四川生态区苏云金芽胞杆菌资源的筛选鉴定及其新型杀虫基因的克隆表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是目前研究最深入、使用最广泛的杀虫微生物之一。深入发掘我国丰富的苏云金芽胞杆菌资源,筛选高毒力及特异性菌株,对其基因型进行分析,分离克隆新型杀虫基因,其结果对微生物杀虫剂的研制、构建高效广谱工程微生物和培育转基因抗虫植物都具有重要的理论及实践意义。本研究对四川盆地不同生态区的Bt资源进行了较为系统的调查研究,从中分离克隆了数个新型杀虫基因,并进行了初步的表达研究,具体结果如下:
     1.采集四川不同生态区的土壤样品2650份,利用醋酸钠-抗生素法分离Bt菌791株,平均分离率为13.2%。分离出的菌株产生的伴胞晶体形态各异,有长菱形、短菱形、大菱形、小菱形、方形、球形、不定形等,充分显示了四川生态区Bt菌株资源多样性的特点。利用PCR-RFLP鉴定体系鉴定了791株Bt菌的杀虫晶体蛋白基因类型:其中522株含有cry1型基因,312株含有cry2型基因,20株含有cry3型基因,33株含有cry9型基因,28株含有cry4/10型基因,33株含有cry30型基因,3株含有cry40型基因。有80株菌未鉴定出基因型,对这些菌株的伴胞晶体SDS-PAGE分析结果表明:有的菌株表达130kDa和60kDa的蛋白;有的菌株表达90kD和40kDa的蛋白;有的菌株表达60kDa的蛋白;有的则表达90kDa左右的蛋白,可以推测,这些菌株极有可能含有新型的杀虫基因。
     2.系统地研究了四川生态条件下分离的Bt菌株Rpp02和Rpp39的生物学特性。根据形态特征、培养特征、细胞壁化学组分和生理生化分析,Rpp02菌株被定名为苏云金芽孢杆菌莫里逊亚种(Bacillus thuringiensis subsp.morrisoni),Rpp39被定名为苏云金芽孢杆菌杀虫变种(Bacillus thuringensis var.entomocidus)。Rpp02生长3h进入对数生长期,生长速率略快于Rpp39(4h),Rpp39与已知标准菌株HD-1生长速率相当。Rpp02产生大菱形、小菱形、圆形、不定形伴胞晶体,Rpp39产生菱形、方形和圆形伴胞晶体。PCR-RFLP鉴定结果表明Rpp02含有cry1Ab、cry1Ac、cry1Ca和cry1Ia四种基因,Rpp39含有cry1Aa、cry1Ab、cry1Ac、cry1Ia和cry2Aa五种基因。SDS-PAGE电泳分析Rpp02主要产生130kDa和40kDa大小的蛋白,Rpp39主要产生130kDa和60kDa的蛋白。
     3.设计了一对cry1Ac基因的特异引物,对Rpp02菌株基因组DNA进行PCR扩增,得到大约4kb的产物。测序结果表明,克隆到的片段含有一个较大的ORF框,该基因编码区为3534bp,编码1177个氨基酸,分子量为133.144kDa;等电点pI=4.825,为弱酸性蛋白质;亮氨酸(Leu)、丝氨酸(Ser)、谷氨酸(Glu)3种氨基酸含量最高,分别为7.98%、7.81%、7.73%。与已报道的cry1Ac序列同源性达到99%,存在着几个核苷酸以及编码氨基酸的差别。该基因序列的Accessionnumber为DQ285666,被国际Bt杀虫晶体蛋白基因命名委员会命名为cry1Ac20。该基因在大肠杆菌中得到了表达,表达产物具有较强的杀虫效果。
     4.以Rpp39为出发菌株,分离克隆了cry2Aa类杀虫晶体蛋白全长基因。序列分析显示该基因的开放阅读框(ORF)为1902 bp,编码由634个氨基酸组成的蛋白质。其氨基酸序列与Cry2Aa1蛋白同源性为99.7%,被国际Bt杀虫晶体蛋白基因命名委员会命名为cry2Aa12。根据cry2Aa12基因ORF两端序列,设计1对特异引物P3/P4,PCR扩增获得cry2Aa12完整ORF。将获得的片段与大肠杆菌表达载体pET-30a连接,构建了重组表达质粒pET-2Aa。将该质粒导入E.coli BL21(DE3),经IPTG诱导能正常表达,SDS-PAGE电泳验证含有65kDa表达蛋白。生物活性测定表明表达的包涵体蛋白对小菜蛾和二化螟具有杀虫活性,LC_(50)分别为5.4μg/mL和22.3μg/mL。
     5.采用PCR-RFLP鉴定法,从菌株BtMC28中挖掘出一个新型杀虫模式基因,其部分序列与已知模式基因cry4Aa和cry10Aa的同源性分别为57%和60.5%。进一步采用Tail-PCR和Son-PCR技术获得了基因的全长序列。该基因的编码区为2022bp,编码673个氨基酸组成的蛋白,与Cry10Aa蛋白所氨基酸序列同源性最高为38%;其分子量为76.32kDa:异亮氨酸(Ile)、亮氨酸(Leu)、天冬酰胺(Asn)含量最高,分别为9.65%、9.36%、8.91%;它的等电点为7.535,属弱碱性蛋白。该新基因已在GenBank中注册,Accession number为EU339367。根据cry基因国际命名原则(即新发现的基因编码的氨基酸序列与已知蛋白同源性在45%以下为第一分类等级,用阿拉伯数字表示,如cry1、cry2、cry3…),该基因被国际Bt杀虫晶体蛋白基因命名委员会正式命名为cry54Aa1基因。根据cry54Aa1基因ORF两端序列,设计1对特异引物经扩增获得了cry54Aa1完整ORF。随后与大肠杆菌表达载体pET-30a连接,构建了重组表达质粒pET-54Aa。将该质粒导入E.coliBL21(DE3),经IPTG诱导能正常表达,SDS-PAGE电泳验证含有76kDa表达蛋白。生物活性测定表明表达的包涵体蛋白对甜菜夜蛾的LC_(50)为5.8μg/mL,对伊蚊的LC_(50)为6.02μg/mL。
Bacillus thuringiensis(Bt) is currently one of the most extensive studied and widely used pesticidal microorganism.To futher dig abundant resource of Bt in our country,screen high toxicity and specific strains,analyse their cry gene types,isolate and clone novel pesticidal genes will have important meanings in theories and practices for developping microbial insecticides,constructing high toxicity and broadspectrum engineering strains and breeding insect resistant transgenic plants.This study described a systematic study of Bt resources in different ecological regions in Sichuan.Several novel pesticidal protein genes were cloned and expressed.The concrete results are as follows:
     1.In totle,791 B.thuringiensis isolates have been screened from 2650 soil samples with an average rate as 13.2%,which were collected from different ecological regions in Sichuan.Observed by electron microscope,these B.thuringiensis parasporal crystal shapes were long bipyramid,short bipyramid,big bipyramid,small bipyramid, cuboidal,round and abnormity,which showed the diversity of Bt resources in Sichuan ecology.The cry gene-types of 791 B.thuringiensis isolates were identified by use of PCR-RFLP.522 isolates harbored cry1 genes,312 isolates harbored cry2 genes,20 isolates harbored cry3 genes,33 isolates harbored cry9 genes,28 isolates harbored cry4/10 genes,33 isolates harbored cry3 genes and 3 isolates harbored cry40 genes.In addition,80 isolates did not produce any PCR products when assayed with the primers. However,SDS-PAGE assay indicated that these isolates produced crystal inclusions, suggesting that they may contain potentially novel Cry toxins.
     2.This paper systematically investigated the biological characteristics of Bt strains Rpp02 and Rpp39 isloated from Sichuan ecology.Based on their morphologic characteristics,culture characteristics,biochemical reactions and cell wall compounds analysis,the strain Rpp02 was approved to be a kind of Bacillus thuringiensis subsp. morrisoni while Rpp39 was Bacillus thuringiensis var entomocidus.After growing three hours,the strain Rpp02 entered logarithmic growth phase.The growth velocity of Rpp02 was quicker slightly than Rpp39(four hours) whose growth velocity was the same as that of the standard strain HD-1.The strain Rpp02 produced big bipyramid, small bipyramid,round and abnormity parasporal crystal while Rpp39 produced diamond,cuboidal and round parasporal crystal.The strain Rpp02 contained cry1Ab, cry1Ac,cry1Ca and cry1Ia genes by use of PCR-RFLP method and Rpp39 contained cry1Aa,cry1Ab,cry1Ac,cry1Ia and cry2Aa genes.SDS-PAGE analysis showed that two kinds of molecular mass of insecticidal crystal proteins,one was about 130kDa and other 40kDa,were expressed in Rpp02 while 130kDa and 60kDa proteins in Rpp39.
     3.According to the whole length of cry1Ac gene published on GenBank,a pair of primers was designed to amplify the genomic DNA of Rpp02 and a fragment of about 3.7kb was obtained.The sequence analysis showed that the novel gene cry1Ac20, named by B.thuringiensis Pesticidal Crystal Protein Nomenclature Committee, contained an open reading frame of 3534 nucleotides encoding a protein of 1177 amino acids with a predicted molecular mass of 133.144 kDa and isoelectric point of 4.952. Compared with other known cry1Ac genes,cry1Ac20 has shown as high as 99% nucleotide sequence homology.Bioassay showed that the toxic protein appeared high insecticidal activity against Pieris rapae L.with LC_(50) as 9.01μg / mL
     4.One cry2Aa-type gene of Rpp39 was cloned and designated as cry2Aa12 by Bt Insecticidal Crystal Proteins Nomenclature Committee.Sequence analysis revealed this gene contained an open reading frame of 1902 nucleotides encoding a protein of 634 amino acids.Compared with Cry2Aa1 protein,Cry2Aa12 protein has shown as high as 99.7%amino acid homology.The full open reading frame sequence of the cry2Aa12 gene was amplified with a pair of PCR primers P3/P4 designed according to its DNA sequence,and inserted into the NdeⅠ/ BamHⅠsite of E.coli expression vector pET-30a to obtain the recombinant plasmid pET-2Aa.The result of SDS-PAGE proved that Cry2Aa12 could be expressed as 65kDa protein in E.coli BL21(DE3) strain induced by IPTG Bioassay of the expressed product of the cry2Aa12 gene showed that Cry2Aa12 was highly toxic to the larvae of Plutella xylostella and Chilo supperssalis, with LC_(50) as 5.4μg / mL and 22.3μg / mL,respectively.
     5.One novel holetype genes was found from the strain BtMC28 by the method PCR-RFLP.The sequence analysis revealed that the partial sequence of one had 57% and 60.5%identical to cry4Aa and cry10Aa,respectively.Furthermore,the full-length sequence of the novel gene was obtained by Tail-PCR and Son-PCR.The sequence analysis showed that the novel 8ene cry54Aa1,named by B.thuringiensis Pesticidal Crystal Protein Nomenclature Committee,contained an open reading frame of 2022 nucleotides encoding a protein of 673 amino acids with a predicted molecular mass of 76.32 kDa and isoelectric point of 7.535.Compared with other known proteins, Cry54Aa1 has shown 38%amino acids homology.The full open reading frame sequence of the cry54Aa1 gene was amplified with a pair of PCR primers designed according to its DNA sequence,and inserted into the NdeⅠ/ EcoRⅠsite of E.coli expression vector pET-30a to obtain the recombinant plasmid pET-54Aa.The result of SDS-PAGE proved that Cry54Aa1 could be expressed as 76 kDa protein in E.coli BL21(DE3) strain induced by IPTG.Bioassay of the expressed product of the cry54Aa1 8ene showed that cry54Aa1 was highly toxic to the larvae of Laphygma exigua and Aedes aegypti with LC_(50)as 5.08μg / mL and 6.02μg / mL,respectively.
引文
[1] Barloy, F., Lecadet, M.M., Delectuse, A. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene, 1998,211: 293-295.
    [2] Estruch, J. J., Warren, G. W., Mullins, M. A et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. U. S. A, 1996, 93 (11): 5399-5394.
    [3] Faust, R. M., Abe, K., Held, G. A et al. Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp. israelensis, Plasmid, 1983, 9: 98-103.
    [4] Ishiwata S. On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho, 1901,114:1-5.
    [5] Berliner E. Uber die schlaffsucht der mehlmottenraupe. Zeitschrift fur das gesamte Getreidewesen, 1911, (2): 29-56.
    [6] Sudakin, D. L., Biopesticides. Toxicol Rev., 2003, 22(2): 83-90.
    [7] Hannay, C. L. Crystalline inclusion in aerobic sporeforming bacteria. Nature, 1953, 172: 1004.
    [8] Hannay, C. L. and Fitz-jame, P. C, The protein crystals of Bacillus thuringiensis Berliner. Can. J. Microbiol., 1955, (1): 694-710.
    [9] Dulmage, H. T., Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis. J Invertebr. Pathol., 1970, (15): 232-239.
    [10] 喻子牛. 苏云金杆菌. 科学出版社, 1990.
    [11] Bebabov, V. Q., Azizbekyrcen, R. R., Kiebalina, O. I. et al. Isolation and preliminary characterization of extra chromosomal elements of Bacillus thuringiensis DNA. Genetika, 1977, (13): 496-501.
    [12] Galushka, F. P., Azizbekyrcen, R. R., Investigation of plasmids different varians of Bacillus thuringiensis. Dokl. Skad. Nauk (USSR), 1977, 236: 1233-1235.
    [13] Schnepf, E., Whiteley, H. R., Cloning and expression of the Bacillus thuringiensis crystal protein gene in E. coli. Proceed. Nat. Acad. Scien., 1981, 78: 2893-2897.
    [14] http://www.biols.susx.ac.uk/home/Neil_Crickmore/Bt/index.htm.2008 .
    [15]李荣森,陈涛.几种苏云金芽胞杆菌的毒力及形态结构.微生物学报,1981,21(3):311-317.
    [16]Donovan,W.P.,GonzalezJ,M.J.,Gilbert M P et al.Isolation and characterization of EG2158,a new strain of Bacillus thuringiensis toxic to Coleopteran larvae,and nucleotide sequence of the toxin gene.Mol.Gen.Genet.,1988,214(3):365-372.
    [17]Rodriguez-Padilla,C.,Galan-Wong L,de Barjac H et al.Bacillus thuringiensis subspecies neoleonensis serotype H-24,a new subspecies which produces a triangular crystal.J.Invertebr.Pathol.,1990,56(2):280-282.
    [18]Calabrese,D.M.,Nickerson,K.W.,Lane,L.C.,A comparison of protein crystal subunit sizes Bacillus thuringiensis.Can.J.Microbiol.,1980,26:1006-1010.
    [19]任改信,冯喜吕,冯维熊.苏云金杆菌伴胞晶体的形态及抗原特性体.微生物学报,1983,23(1):57-62.
    [20]Edwards,D.L.,Payne,J.,Soares,G.,Novel isolates of Bacillus thuringiensis having activity against Nematodes.Europ.Patent Appl.,1988,303-426.
    [21]Feitelson,J.S.,The Bacillus thuringiensis family tree.In:Kim,L.(Ed.) Advanced Engineered Pesticides.Marcel Dekker.New York,N Y,1993,63-72.
    [22]Hoffmann,A.,Thimm,T.,Droge,M.et al.Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida(Collembola).Appl.Envir.Microbial.,1998,64:2652-2659.
    [23]Pinto,L.M.,Azambuja,A.O.,Diehl,E.et al.Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex(Hymenoptera,Formicidae).Braz.J.Biol.,2003,63(2):301-306.
    [24]Rowell,B.,Bunsong,N.,Satthaporn,K.et al.Hymenopteran parasitoids of diamondback moth(Lepidoptera:Ypeunomutidae) in northern Thailand.J.Econ.Entomol.,2005,98(2):449-456.
    [25]Tailor,R.,Tippett,J.,Gibb,G.,Identification and characterization of a novel Bacillus thuringiensis delta-endotoxin entomocidal to Coleopteran and Lepidopteran larvae.Mol.Microbial.,1992,6(9):1211-1217.
    [26]Baroy,F.,Lecadet,M.M.,Deleluse,A.,Cloning and sequencing of three new putative toxin genes from Clostridium befermentans. Gene, 1998,211:293-295.
    
    [27] Ohba, M., Shisa, N., Thaithanun, S. et al. A unique feature of Bacillus thuringiensis H-serotype flora in soils of a volcanic island of Japan. J. Gen. Appl. Microbial., 2002,48(4): 233-235.
    
    [28] Maeda, M., Mizuki, E., Nakamura, Y. et al. Recovery of Bacillus thuringiensis from marine sediments of Japan. Curr. Microbial., 2000,40 (6): 418-422.
    
    [29] Ichimatsu, T., Mizuki, E., Nishimura, K. et al. Occurrence of Bacillus thuringiensis in fresh waters of Japan. Curr. Microbial., 2000,40(4): 217-220.
    
    [30] Anwar, H. M,, Ahmed, S., Hoque, S., Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J. Invertebr. Pathol., 1997, 70: 221-225.
    
    [31] Leckie, S. E., Prescott, C. E., Grayston, S. J. et al. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb. Ecol., 2004,48 (1): 29-40.
    
    [32] Wang, J., Boets, A., Van, R. J. et al. Characterization of cry1, cry2, and cry9 genes in Bacillusthuringiensis isolates from China. J. Invertebr. Pathol., 2003, 82 (1): 63-71.
    
    [33] Schnepf, H. E., Wong, H. C., Whiteley, H. R., The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. biol. chem. 1985,260:6264-6272.
    
    [34] H(o|¨)fte, H., Whiteley, H. R., Insecticidal crystal protein of Bacillus thuringiensis. Microbiol Rev. 1989. 53: 242-255.
    
    [35] Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev. 1998, 62: 807-813.
    
    [36] Crickmore, N., Zeigler, D. R., Schnepf, H. E. et al. Bacillus thuringiensis toxin nomenclature (2001.5).
    
    [37] Gonzalez, J. M., and Carlton, B. C., Paterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid, 1980, 3: 92-98.
    
    [38] Gonzalez, J. M., Dulmage, H. T., and Carlton, B. C., Correlation between specific plasmids and δ- endotoxin in production in Bacillus thuringiensis.Plasmid,1981,5:351-365.
    [39]Schnepf,H.E.,and Whiteley,H.R.,Cloning and expression of the Bacillus thuringiensis crystal protein gene in E scherichia coli.Proc N atl Acad Sci USA,1981,78(5):2893-2897.
    [40]Held,G.A.,Bulla,L.A.,Ferrarie,et al.Cloning and localiztion of the lepidopteran protoxin gene of Bacillus thuringiensis subsp,kurstaki.Proc Natl Acad USA,1982,79:6065-6069.
    [41]Wong,H.C.,Schnepf,H.E.,and Whiteley,H.R.,Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene.J Biol Chem,1983,258:1960-1967.
    [42]Baum,J.A.,and Malvar,T.,Regulation of insecticidal crystal protein production in Bacillus thuringiensis.Mol Microbiol,1995,18:1-12.
    [43]Lampel,J.S.,Ganter,G.L.,Dimock,M.B.et al.Integrative cloning,expression,and stability of the crylA(c) gene from Bacillus thuringiensis sub.kurstaki in arecombinant strain of Clavibacterxyli subsp,cynodontis.Appl Environ Microbiol,1994,60:501-508.
    [44]Liu Z D,Yu Z N.Progress in the studies on the action mechanism of Bacillus thuringiensis and insecticidal crystal protein.Acta Entomol Sin,2000,43(2):207-213.
    [45]Schnepf,E.,Crickmore,N.,Rie,J.V.et al.Bacillus thuringiensis and its pesticidal crystal proteins.Microbiol Mol Biol Rev,1998,62(3):775-806.
    [46]程萍,王清锋,喻子牛.苏云金芽胞杆菌杀虫晶体蛋白基因的启动子及其转录调控.微生物学通报,1999,26:130-134.
    [47]Agaisse,H.,and Lereclus,D.,Expression in Bacillus subtilis of the Bacillus thuringiensis cryⅢA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoOA mutant.J of Bacteriol,1994,176:4734- 4741.
    [48]Brown,R.L.,and Whiteley,H.R.,Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes.Proc Natl Acad Sci USA,1988,85:4166-4170.
    [49]Brown,K.L.,Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon.J of Bacteriol,1993,175(24):7951-7957.
    [50]Glatron,M.F.,and Rapoport,G.,Biosynthesis of the parasporal inclusion of half-life of its corresponding messenger RNA.Biochemistry,1972,54:1291-1301.
    [51]Niedich,D.P.,and Murakawa,G.J.,The decay of bacterial messenger RNA.Prog.Nucl.Acid Res.Mol.Biol.,1996,52:153-216.
    [52]Agaisse,H.,and Lereclus,D.,STAB-SD:a Shine-Dalgarno sequence in the 59untranslated region is a determinant of mRNAs tability.Mol Microbiol,1996,20:633-643.
    [53]Bietlot,H.P.,Vishnubhatla,I.,Carey,P.R.et al.Characteirzation of the cysteine residues and disulfides linkages in the protein crystal of Bacillus thuringiensis.Biochem J,1990,267:309-316.
    [54]Berharsd,K.,Studies on the delta-endotoxin of Bacillus thuringiensis Var.tenebironis.FEMS Microbiol Lett,1986,33:261-265.
    [55]Wu,D.,and Federici,B.A.,Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using crylA(c) promoters to express the gene for an associated 20-kDa protein.Appl Microbiol Biotechnol,1995,42:697-702.
    [56]Agaisse,H.and Lereclus,D.,How does Bacillus thuringiensis produce so much insecticidal crystal protein.J Bacteriol,1995,177:6027-6032.
    [57]Kuo,W.S.,Chak,K.F.,Identifcation of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA.Appl.Environ.Microbiol,1996,62(4):1369-1377.
    [58]Song F P,Huang D,Zhang J et al.Identification of cry gene from Bacillus thuringiensis by PCR-RFLP system.30th Annual society for invertebrate pathology,1997.
    [59]张杰,宋福平.PCR技术与ICP基因的鉴定.植物保护21世纪展望.中国科学技术出版社,1998,118-120.
    [60]苏旭东.苏云金芽孢杆菌菌株的分离和cry基因的鉴定[硕士学位论文].河北农业大学,2005.
    [61]Carozzi,N.B.,Kramer,V.C.,Warren,G.W.et al.Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl.Environ.Microbiol.,1993,59(5):1683-1687.
    [62]Ceron,J.,Ortiz,A.,Quintero,R.et al.Specific PCR primer directed to identify cryl and cry3 genes with in a Bacillus thuringiensis strain collection.Appl.Environ.Microbiol,1995,61(11):3826-3831.
    [63]Juarezperez,V.M.,Ferrandis,M.D.,Frutos,R.,PCR-Based approach for detection of novel Bacillus thuringiensis cry genes.Appl.Environ.Microbiol,1997,63(8):2997-3002.
    [64]Ben-Dov,E.,Wang,Q.,Zaritsky,A.et al.Multiplex PCR screening to detect cry9genes in Bacillus thuringiensis strains.Appl.Environ.Microbiol.,1999,65(8):3714-3716.
    [65]Masson,L.,Erlandson,M.,Puzstai-Carey,M.et al.A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains.Appl.Environ.Microbiol.,1998,64(2):4782-4788.
    [66]Gaviria Rivera,A.M.and Priest,F.G.,Molecular typing of Bacillus thuringiensis serovars by RAPD-PCR.Syst Appl Microbiol,2003,26(2):254-261.
    [67]Pattanayak,D.,Chakrabarti,S.K.,Kumar,P.A.et al.Characterization of genetic diversity of some serovars of Bacillus thuringiensis by RAPD.Indian J Exp Biol,2001,39(9):897-901.
    [68]李景鹏,宣世伟.基因工程原理和方法[M].东北农业大学.1994.
    [69]Beard,C.E.,Ranasingle,C.,Akhurst,R.J.,Screen for novel cry genes by hybridization.Let.Appl.Microbiol.,2001,33:241-245.
    [70]邹宗亮,王升启.基因芯片置备方法研究进展.生物技术通报,2000,1:7-10.
    [71]饶志明,张荣珍等.基因芯片技术在微生物学研究中的应用.中国生物工程杂志,2003,23(8):61-65.
    [72]刘旭光,宋福平等.苏云金芽胞杆菌cry基因芯片检测方法的研究.中国农业科学,2004,37(7):987-992.
    [73]Pornwiroon,W.,Katzenmeier,G.,Panyim,S.et al.Aromaticity of Tyr-202 in the alpha4-alpha5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin.J.Biochem.Mol.Biol.,2004,31;37(3):292-297.
    [74]Porcar,M.,Juarez-Perez,V.,PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev., 2003,26(5): 419-432.
    
    [75] Li J. Carroll, J. and Ellar, D. J., Crystal stucture of insecticide 8-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 1991, 353: 815-821.
    
    [76] Grochulski, P., Masson, S. Borisova, M. et al. Bacillus thuringiensis Cry1A(a) insecticidal toxin: crystal sturcture and channel formation. J. Mol. Biol., 1995, 254: 447-464.
    
    [77] Li, J., P. A. Koni, and D. J. Ellar. Structure of the mosquitcidal 5-endotoxin CytB from Bacillus thuringiensis subsp. Kyushuensis and implica-tions for membrane pore formation. J. Mol. Biol. 1996. 257: 129-152.
    
    [78] Sankaranarayanan, R., K. Sekar, R. Banerjee, V. et al. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lection with a P-prism fold. Nat. Struct. Biol. 1996, 3: 596-603.
    
    [79] Shimizu, T., and K. Morikawa. The P-prism: a new folding motif. Trends Biochm. Sci. 1996,21:3-6.
    
    [80] H(o|¨)fte, H., and H. R. Whiteley. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 1989, 53: 242-255.
    
    [81] Schnepf, E., N. Crickmore, J. Van Rie Lereclus et al. Bacillus thuringiensis and its Pesticidal Crystal Protein. Microbiol. and Molecular Biology Review. 1998. 62: 3775-3806.
    
    [82] Chen, X. J., M. K. Lee, and D. H. Dean. Site-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across Bombyx Mori midguts. Proc. Natl. Acad. Sci. USA. 1993, 90: 9041-9045.
    
    [83] Schwartz, J. L., M. Juteau, P. Grochulski et al. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through diulfide bond engineering. FEBS Lett. 1997.410: 397-402.
    
    [84] Wolfersberger, M. G., X. J. Chen, and D. H. Dean. Site-directed mutations in the third domain of Bacillus thuringiensis δ-endotoxin Cry1Aa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles. Appl. Environ. Microbiol. 1996,62: 279-282.
    [85] Ge, A. Z., R. M. Pfister, and D. H. Dean. Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in E scherichia coli: properties of the product.Gene. 1990. 93: 49-54.
    
    [86] Toja, A., and K. Aizawa. Dissolution and degradation of Bacillus thuringiensis δ-endotoxin by gut juice protease of the silkworm Bombyx mori. Appl. Environ. Microbial. 1983. 45: 576-580.
    
    [87] English, L., Slatin, S. L. Mode of action of delta-endotoxins from Bacillus thuringiensis. a comparison with other bacterial toxins. Insect Biol., 1992. 22(1): 1-7.
    
    [88] Agaisse, H., and D. Lereclus. How does Bacillus thuringiensis produce so much insecticidal crystal protein. J. Bacteriol. 1995. 177: 6027-6032.
    
    [89] Shivakumar, A. G., G. J. Gundfng, T. A. Benson et al. Vegetative expression of the δ-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subrihs. J Bacterial. 1986, 166: 194-204.
    
    [90] Lambert, B., W.Theunis, R. Agouda et al. Nucleotide sequence of gene cryIIID encoding a novel coleopteran-active crystal protein from strain BTI109P of Bacillus thuringiensis subsp. kurstaki. Gene. 1992. 110: 131-132.
    
    [91] Masson, L., Tsbashnik, B. E., Liu, Y. B et al. Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. 1999. 274(45): 31996-32000.
    
    [92] James, C. Global Status of Commercialized Transgcnic Crops: 2000. ISAAABriefs No.21. Ithaca, NY: ISAAA. 2000.
    
    [93] Moran, C. P. RNA polymerase and transcription factors,. In A. L. Sonenshein, J. A. Hoch, and R. Losick(ed), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, D. C. 1993. p. 653-667.
    
    [94] Poncet, S., A. Delicluse, G. Anello et al. Transfer and expression of the crylVB and cryIVD genes of Bacillus thuringiensis subsp. Israelensis in Bacillus sphaericus 2297. FEMS Microbial. Lett. 1994. 117: 91-96.
    
    [95] Chestokbins, G. G., L. I. Kostins, A. L Mikhailovs et al. The main features of Bacillus thuringiensis delta-endotoxin molecular structure. Arch. Microbiol.1982. 132: 159-162.
    
    [96] Thiery, L., A. Delecluse, M. C. Tamayo et al. Identification of a gene for CytIA-like hemolysin from Bacillus thuringiensis subsp. medellm and expression in a crystal-negative B. thuringiensis starin. Appl. Environ. Microbial. 1997. 63:468-473.
    
    [97] Estada, U., Ferre, J. Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border membrane of the cabbage looper, Trichoplusiani (Hubnera)( Lepidoptera: Nocitudae), and selection for resistance to one of the crystal proteins. Appl. Enviorn. Micorbiol., 1994. 60(10): 3840-3846.
    
    [98] Sangadala, S., Walters, F. S., English, L. H. et al. A mixture of Manduca Sexta aminopetidase and phosphatase enhances Bacillus thuringiensis insecticidal Cry1Ac toxin binding and 86Rb~+-K~+ efflux in virto. J. Biol. Chem., 1994. 269(13): 10088-10092.
    
    [99] Donovan, W. P., C. Dankoesik and M. P. Gilbert. Molecular chaarcterization of a gene encoding a 72-kilodalton mosquito-toxic crystal portein from Bacillus thuringiensis subsp. israelensis. J. Bacteriol, 1988,170: 4732-4738.
    
    [100] Chang, C., Y. M. Yu, S. M. Dal et al. High level cry IVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl. Enviorn. Microbial. 1993. 59: 815-821.
    
    [101] Chilcot, C. N., and D. J. Ellar. Comparative study of Bacillus thuringiensis var. israelensis crystal protein in vivo and in vitro. J. Gen. Micor-biol.1988. 134: 2551-2558.
    
    [102] MacKinnon, R. and C. Miller. Mutant potassium channels with altered binding of charybdot- oxin, a pore-blocking peptide inhibitor. Science, 1989, 245: 1382-1385.
    
    [103] Hodgman,T. C., Y. Ziniu, J. Shen et al. Identification of a cryptic gene associated with an insertion sequence not previously identified in Bacillus thuringiensis. FEMS Microbial. Lett. 1993. 114: 23-29.
    
    [104] Hofmann, C., H. Vanderbruggen, H. H(o|¨)fte et al. Van Mellsert.Specificity of Bacillus thuringiensis 5-endotoxins is correlated with the presence of high-afinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA.1988.85: 7844-7848.
    
    [105] H(o|¨)fle, H., P. Soetaert, S. Jansens et al. Nucleonde sequence and deduced amino acid sequence of a new Lepidoptera-specific crysatl protein gene from Bacillus thuringiensis. Nucleic Acids Res. 1990.18: 5545.
    
    [106] Rajamohan, F., E. Alcnntara, M. K. Lee et al. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis Cry1Ab δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J. Bacterial. 1995. 177: 2276-2282.
    
    [107] Vaeck, M., A. Reynaerts, H. H(o|¨)fte et al. Transgenic plants protected from insect attack. Nature, 1987,328: 33-37.
    
    [108] Van der Salm, T., D. Bosch, G. Hone'e et al. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry1A(b)and cry1C genes: a resistance management strategy. Plant Mel. Biol. 1994, 26: 51-55.
    
    [109] Schnepf, H. E., G. E. Schwab, J. M. Payne et al. November World Intellectual Property Organization patent 1992. WO 92/19739.
    
    [110] Donovan, W. P., C. C. Dankocsik, M. P. Gilbert et al. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J. Biol. Chem. 1988. 263: 561-567. (Author's correction, 263: 4740).
    
    [111] Schnepf, H. E., K. Tomczak, J. P. Ortega et al. Specificity-determining regions of a lepidopte arn-specific insecticidal protein produced by Bacillus thuirngiensis. J. Biol. Chem. 1990. 265: 20923-20930.
    
    [112] Gutierrez, P., Alzate, O., Orduz, S. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin CryIIBb toxin deduced by homology modeling. Mem. Inst. Oswaldo Cruz. 2001. 96: 357-364.
    
    [113] Herrnstadt, C., T. E. Gilroy, D. A. Sobieski et al. Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp. san diego. Gene, 1987, 57: 37-46.
    
    [114] Guerchicoff, A., R. U. Ugalde, and C. P. Rubinstein. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbial. 1997, 63: 2716-2721.
    
    [115] Lereclus, D., H. Agaisse, M.Gominet et al. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spOA mutant. Biotechnology. 1995.13:67-71.
    
    [116] Cheong, H., and S. S. Gil. Cloning and characterization of a cytolytic and mosquitocidal delta-endotoxin from Bacillus thuringiensis subsp. jegathesan. Appl. Environ. Micorbiol. 1997, 63: 3254-3260.
    
    [117] Miyasono, M, S. inagaki, M. Yamamoto et al. Enhancement of δ-endotoxin activity by toxin-free spore of Bacillus thuringiensis against the Diamondback Moth. Plutellax ylostella. J. In vertebr. Pathol. 1994. 63: 111-112.
    
    [118] Macintosh, S. C., Stone, T. B., Sims, S. R. et al. Specificity and efficacy of purified Bacillus thurngiensis proteins against agronomically important insects. J. Invertebr. Pathol. 1990. 56: 258-266.
    
    [119] Lereclus, D., Arantes, O., Chaufaux, J. et al. Diversity of Bacillus thuringiensis giensis toxin and genes. Bacillus thuringiensis, An Environmeatal Biopesticide: theory and practice. Edited by P. F. Entwistle J. S. cory, M. J. Bailey and S. Higgs, 1993.
    
    [120] Johnson, D. E., and W. H. McGaughey. Crontribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indianmeal moth larvae. Curr. Microbiol. 1996,33:54-59.
    
    [121] Frank, H., Gaertner, Thmas C Quick. Cellcap: An Encapsulation System for insecticidal Biotoxin protein In: Advanced Engineered pesticides. Edited by leo kim Marcel Dekker Inc. N. Y. 1993, 73-84.
    
    [122] Bar, E., J. Lieman-Hurwitz, E. Rahamim et al. Cloning and expression of Bacillus thuringiensis israelensis δ-endotoxin in B. sphaericus. J. Invertebr. Pathol. 1991.57: 149-158.
    
    [123] Wu, D., J. J. Johnson, and B. A. Federici. Synergism of mosduitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol. Microbiol. 1994. 13: 965-972.
    
    [124] Zhang, M. Y., A. Lo"vgren, M. G. Low et al. Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun. 1993. 61: 4947-4954.
    
    [125] Dubois, N. R., and D. H. Dean. Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells against Lymantria dispar(Lepidoptera:Lymantriidae) larvae.Environ.Entomol.1995.24:1741-1747.
    [126]Barton,K.A.,H.R.Whiteley,and N.S.Yang.Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tahacum provides resistance to lepidopteran insects.Plant Physiol.1987,85:1103-1109.
    [127]Fischhoff,D.A.,K.S.Bowdisch,F.J.Perlak et al.Insect tolerant transgenic tomato plants Bio/Technology.1987,5:807-813.
    [128]侯文胜,郭三堆,路明.cry Ia基因小麦高效表达载体的构建.西北农林科技大学学报.2002.30(6):121-124.
    [129]Perlak,F.J.,R.W.Deaton,T.A.Armstrong et al.Insect resistantcotton plants.Bio/Technology.1990,8:939-943.
    [130]赵荣敏,范云六,石西四等.获得高抗虫转基因棉花研究.生物工程学报.1995.11(1):1-5.
    [131]郭三堆,崔洪志,夏兰芹等.双价抗虫转基因棉花的研究.中国农业科学.1999.32(3):1-7.
    [132]Arango,J.A.,Romero,M.,Orduz,S.Diversity of Bacillus thuringiensis strains from Colombia with insecticidal activity against Spodoptera frugiperda (Lepidoptera:Noctuidae).Journal of Applied Microbiology.2002.92(3):466-474.
    [133]Ejiofor,A.O.,Johnson,T.,Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States.Journal of Industrial Microbiology Biotechnology.2002.28(5):284-290.
    [134]Iriarte,J.,Porcar,M.,Lecadet,M.et al.Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain.Current Microbiology.2000.40(6):402-408.
    [135]Merdan,B.A.,Labib,I.,Soil characteristics as factors governing the existence,recycling and persistence of Bacillus thuringiensis in Egypt.J.Egypt.Soc.Parasitol.2003.33(2):331-340
    [136]Prabagaran,S.R.,Nimal,S.J.,Jayachandran,S.,Phenotypic and genetic diversity of Bacillus thuringiensis strains isolated in India active against Spodoptera litura,Applied Biochemistry Biotechnology.2002.102-103(1-6):213-226.
    [137]Uribe,D.,Martinez,W.,Ceron,J.,Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia.Journal of Invertebrate Pathology.2003.82(2):119-127.
    [138]Bravo,A.,Sarabia,S.,Lopez,L.,Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection.Applied and Environmental Microbiology.1998.64(12):4965-4972.
    [139]Vilas-Boas,G.T.,Franco Lemos,M.V.,Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil.Canadian Journal of Microbiology.2004.50(8):605-613.
    [140]曲慧东.东北地区土壤中苏云金芽孢杆菌分离及遗传多样性研究[硕士学位论文].沈阳农业大学,2005.
    [141]宋福平,张杰,黄大防等.苏云金芽抱杆菌cry基因PCR-RFLP鉴定体系的建立.中国农业科学,1998,31(3):13-18.
    [142]Narva,K.E.,Payne,J.M.,Schwab,G.E.et al.1991.Novel Bacillus thuringiensis microbes active against nemotodes,and genes encoding novekl nemotodes-active toxins cloned from Bt isolates.EP 0462721A2.
    [143]杨自文,吴宏文,王开梅等.从土壤中高效分离苏云金杆菌的方法.中国生物防治,2000,16(12):6-30.
    [144]Williams,S.T.,Elisabeth,M.S.,John,G.H.Bergey's manual of systematic bacteriology,1989.
    [145]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆(第三版)[M].北京:科学出版社,2002.
    [146]李海涛,姚江,郭巍等.苏云金芽孢杆菌cry2Aa基因的克隆、表达与活性.农业生物技术学报,2005,13(6):789-791.
    [147]Palidam.M.The insecticidal crystal protein CrylI(c) from Bacillus thuringiensis is highly toxic for Heliothis armigera.J.Invertebr.Pathal.1992,59:109-111.
    [148]黄大昉,林敏,农业微生物基因工程[M].北京:科学出版社,2001.
    [149]Wu,D.,Aronson,A.I.,Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity.J.Biol.Chem,1992, 267(4): 2311-2317.
    
    [150] Smedley, D. P., Ellar, D. J., Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion, Microbiology. 1996,142: 1617-1624.
    
    [151] Kin-Fu Char, Jui-chin Jen, Proceedings of the National Science Council Roc part B: life science. 1993,17(1): 7-14.
    
    [152] Akhurst, R. J., James, W., Bird, L. J., et al. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol., 2003, 96 (4): 1290-1299.
    
    [153] Tabashnik, B. E., Dennehy, T. J., Sims, M. A. et al. Control of resistant pink bollworm (Pectinophora gossypiella) by transgenic cotton that produces Bacillus thuringiensis toxin Cry2Ab. Appl. Environ. Microbiol., 2002, 68 (8): 3790-3794.
    
    [154] Chitkowski, R. L., Turnipseed, S. G., Sullivan, M. J. et al. Field and laboratory valuations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol, 2003, 96(3): 755-762.
    
    [155] Liang, Y., Dean, D. H., Location of a lepidopteran specificity region in insecticidal crystal protein CryIIA from Bacillus thuringiensis. Molecular Microbiology, 1994, 13(4): 569-755.
    
    [156] Sims, S. R., Host activity spectrum of the CryllA Bacillus thuringiensis subsp. kurstaki protein: Effects on Lepidoptera, Diptera, and non-target arthropods. Southwestern Entomologist, 1997, 22: 395-404.
    
    [157] Lenin, K., Mariam, M. A., Udayasuriyan, V., Expression of a cry2Aa gene in an acrystalliferous Bacillus thuringiensis strain and toxicity of Cry2Aa against Helicoverpa armigera. World Journal of Microbiology and Biotechnology, 2001, 17: 273-278.
    
    [158] Liu YG, Whittier RF. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25: 674-681.
    [159]Zsuzsanna Antal,Christine Rascle et al.Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from the expressed sequence tags.Curr Genet,2004,46:240-246.
    [160]Liu Y G,Whitter R F.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics,1995,25:674-681.
    [161]应革,武威,何朝族.TAIL-PCR方法快速分离Xcc致病相关基因序列.生物工程学报,2002,18(2):182-186.
    [162]Terauchi R,Kahl G.Rapid isolation of promoter sequences by TAIL-PCR:the 5'-flanking regions of Pal and Pgi genes from yams(Dioscorea).Mol.Gen.Genet,2000,263(3):554-560.
    [163]Sessions A,Burke E,Presting G.et al.A high-throughput Arabidopsis reverse genetics system.Plant Cell,2002,14:2985-2994.
    [164]孙明,吴岚,刘子铎等.苏云金芽胞杆菌杀虫晶体蛋白基因cry218的克隆和表达.农业生物技术学报,1996,4(3):293-298.
    [165]Chen Y,Ren G,Wu W et al.Characterization of cry gene and broad spectrum against Lepidopteran of Bacillus thuringiensis subsp,colmeri 15A3.Wei Sheng Wu Xue Bao,2002,42(2):169-74.
    [166]Hernandez C S,Andrew R,Bel Y et al.Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia.J.Invertebr.Pathol.,2005,88(1):8--16.
    [167]Wirth M C,Park H W,Walton W E et al.CytlA of Bacillus thuringiensis delays evolution of resistance to CryllA in the mosquito Culex quinquejasciarus.Appl.Environ.Microbiol,2005,71(1):185-189.
    [168]Tuntitippawan T,Boonserm P,Katzenmeier G et al.Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity.FEMS Microbiol.Lett,2005,242(2):325-332.
    [169]Wirth M C,Delecluse,Walton W E.Laboratory selection for resistance to Bacillus thuringiensis subsp.jegathesan or a component toxin,CryllB,in Culex quinquejasciatus(Diptera:Culicidae).J.Med.Entomol.,2004 May,41(3):435-41.
    [170]Griffitts J S,Haslam S M,Yang T et al.Glycolipids as receptors for Bacillus thuringiensis crystal toxin.Science,2005,307(5711):922-925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700