merging. GIW 2005,16(2):260-269.
    [54]Altaf-UI-Amin M, Shinbo Y, Mihara K, et al. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics,2006,7:207.
    [55]Ucar D, Asur S, Catalyurek UV, et al. Improving Functional Modularity in Protein-Protein Interactions Graphs Using Hub-Induced Subgraphs. PKDD 2006,371-382.
    [56]Cho YR, Hwang W, Ramanmathan M, et al. Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics,2007,8:265.
    [57]Chua HN, Ning K, Sung WK, et al. Using indirect protein-protein interactions for protein complex prediction. CSB,2007,97-109.
    [58]Li M, Chen J, Wang J, et al. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 2008,9:398.
    [59]Mete M, Tang F, Xu X, et al. A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 2008,9(Suppl 9):S19.
    [60]Liu G, Wong L, Chua H. Complex discovery from weighted PPI networks. Bioinformatics,2009,25(15):1891-1897.
    [61]Navlakha S, Schatz MC, Kingsford C:Revealing Biological Modules via Graph Summarization. Journal of Computational Biology 2009, 16(2):253-264.
    [62]Liang Yu, Lin Gao, Peng Gang Sun. A hybrid clustering algorithm for identifying modules in protein-protein interaction networks. Int. J Data Min Bioinform,2010,4(5):600-615.
    [63]Liang Yu, Lin Gao, Kui Li. A method based on local density and random walks for complexes detection in protein interaction networks. J Bioinform Comput Biol,2010,8(Suppl1):47-62.
    [64]Jongkwang Kim, Kai Tan. Discover Protein Complexes in Protein-Protein Interaction Networks Using Parametric Local Modularity. BMC Bioinformatics 2010,11:521.
    [65]Pereira-Leal JB, Enright AJ, Ouzounis CA. Detection of functional modules from protein interaction networks. Proteins:Struct.Func.Bioinformtaics,2004, 54(1):49-57.
    [66]Vlasblom J and Wodak S J. Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinformatics,2009, 10:99.
    [67]Hwang W, Cho Y R, Zhang A, et al. A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology,2006,12:1-24.
    [68]Dittrich MT, Klau GW, Rosenwald A, et al. Identifying functional modules in protein-protein interaction networks:an integrated exact approach. Bioinformatics.2008,24(13):223-231.
    [69]Jung SH, Jang W, Hur H, et al. Protein complex prediction based on mutually exclusive interactions in protein interaction network. Genome Informatics, 2008,21:77-88.
    [70]Zhang B, Park B, KarpinetsT, et al. From pull-down data to protein interaction networks and complexes with biological relevance. Bioinformatics,2008,24(7): 979-986.
    [71]Luo F, Li B, Wan X F, et al. Core and periphery structures in protein interaction networks. BMC Bioinformatics,2009,10(Suppl 4):S8.
    [72]Ulitsky I and Shamir R. Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics,2009, 25:1158-1164.
    [73]Gao L, Sun P, Song J. Clustering algorithms for detecting functional modules in protein interaction networks. J. Bioinformatics and Computational Biology, 2009,7(1):217-242.
    [74]Li X, Wu M, Kwoh C, et al. Computational approaches for detecting protein complexes from protein interaction networks:a survey. BMC Genomics 2010, 11(Suppll):S3.
    [75]Zhang S, Liu H, Ning X, et al. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks. International Journal of Data Mining and Bioinformatics,2009,3(1):68-84.
    [76]Ge H, Liu Z, Church GM, et al. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet,2001, 29:482-486.
    [77]David Kentner and Victor Sourjik. Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Molecular Systems Biology,2009, 5(238):1-10.
    [78]Jing-Dong J. Han, Nicolas Bertin, Tong Hao, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 2004,430(1):88-93.
    [79]Kakajan Komurov and Michael White. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Molecular Systems Biology,2007,3(110):1-11.
    [80]Jin R, Mccallen S, Liu C, et al. Identifying dynamic network modules with temporal and spatial constraints. Pacific Symposium on Biocomputing,2009, 14:203-214.
    [81]Bossi A, Lehner B.Tissue specificity and the human interaction network. Mol Syst Biol 5:260.
    [82]Jansen R. A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data. Science 2003,302(5644):449-453.
    [83]Bhardwaj N, Lu H. Correlation between gene expression profiles and protein-protein interactions within and across genomes. Bioinformatics 2005, 21(11):2730-2738.
    [84]Li XL, Tan YC, Ng SK. Systematic Gene Function Prediction from Gene Expression Data by Using a Fuzzy Nearest-Cluster Method. BMC Bioinformatics 2006,7(Suppl 4):S23.
    [85]Maraziotis I, Dimitrakopoulou K, Bezerianos A:Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 2007,8:408.
    [86]Ulitsky I, Shamir R. Identification of functional modules using network topology and high-throughput data. BMC Systems Biology 2007,1:8.
    [87]Feng J, Jiang R, Jiang T. A Max-Flow Based Approach to the Identification of Protein Complexes Using Protein Interaction and Microarray Data. CSB 2008, 51-62.
    [88]Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression data with protein-protein interactions. Genome Research 2002,12:37-46.
    [89]Hanisch D, Zien A, Zimmer R, et al. Co-clustering of biological networks and gene expression data. Bioinformatics 2002,18:S145-S154.
    [90]Ideker T, Ozier O, Schwikowski B, et al. Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 2002, 18:S233-S240.
    [91]Segal E, Wang H, Koller D. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 2003,19(Suppl 1): ⅰ264-ⅰ271.
    [92]Cho YR, Hwang W, Zhang A:Efficient Modularization of Weighted Protein Interaction Networks using k-Hop Graph Reduction. IEEE 6th IEEE Symposium on Bioinformatics and Bioengineering (BIBE06), Washington D.C. 2006,289-298, October 16-18.
    [93]Lu H, Shi B, Wu G, et al. Integrated analysis of multiple data sources reveals modular structure of biological networks. Biochem Biophys Res Commun 2006, 345(1):302-309.
    [94]Raamesh D, Shikha S, Catherine M. V, et al. A Scalable Approach for Discovering Conserved Active Subnetworks across Species. PLoS Comput Biol 6(12):e1001028.
    [95]Lihong Peng, Lipeng Liu, Shi Chen. Quanwei Sheng. A network comparison algorithm for predicting the conservative interaction regions in protein-protein interaction network. Bio-Inspired Computing:Theories and Applications (BIC-TA),2010.
    [96]Blin, G., Sikora, F., Vialette, S. Querying Graphs in Protein-Protein Interactions Networks Using Feedback Vertex Set. Computational Biology and Bioinformatics.2010.
    [97]Lubovac Z, Gamalielsson J, Olsson B:Combining Functional and Topological Properties to Identify Core Modules in Protein Interaction Networks. Proteins 2006,64:948-959.
    [98]Li X, Foo C, Ng S. Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. CSB 2007,157-168.
    [99]Turanalp ME, Can T. Discovering functional interaction patterns in protein-protein interaction networks. BMC Bioinformatics 2008,9:276.
    [100]Geva G and Sharan R. Identification of Protein Complexes from Co-immunoprecipitation Data. Bioinformatics 2009 in press.
    [101]Jiang T, Keating AE. AVID:an integrative framework for discovering functional relationships among proteins. BMC Bioinformatics 2005,6:136.
    [102]Zheng H, Wang H, Glass DH. Integration of genomic data for inferring protein complexes from global protein-protein interaction networks. IEEE Transactions on Systems 2008,38(1):5-16, Man AND Cybernetics—Part B.
    [103]Guy Geva and Roded Sharan. Identification of protein complexes from co-immunoprecipitation data. Bioinformatics (2011) 27(1):111-117.
    [104]Li XL, Wu M, Kwoh CK, et al. Computational approaches for detecting protein complexes from protein interaction networks:a survey. BMC Genomics 2010, 11 (Suppl 1):S3.
    [105]Qi Y, Balem F, Faloutsos C, et al. Protein complex identification by supervised graph local clustering. ISMB (Supp of Bioinformatics) 2008,250-258.
    [106]Chu W, Ghahramani Z, Krause R, et al. Identifying Protein Complexes in High-Throughput Protein Screens Using an Infinite Latent Feature Model. Pacific Symposium on Biocomputing 2006,231-242.
    [107]Rungsarityotin W, Krause R, Schodl A, et al. Identifying protein complexes directly from high-throughput TAP data with Markov random fields. BMC Bioinformatics 2007,8:482.
    [108]Kim PM, Lu LJ, Xia Y, et al. Relating Three-Dimensional Structures to Protein Networks Provides Evolutionary Insights. Science 2006, 314(5807):1938-1941.
    [109]Alexander RP, Kim PM, Emonet T, et al. Understanding Modularity in Molecular Networks Requires Dynamics. Science Signaling 2009,2(81):44.
    [110]Suk Hoon Jung, Bora Hyun, Woo-Hyuk Jang, et al. Protein complex prediction based on simultaneous protein interaction network. Bioinformatics,2011, 26(3):385-391.
    [111]Sharan R, Ideker T, Kelley BP, et al. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. RECOMB 2004,282-289.
    [112]Hirsh E, Sharan R. Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 2006,23(2):e170-e176.
    [113]Dost B, Shlomi T, Gupta N, et al. QNet:A Tool for Querying Protein Interaction Networks. RECOMB 2007,1-15.
    [114]Dutkowski J, Tiuryn J. Identification of functional modules from conserved ancestral protein-protein interactions. ISMB (Supp of Bioinformatics) 2007, 23(13):149-158.
    [115]Winzeler E A, Shoemaker D D, Astromoff A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 1999,285:901-906.
    [116]Jeong H, Mason S, Barabasi A L, et al. Lethality and centrality in protein networks. Nature,2001,411(6833):41-42.
    [117]Hart GT, Lee I, Marcotte E. A high-accuracy consensus map of yeast protein complexes reveals modular nature of gene essentiality. BMC Bioinformatics, 2007,8(1):236.
    [118]Zotenko E, Mestre J, O'Leary D, et al. Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential:Reexamining the Connection between the Network Topology and Essentiality. PLoS Comput Biol,2008, 4(8):e1000140.
    [119]Corcoran EE, Joseph JD, Mac Donald JA, et al. Proteomic analysis of calcium/calmodulin-dependent protein kinase I and IV in vitro substrates reveals distinct catalytic preferences. J Biol Chem,2003,278:10516-10522.
    [120]Chu G, Egnaczyk GF, Zhao W, et al. Phosphoproteome analysis of cardiomyocytes subjected to beta-adrenergic stimulation identification and characterization of a cardiac heat shock protein p20. Circ Res,2004, 94:135-137.
    [121]Ian W Taylor, Rune Linding, David Warde-Farley, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology,2009,27(2):199-204.
    [122]Peilin Jia, Siyuan Zheng, Jirong Long, et al. dmGWAS:dense module searching for genome-wide association studies in protein-protein interaction networks. Bioinformatics,2011,27(1):95-102.
    [123]del Sol A, OMeara P. Small-world network approach to identify key residues in protein-protein interaction. Proteins 2004,58(3):672-682.
    [124]del Sol A, Fujihashi H, OMeara P. Topology of small-world networks of protein-protein complex structures. Bioinformatics 2005,21 (8)::1311-1315.
    [125]Zhang S, Ning X, Zhang XS. Identification of functional modules in a PPI network by clique percolation clustering. Comput Biol Chem,2006, 30(6):445-51.
    [126]Jonsson, P., Cavanna, T., Zicha, D., et al. Cluster analysis of networks generated through homology:automatic identification of important protein communities involved in cancer metastatis. BMC Bioinformatics,2006,7:2.
    [127]Ruepp A, Zollner A, Maier D, et al. The FunCat:a functional annotation scheme for systematic classication of proteins from whole genomes. Nucleic Acids Research,2004,32:5539-5545.
    [128]Gregory, S. An algorithm to find overlapping community structure in networks, In:Proc.11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD07),91-102.
    [129]Pinney, J. W., Westhead, D. R. Betweenness-based decomposition methods for social and biological networks, In Interdisciplinary Statistics and Bioinformatics, S. Barber, P. Baxter, K. Mardia, and R. Walls, Eds., Leeds University Press,87-90.
    [130]Zhang, S., R. S. Wang, X. S. Zhang. Identification of overlapping community structure in complex networks using fuzzy C-means clustering, PHYSICA A, 2007,374,483-490.
    [131]M Li, JX Wang, J Chen. A Graph-Theoretic Method for Mining Overlapping Functional Modules in Protein Interaction Networks. Proceedings of the 4th International Symposium on Bioinformatics Research and Applications. LNBI2008,4983:208-219.
    [132]Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi, Nature,2003,421,231-237.
    [133]J. Reichardt, S. Bornholdt. Detecting fuzzy community structures in complex networks with a potts model, Phys. Rev. Lett.,2004,93,218701.
    [134]Lancichinetti, A., Fortunato, S., Kertesz, J. Detecting the overlapping and hierarchical community structure in complex networks, New Journal of Physics, 2009,11,033015.
    [135]Yu, H.; Greenbaum, D.; Lu, H., et al. Genomic analysis of essentiality within protein networks, Trends Genet.,2004,20,227-231.
    [136]Hahn MW, Kern AD. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks, Mol Biol Evol,2005,22(4), 803-806.
    [137]Wuchty S. Interaction and domain networks of yeast, Proteomics,2002,2, 1715-1723.
    [138]Jianxin Wang, Binbin Liu, Min Li, Yi Pan. Identifying Protein Complexes from Interaction Networks Based on Clique Percolation and Distance Restriction. BMC Genomics 2010, 11(Suppl 2):S10.
    [139]Shen, H., Cheng, X., Cai, K., et al. Detect overlapping and hierarchical community structure in networks, Physica A,2009,388,1706-1712.
    [140]Leung. et al. Predicting protein complexes from PPI data:a core-attachment approach, Journal of Computational Biology,2009,2(16),133-144.
    [141]Sharan R, Suthram S, Kelley R M, et al. Conserved patterns of protein interaction in multiple species, Proc. Natl. Acad. Sci.,2005,102(6), 1974-1979.
    [142]Shlomi T, Segal D, Ruppin E, et al. Qpath:a method for querying pathways in a protein-protein interaction network, BMC Bioinformatics,2006,7,199.
    [143]Shuye Pu, Jessica Wong, Brian Turner, et al. Up-to-date catalogues of yeast protein complexes, Nucleic Acids Research,2008,37(3),825-831.
    [144]Hartigan, J. A. and Wong, M. A. Algorithm as 136:A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979,28(1),100-108.
    [145]Su, A. I., Wiltshire, T., Batalov, S., et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America,2004,101(16),6062-6067.
    [146]Peng Jiang, Mona Singh. SPICi:a fast clustering algorithm for large biological networks. Bioinformatics,2010,26 (8):1105-1111.
    [147]Jimin Song, Mona Singh. How and when should interactome-derived clusters be used to predict functional modules and protein function? Bioinformatics, 2009,25 (23):3143-3150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700