金属酞菁敏化太阳能电池性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化剂是DSSC的关键材料之一,目前使用的材料是稀有金属染料,价格高、有毒,影响其使用性能,为了降低金属染料DSSC的成本、避免毒性,替代材料逐渐成为研究的热点。金属酞菁及其衍生物由于光稳定性好、在红光及近红外区有强的吸收、无毒的特性,成为最有希望的替代材料之一;但是酞菁染料存在着激发寿命短、转化效率较低等缺陷,阻滞了酞菁在DSSC中的应用。
     为改善酞菁敏化效果,本文从分子设计入手,其基本思路是:在酞菁环上引入了可与nm-TiO_2作用的羧基,以扩大酞菁分子的吸光范围;同时合成双核金属酞菁,研究了扩大的共轭体系及不同金属离子对染料的影响;为进一步提高太阳能电池的光电转换效率,尝试将金属酞菁盐与N719染料配合协同敏化nm-TiO_2电极,并组装成电池测试了其电池效率。
     本文采用苯酐-尿素熔融法合成了相关酞菁化合物,通过红外光谱、紫外-可见光谱、循环伏安及热重分析对产物进行了表征,结果表明,不同金属离子的引入使得两类酞菁IR中的金属-配位-配体的振动峰以Zn>Cu>Fe的顺序向高频方向移动; UV-Vis中的Q带随着中心离子价层d电子数的增多都发生了横移,其顺序为Zn>Cu>Fe;循环伏安曲线则表明,随着中心金属的极化能力的减小,酞菁盐的氧化还原电势都呈现出Fe(Ⅱ) >Cu(Ⅱ)>Zn(Ⅱ)的次序;TG-DTA说明了两类酞菁在空气中的热稳定性顺序为Cu> Zn> Fe。
     相比于单核金属酞菁,双核酞菁IR中的金属-配位-配体伸缩振动频率略有增高;UV-Vis中Q带有较大的红移且在800~900nm出现了一较小的吸收峰;热力学稳定性方面有明显的提高。计算了合成染料的能带结构参数并与锐钛型TiO_2能带结构比较,发现合成的染料均可满足DSSC对能级匹配的要求。
     将合成的染料制成DSSC,测试了染料敏化太阳能电池的相关性能,研究了不同酞菁的敏化效果。结果显示单核酞菁比双核酞菁具有更高的短路电流密度及光电转化率,其中以单核锌酞菁最佳。
     最后将合成的酞菁染料与N719配合使用,通过紫外-可见吸收光谱及I-V曲线探讨了两种染料协同敏化电池的效果,结果表明, ZnPc(COOH)_4/ b-ZnPc(COOH)_6与N719协同敏化时,ZnPc(COOH)_4好于b-ZnPc(COOH)_6;两种染料协同敏化使电池获得了更为优异的性能,其中以ZnPc(COOH)_4与N719共同敏化的电池效率最高。
Sensitized dye is an important role in DSSC. Nowadays researches are focus on rare dyes, which are high in cost as well as toxic that will effect their using. So experts are working hard to overcome these disadvantages currently. Metal phtahlocynine and its derivatives have many advantages such as non-toxic, good light stability and in red and near infrared region these dyes have strongly sorption. Therefore they can be well potential materials. However phthalocyanine dye can not exist long after excitation and this stop the charge removing, gathering on the surface of electrode.
     In order to get the better performance we can design and optimize the phthalocyanine molecule. The basic idea is that introducing the carboxyl which can react with nm-TiO_2 to the phtaalocyanine ring in order to expand the absorbance scope of phtahalocyanine molecules. At the same time we syntheized dinuclear metal phthalocyanine and studied the effect of expanding conjugated systems and different metal ions on dye. At last we try to complex metal phthalocyanine salt and N719 dye with sensitized nanocrystalline titanium dioxide films to make the cell and analyze its properties.
     In this paper, we syntheized melt phthalocyanine with phthalic anhydride - urea and all the productions would be analyzed by IR, UV-visible spectroscopy, cyclic voltammetry and thermal gravimetric analysis. The result as follow: with the introduction of different metal center icons, the vibration frequency of metal-ligand in single-core metal phthalocyanine and planar binuclear metal phthalocyanine is speeded as Zn>Cu>Fe. The Q belt of the former phthalocyanine salt in UV-Vis is traversing as the increase mount of the eletronics in central ion valence d and the order is Zn>Cu>Fe. In CV curves analysis, the redox potential order of two types of phthalocyanine salt is Fe(Ⅱ)>Cu(Ⅱ)>Zn(Ⅱ) according the reducing polarization ability of the central compounds. According TG-DTA, the stability order of the two types salt under air is Cu> Zn> Fe.
     Compared with single-core metal phthalocyanine, the metal stretching vibration frequency of dual-core phthalocyanine is slightly higher in IR spectra. The Q belt has a large red shift and there is a small peak appears in 800~900 nm. The thermodynamic stability of binuclear phthalocyanine are significantly improved. Through comparing the band structure parameters of synthetic dyes with that of TiO_2, we found that synthetic dyes can match all the requirements of energy level.
     DSSC were made with different synthetic dye, we tested the properties of these dye-sensitized solar cells and studied the sensitization effect of different phthalocyanine.It shows that compared with dual-core phthalocyanine, single-core phthalocyanine has higher short-circuit current density and photoelectric conversion. Zinc phthalocyanine battery which has the maximum extinction coefficient is the best choice.
     At last we try to complex metal phthalocyanine salt and N719 dye with sensitized nanocrystalline titanium dioxide films to make the cell and analyze its properties by ultraviolet - visible absorption spectra and I-V curves. The results show that, when ZnPc(COOH)_4/ b-ZnPc(COOH)_6 sensitized with the N719 coordination, the property of ZnPc(COOH)_4 is better than that of b-ZnPc(COOH)_6. Coordination of the two dye-sensitized is better than single phthalocyanine. The ZnPc(COOH)_4 and N719 co-sensitized has higher short-circuit current density and photoelectric conversion.
引文
[1]周庆凡.世界能源及其分布状况[J].中国能源. 2001, 10:12-17.
    [2]赵云,郭晓阳,谢志元.塑料太阳能电池的研究进展[J].分子科学学报. 2007, 23(1):1-8.
    [3]杨术明.染料敏化纳米晶太阳能电池[M].郑州大学出版社. 2007, 9.
    [4] Chapin D M, Fuller C S, Pearson G L. A new Silicon p-n junction photocell for converting solar radiation into electrical power[J]. J Appl Phys, 1954, 25: 676-677.
    [5]密保秀,高志强,邓先宇,黄维.基于有机薄膜的太阳能电池材料与器件研究进展[J].中国科学. 2008, 38(11): 957-975.
    [6]姜春华,杨伟光,宋欣,万发荣.大面积可填充式染料敏化纳米TiO2太阳能电池[J].有色金属. 2009. 6(1):41-45.
    [7] Kim J Y, Kim S H, Lee H H, Lee K, Ma W, Gong X, Heeger A J. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer[J]. Adv Mater, 2006,18: 572-576.
    [8] Reyes-Reyes M, Kim K, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends[J]. Appl Phys Lett, 2005, 87: 083506-1-083506-3.
    [9] Xue J, Rand B P, Uchida S, Forrest S R. A hybrid planar-mixed molecular hetero junction photovoltaic cell[J]. Adv Mater, 2005, 17: 66-71.
    [10] ORegan B, Gr?tzel M. A low -cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353:737-740.
    [11] Gr?tzel M. Solar energy conversion by dye-sensitized photovoltaic cells[J]. Inorg. Chem., 2005, 44(20): 6841-6851.
    [12]韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳能电池研究[D].武汉大学, 2005.
    [13] Meeonnell R D. Assessment of the dye-sensitized solar cell[J]. Renewable and Sustainable Energy Review, 2002, 6(3): 273-295.
    [14] Liang M, Xu W, Cai F, et al. New triphenylamine-based organic dyes for efficient dye-sensitized solar cells[J]. J.Phys.Chem.C, 2007, 111(11): 4465- 4472.
    [15] Nazeeruddin M K, Zakeeruddin S M, Lagref J, et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell[J]. Coord. Chem. Rev., 2004, 248(13-14): 1317-1328.
    [16]孔凡太,戴松元.染料敏华太阳电池研究进展[J].化学进展. 2006, 18(11): 1409-1424.
    [17] Wang P, Zakeeruddin S M, Grlatzel M, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2003, 125:1166-1167.
    [18]郝三存,吴季怀,林建明.铂修饰光阴极及其在纳晶太阳能电池中的应用[J].感光科学与光化学, 2004, 22(3):175-182.
    [19] Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells[J]. Chemistry Letters, 2003 , 32 (1): 28– 29.
    [20] Murakami T N, Ito S, Wang Q, et a l. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes[J]. J E lectrochem Soc, 2006, 153(12): A2 255 - A2 261.
    [21] Hagfeldt A, Lindquist S E, Gr?tzel M. Charge carrier separation and charge transport in nanocrystalline junctions[J]. Sol. Energy Mater. Sol. Cells. 1994, 32: 245-257.
    [22] A.Kay, M.Graetzel, Low cost PV modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder[J]. Solar En. Mat. Solar Cells 1996, 44(1), 99-17.
    [23] Kitamura T., Maitani M, Matsuda M, Wada Y, Yanagida.Chem.Lett., 2001, 1054-1055.
    [24] Meng Q B, Takahashi K, et a1. Fabrication of an efficient solid-state dye-sensitized solar cell[ M]. Lang-muir, 2003, 19: 3572.
    [25]郝三存.天然色素敏化TiO2多孔膜太阳能电池的研究[J].高分子化学学报, 2004, 11(13): 10-14.
    [26]王孔嘉,戴松元.染料敏华太阳电池及其进展[J].物理太阳能热电池及其应用专题, 2007, 36(11): 853-861.
    [27]孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂[J].化学通报. 2005, 68(5): 338-345.
    [28]裴娟,三苯胺类光敏染料用于染料敏化太阳能电池的研究[D].南开大学, 2009.
    [29] Wang Z S, Li FY, Huang C H. Photocurrent enhanceme t of hemicyanine dyes containing RSO3 group through treating TiO2 films with hydrochloric acid[J].Journal of Physical Chemistry B, 2001, 105(38): 9210– 9217.
    [30] Wang Z, Cui Y, Hara K. Et al. A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells[J]. Adv. Mater., 2007, 19: 1138-1141.
    [31] Hara K, Kurashige M, Ito S, et al. Novel polyene dyes for highly efficient dye-sensitized solar cells[J]. Chem.Cornrnun, 2003, 2: 252-253.
    [32] Hara K, SatoT, KatohR, et al. Novel conjugated organic dyes for efficient dye-sensitized solar cells[J]. Adv. Funet. Mater., 2005, 15(2): 246-252.
    [33] Hara K, Wang Z S, Sato T et a1. Oligothiophene-containing and (photo) electrochemical properties of a coumarin[J]. Journal of Physical Chemistry B, 2005, 109(32): 15476.
    [34] Horiuchi T, Miura H, Uchida S. Flexible dye-sensitized solar cells by microwave irradiation [J]. Journal of Photochemistry and Photobiology a: Chemistry, 2004, 164(1-3): 93- 96.
    [35] Ito S, Zakeeruddin S M, Humphry-Baker R et a1. High efficiency flexible dye-sensitized solar cells with TiO2 metal substrate for nanocrystallne photoanode[J]. Chem Commun, 2006(38): 4004-4006.
    [36] Gr?tzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight[J]. Chem. Lett., 2005, 34:8-13.
    [37] Nazeeruddin M K, Zakeeruddin S M, Lagref J J, et al. Conversion of Light to electricity by ruthenium charge transfer sensitizers on nanocrystal line TiO2 electrodes[J]. Coord. Chem. Rev., 2004, 248(13-14): 1317-1328.
    [38] Wang P, Humphry-Baker R, Moser J E, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells[J]. Adv. Mater., 2004, 16(20):1806-1811.
    [39] S M Zakeeruddin, M K Nazeeruddin, R Humphry-Baker. Acid-base equilibria of (2,2'-bipyridyl- complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania[J]. Inorg. Chim. Acts, 1999, 296: 250-253.
    [40] Chen C Y, Wu S J, Wu C G, et al. A ruthenium complex with super-high light-harvesting capacity for dye-sensitized solar cells[J]. Angew. Chem. Int. Ed., 2006, 5(35):5822-5825.
    [41] Lee C, Yum J, Choi H, et al. Phenomenally high molar extinction coefficient sensitizer with "Donor-Acceptor" ligands for dye-sensitized solar cell application[J]. Inorg. Chem., 2008, 47(7): 2267-2273.
    [42] Nazeeruddin M K, Angelis F D, Fantacci S, et al. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers[J]. J.Am.Chern.Soc., 2005, 127(48): 16835-16847.
    [43]Klein C, Nazeeruddin M K, Liska P, et al. Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity[J]. Inorg. Chem., 2005, 44(2):178-180.
    [44] Kuang D B, Klein C, Ito S, et al. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitezer and nonvolatc electrolyte[J]. Adv. Mater., 2007, 19: 1133-1137.
    [45] Wang P, Zakeeruddin S M, Gratzel M, et al. A stable quasi-solid-stated dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater[J]. 2003, 2: 402-407.
    [46] Zakeeruddin S M, Nazeeruddin M K, Pechy P, et al. Inorg. Chem. 1997, 36(25): 5937-5946.
    [47] Zakeerudin S M, Nazeeruddin Md K, Humphry-Baker R and Gr?tzel M. Synthesis and photophysical properties of trans-dithiocyanato bis(4,4′-dicarboxylic acid-2,2′-bipyridine) ruthenium(II) charge transfer sensitizer[J], Inorg. Chim. Acta., 1999, 296(1): 250-253.
    [48] Bai Y, Cao Y M, Zhang J, et a1. Hish-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectie melts[J]. Nature Mater., 2008, 7(8): 626-630.
    [49] Chen C Y, Wu S J, Wu C G, Chen J G, et al. A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells[J]. Angew. Chem., Int. Ed. 2006, 45, 5822-5825.
    [50] Shi D, Pootrakulchote N, Li Renzhi, Guo Jin, Wang Yuan, Zakeeruddin S M, Grgtzel M, Wang P. New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes[J]. J. Phys. Chem. C, 2008, 112(44): 17046-17050.
    [51]李靖,李祥高,王世荣.染料敏化纳米晶太阳能电池中敏化剂的研究[J].化学通报, 2010, 12: 1066-1072.
    [52] C D Jaeger, F R F Fan, A J Bard. J. Am. Chem. Soc., Semiconductor electrodes. 26. Spectral sensitization of semiconductors with phthalocyanine[J]. 1980, 102(8): 2592-2598.
    [53] M K Nazeeruddin, R Humphry-Baker, M Gr?tzel, et a1. Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines[J]. Porphyrins Phthalocyanines, 1999, 3(3): 230-237.
    [54] He J J, Hagfeldt A, Lindquist S E. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode[J]. Langmuir, 2001, 17(9): 2743-2747.
    [55] Y Amao, T Komori. Langmui. Synthesis of binuclear phthalocynines sharing a benzene or naphthalene ring [J].2003, 19(21): 8872-8875.
    [56] H Yanagi, S Chen, P A Lee et al. Andrew nevinl zynthesis, spectroscopy, electrochemistry, spec-troeletrochemistry, Langmuir-Blodgett of planar binuclear phthalocyanines[J]. J. Phys. Chem., 1996, 100(13): 5447-5451.
    [57] Braun A, Tcherniac T C. Uber die Produckte Einwirkung von Acetanhydridauf Phthalamid[J]. Ber. 1907, 40:2709-2714.
    [58] Cook H J, Dunn A J, et al. Ta-alkoxy phthalocyanine and naphthalocyanine derivatives:dyes with Q-band absorption in the far red or near infra-red[J]. J. Chem. Soc. Perkin. Trans. 1988, 1: 2453-2458.
    [59] Kuniuobu Kasuga, Makoto Kawashima, Tamotsu Sugimori, et al. Reparation of one structural isomer of tetra-substituted phthalocyanine 1,8,15,22-tetra(3-pentoxy) phthalocyanine and a crystal structure of its nickel(II) complex[J]. Chemistry Letters. 1996, 2:867-868.
    [60] Tomoda H, Saito S, Shinsaku S. Synthesis of metallophthalocyanines from phthalonitrile with strong organic bases[J]. Chem. Lett. 1983, 7:313-315.
    [61]Chi-Hang Lee, Dennis K. P. Ng. Cerium-promoted formation of metal-free phthalocyanines[J]. Tetrahedron Letters. 2002, 43: 4211-4214.
    [62]陈元胜,许志康,朱宝库等.光电导性聚酰亚胺的研究(Ⅰ)-含咔唑、酞菁铜聚酰亚胺的合成与表征及其光电导性能研究[J],高等学校化学学报, 1997,18(6):73-76.
    [63] Chen J P, Gao J P, Wang Z Y. Preparation and photochemical study of soluble optically active block copolymethacrylates and azo-containing random copolymethacrylates[J]. J. Polym. Sci, Part A: Polym. Chem, 1997, 35: 9-16.
    [64]沈永嘉.酞菁的合成与应用[M].化学与工业出版社, 2002, 2.
    [65] Shafrira Greenberg, Sebastian M Marcuccio, Clifford C Leznoff. Seletive synthesis of binuclear and trinuclear phatahlocuyannies covalently linked by a one atom oxygen bridge[J] . Synthesis, 1986, 406-4091.
    [66] Sebastian M Marcuccio, Polinal Svirskaya, Shafrira Greenberg, et al. Binuclear phthalocyanines covalently linked through two and four atom bridges [J]. Can J Chem, 1985, 63: 3057-3069.
    [67] Leznoff C C , Greenberg S, Marcuccio S M. Binuclea‘rclamshell’metallophthalocy anines [J]. Inorg Chem Acta, 1984, 89: 35-38.
    [68] Clifford C Leznoff, Sebastian M Marcuccio, Shafrira Greenberg. Metallophthalocyanine dimmers incorporating five - atom covalent bridges [J]. Can J Chem, 1985, 63: 623-631.
    [69] Clifford C Leznoff, Polina I Svirskaya, Ben Khouw. Syntheses fo monometalated and unsymmetrially substituted bisclear phthalocyanines and pentanuclear phthalocyanine by solution and polymer support method [J]. J Org Chem, 1991, 56: 82-90.
    [70] Wheeler B L, Nagasubramanian G, Bard A J. A silicon phtalocyanine and silicon naphthalocyanine synthesis, electrochemistry and electrogenerated chemiluminescene [J]. J Am chem Soc, 1984, 106: 7404-7410.
    [71] Herman Lam, Sebastian M Marcuccio, Polina I Svirskaya. Binuclear phthalocyanines with aromatic bridges [J ]. Can J Chem, 1989, 67: 1087-1097.
    [72] Christian Piechocki, Jacques Simon. Synthesis and physico-chemical studies of neutal and chemically oridizen forms of bis (octaalkyloxyphthalocyaninato) lutetium [J]. Chem Phy Lett, 1985, 122: 124-128.
    [73] Thierry Toupanee, Vefa Ahsen, Jacques Simon. Ionoelectrohics. cation-induced nonlinear complexation: crown ether-and poly (ethylene oxide)-substituted lutertium bisphthalocyanines [J]. J Am Chem Soc, 1994, 116: 5352-5361.
    [74] Sebuur Merey, Ozer Bekaroglu. Synthesis and characterization of nover phthalocyanine with four riedentate NNS substituents and four chloro groups [J]. J Chem Soc Dalton Trans, 1999, 4503-4510.
    [75] Abd M A EL-Chaffar. Electric studies or some metal biphthacyanine complexes [J]. Thermochimica Acta, 1991, 178: 257-262.
    [76] Elshereafy E, M A Abd El-Ghaffar. Eletrical and thermal studies on copper complexes ofphthalocyanine and biphthalocyanine and their derivatives [J]. Thermochimica Acta, 1991, 186: 179-185.
    [77]石鑫,郭卓等.平面双核酞菁化合物的发展及应用前景[J].东北师大学报自然科学版, 2001, 33(3): 64-72.
    [78] Lobayashi N M, Lever A B P. Cation-or solvent-induced supermolecular phthalocy anine formation: crown ether substituted phthalocyanines [J]. J Am Chem Soc, 1987, 109: 7433-7441.
    [79] Kobayashi N, Shida T, Osa T. Synthesis spectroscopy electrochemistry and spectroelect rochemistry of a zinc phthalocyanine with symmetry [J]. Chem Lett, 1992, 2031-2034.
    [80] Muralidharan S, Ferraudi G, Patterson L K. Luminescence from upper electronic excited states of phthalocyanines [J]. Inorg Chim Acta, 1982, 65: L2-5.
    [81] Menzel E R, Rieckhoff K E, Voigt E M. Relaxation mechamisms from excited singlet states and the effect of spin-orbit coupling [J]. Chem Phys Lett, 1972, 13: 604-607.
    [82] Brannon J H, Magde D. Picosecond laser photophysics group 3A phthalocyanines [J]. J Am Chem Soc, 1986, 112: 62-65.
    [83] Kaizu Y, Maekawa H, Kobayashi H. Upper excited-state emission of a covalently linked porphyrin dimer [J]. J Phys Chem, 1986, 90(4): 2344-238.
    [84]吴芳.有机/聚合物材料的能带结构及其在电致发光器件中的应用[D].吉林大学, 2000.
    [85] Bard A J, Focna L R.电化学方法原理及应用[M].化学工业出版社, 1988.
    [86]黄金陵,彭亦如,陈耐生.金属酞菁配合物结构研究的一些谱学方法[J].光谱学与光谱分析, 2001, 2:1-6.
    [87] A.B.P.Lever and P.C. Minor. Electrochemistry of main-group phthalocyanines[J]. Inorg. Chem.1981, 20:4015-4017.
    [88]唐代华,王小兵,甄珍,王凤奇,刘新厚.一种合成平面双核金属酞菁的新方法[J].无机化学学报, 1999, 11(6): 821-825.
    [89]左霞,胡晓明,夏定国.一种卤素取代双核酞菁铁氧化还原催化剂及其制备方法[P].2007, 11,14.
    [90] Wang Q, Officer D L, Gr?tzel M, et a1. Efficient light harvesting by using green Zn-porphyrin—sensitized nanocrystalline TiO2 films[J]. J. Phys. Chem. B., 2005, 109:15397-15409.
    [91] Jaeger C D, Fan F R, Bard A J. Electrical conductivity in phthalocyanines modulated by circularly polarized light[J]. J. Am. Chem. Soc., 1980, 102(8): 2592-2598.
    [92] Campbell W M, Gr?tzel M, Officer, D L, et a1. Highly efficient porphyrin sensitizers for dye-sensitized solar cells[J]. J. Phys. Chem. C., 2007, 111: l1760-11762.
    [93] Nagao Kobayashi, Herman Lam, Andrew Nevin, et al. Synthesis, spectroscopy, electrochemistry, spectroelectrochemistry, Langmuir-Blodgett film formation, and molecular orbital calculations ofplanar binuclear[J]. J. Am. Chem. Soc., 1994, 116:879-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700