人肝素酶重组蛋白的表达及其单克隆抗体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     恶性肿瘤是当前严重影响人类健康的最重要的疾病之一。而肿瘤的侵袭和转移是导致肿瘤患者死亡的主要原因。肿瘤的转移过程非常复杂,目前认为转移性癌细胞侵袭转移主要通过以下三个步骤:1.肿瘤细胞通过细胞表面受体和细胞基质成分的粘附蛋白首先发生特异性结合,2.细胞外基质的水解酶降解过程,3.降解区发生瘤细胞的移动与侵袭。其中参与细胞外基质(ECM)降解过程中起作用的因素备受重视。
     肝素酶是1999年由四个不同的实验室克隆成功的一种肿瘤转移相关基因,肝素酶(heparanase, Hpa)是唯一能裂解ECM内蛋白多糖主要成分硫酸乙酰肝素蛋白多糖(heparan sulfate proteoglycans, HSPG)的内源性糖苷内切酶。研究表明肝素酶可以通过降解HSPG途径破坏ECM、BM的完整性以及促进肿瘤新生血管的生成而促进肿瘤的转移。越来越多的研究证实,肝素酶在几乎所有的中晚期恶性肿瘤中都高表达,与肿瘤患者的不良预后密切相关,抑制肝素酶的表达可以明显减少肿瘤的侵袭和转移。因此,肝素酶有可能作为肿瘤诊断与治疗的新靶点。
     单克隆抗体(Monoclonal Antibody,McAb)是单个B淋巴细胞克隆所分泌的抗体。抗体主要由B淋巴细胞合成,每个B淋巴细胞有合成一种抗体的遗传基因。当机体受抗原刺激时,抗原分子上的许多决定簇分别激活各个具有不同基因的B细胞。被激活的B细胞分裂增殖形成该细胞的子孙,即克隆。如果选出一个合成一种抗体的细胞进行培养,就可得到由单细胞经分裂增殖而形成细胞群,即单克隆。单克隆细胞所合成的抗体即为单克隆抗体。1975年Kohler和Milstein首先报道,用细胞杂交技术,使经绵羊红细胞(SRBC)免疫的小鼠脾细胞,与小鼠骨髓瘤细胞融合,创建了第一个B细胞杂交瘤细胞株,获得了抗SRBC的单克隆抗体。这是免疫学,乃至医学史上的一个里程碑。单克隆抗体的特点是:理化性状高度均一、生物活性单一、与抗原结合的特异性强、便于人为处理和质量控制,并且来源容易。这些优点使它一问世就受到高度重视,并成为解决生物学和医学等许多重大问题的重要手段。单克隆抗体具有高度特异性、高纯度特点,使其在很大浓度范围内获得低背景,所以在组织免疫染色中特别有用,还可以应用于免疫沉淀,免疫印迹技术,并且都具有特异性高,背景低的优点。另外单抗还可以用来进行免疫亲和纯化抗原;对单克隆抗体进行标记还可以用做快速诊断以及疫苗的研究等。目前有关肝素酶的单克隆抗体多见于国外公司生产,我国尚无商品化的肝素酶单克隆抗体。单纯的从国外进口该抗体,价格昂贵,成本高。
     基于以上认识,本研究拟构建人肝素酶高效表达基因,以获得人肝素酶重组蛋白,再利用获得的高纯度肝素酶蛋白作为免疫原,采用常规免疫程序和杂交瘤技术筛选人肝素酶特异性单克隆抗体,并利用免疫组化、ELISA及Western Blot等技术对获得的人肝素酶单克隆抗体进行鉴定,最后获得人肝素酶特异性的单克隆抗体,为以后肝素酶单克隆抗体在临床诊断以及抗体介导的肿瘤靶向治疗提供实验依据。
     方法
     1.将人肝素酶全长cDNA克隆到pET30a质粒,进一步转化入宿主菌BL21 (DE3)中进行原核表达,采用Ni2+柱纯化对人肝素酶重组蛋白进行纯化,对表达的人肝素酶重组蛋白进行质谱分析;
     2.将获得的肝素酶蛋白作为免疫源免疫Balb/c小鼠获得经免疫后能产生肝素酶抗体的B淋巴细胞;采用杂交瘤技术制备分泌肝素酶抗体的杂交瘤细胞株;采用有限稀释法筛选分泌抗体呈强阳性的克隆,并对上清液进行ELISA检测,鉴定筛选出的阳性克隆;
     3.采用HIS亲和层析以及复性纯化技术纯化肝素酶单克隆抗体;获得的抗体采用Western Blot技术、免疫组化技术及ELISA技术检测制备的肝素酶单克隆抗体的特异性和抗体的效价。
     结果
     1.我们采用PCR技术克隆了人肝素酶蛋白编码基因。经测序与GENBANK提供的基因序列完全一致。将克隆的人肝素酶基因序列克隆入原核表达质粒pET30a构建人肝素酶原核表达重组质粒;经1.0mmol/L IPTG 37℃诱导表达5h,pET30a-Hpa在BL21中表达融合蛋白,分子量为63KD左右,表达量占菌体总蛋白的30 %以上。经鉴定表达蛋白破菌后主要在沉淀中,为包涵体表达。采用HIS亲和层析及复性纯化方法,纯化获得人肝素酶重组蛋白;
     2.利用纯化的人肝素酶蛋白免疫原采用常规免疫程序和杂交瘤技术,经细胞融合,筛选出15株抗人肝素酶的特异性单克隆抗体,经亚类鉴定其中有3株为适合应用于诊断试剂的IgG1;
     3.经免疫组化、ELISA、及Western等多种手段对获得的肝素酶单克隆抗体进行特异性分析和效价鉴定,结果显示所制备的3株单抗为人肝素酶特异的,且效价较高的单克隆抗体。
     结论
     1.我们采用PCR技术克隆了人肝素酶蛋白编码基因。获得了高纯度的人肝素酶蛋白,获得的肝素酶蛋白经鉴定其测定分子量与理论分子量相符,可以用于肝素酶单克隆抗体的制备;
     2.成功制备了3株人肝素酶特异性的单克隆抗体,获得的三株人肝素酶单克隆抗体经ELISA、Western Blot和免疫组化等技术检测,证实其特异性高,并具有较高的效价,该研究结果提示我们制备的肝素酶单克隆抗体可能用于以肝素酶为靶点的肿瘤的诊断和治疗。
Background and Objective
     Cancer, one of the most important diseases, has serious impacts on human health at present. The tumor invasion and metastasis is the main reason leading to the death of cancer patients. Metastasis process is very complex, now that the metastatic cancer cell invasion and metastasis, mainly through the following three steps: 1. tumor cell through cell surface receptors and cell adhesion to extracellular matrix protein first with specificity, 2. extracellular matrix hydrolase degradation, 3. degradation occurred tumor cell migration and invasion. And the factors involved in extracellular matrix (ECM) in the degradation process have attracted increasing attention.
     Heparanase in 1999 by four different laboratories successfully cloned a tumor metastasis-related genes, heparanase (Hpa) is the only way to cracking the major ECM components within the proteoglycan heparan sulfate proteoglycan (HSPG) of endogenous glucosidase enzyme. Studies show that the degradation of HSPG by heparanase way undermines ECM, BM integrity and the promotion of tumor angiogenesis and metastasis. More and more studies confirm that in almost all of heparanase in the expression of both advanced cancer and poor prognosis of cancer patients, and inhibition of heparanase expression can significantly reduce tumor invasion and metastasis. Thus, heparanase may serve as cancer diagnosis and therapeutic target.
     Monoclonal antibody (Monoclonal Antibody, McAb) is a single B lymphocyte clone secreting antibodies. Each B lymphocyte has synthesized a kind of antibody genes. When the body is stimulated by the antigen, the antigen molecules were many determinants each with different genes activated B cells. Activated B cell was proliferation of the cells in the formation of children, which is called cloning. If the election of a synthesis of an antibody to the cell culture, can be obtained from the single cell formed by the proliferation of the cell groups, which is called monoclonal. In 1975, Kohler and Milstein first reported that by the sheep red blood cells (SRBC) immunization of mouse spleen cells with mouse myeloma cell fusion, creating the first B cell hybridoma cell lines obtained anti-SRBC monoclonal antibodies. This is immunology, and even a milestone in the history of medicine. Monoclonal antibody is characterized by: a high degree of homogeneous physical and chemical properties, biological activity of single, antigen binding specificity, and easy handling and quality control people. These advantages make it come out to be a high priority, and the solution to biology and medicine, an important means many important issues. Monoclonal antibodies are highly specific, high purity characteristics, so that within a large concentration of low background, is particularly useful in immunohistochemistry, immunoprecipitation and immunoblotting, and have high specificity, the advantages of low background. Another monoclonal antibody can also be used for immunoaffinity purified antigen; the monoclonal antibody markers can also be used for rapid diagnosis and vaccine research. At present, the heparanase monoclonal antibodies prevalent in the foreign company, there is no commercialization of our heparanase monoclonal antibodies. The monoclonal antibodies imported from abroad are expensive and high cost.
     Based on the above points, this study was to build effective human heparanase gene expression, to obtain recombinant human heparanase, and then use access to high-purity protein as immunogen heparanase, routine immunization procedures and the hybridization technique to screen a human heparanase-specific monoclonal antibody. Immunohisto- chemistry, ELISA and Western Blot techniques were used on the available human heparanase monoclonal antibodies, and finally get specific human heparanase monoclonal antibody, for the future of heparanase monoclonal antibody in clinical diagnosis and antibody-mediated tumor targeted therapy to provide experimental basis.
     Methods
     1. The human heparanase full cDNA was cloned into pET30a plasmid, and further transformed into host strain BL21 (DE3) in prokaryotic expression. The human heparanase recombinant protein was purified by Ni2+ column purification, and expression of human heparanase recombinant protein was analyzed by mass spectrometry.
     2. Heparanase protein was used to immune Balb / c mice, producing antibodies of the B lymphocyte heparanase. Hybridoma cell lines secreting heparanase antibody were prepared; by limiting dilution screening of antibodies was strongly positive clone, and supernatant ELISA, positive identification of selected clones.
     3. HIS affinity chromatography purification and refolding purification was used to purify heparanase monoclonal antibody. Antibody obtained was used Western Blot technique, immunohistochemistry and ELISA to detect heparanase preparation of monoclonal antibody specificity and the efficiency of antibody price.
     Results
     1. We used PCR cloning of human heparanase protein coding genes. The sequence of the gene sequence with GENBANK provides exactly the same. The cloning of human heparanase gene was cloned into the prokaryotic expression vector pET30a heparin was constructed recombinant prokaryotic expression plasmid; by 1.0mmol / L IPTG 37℃induced 5h, pET30a-Hpa expression of fusion protein in BL21, a molecular weight of about 63KD, total bacterial protein expression more than 30%. Protein was identified after breaking the main bacteria in the deposition, expressed as inclusion bodies. Purified recombinant human heparanase protein was obtained by HIS affinity chromatography and refolding purification.
     2. Purified human heparanase protein immunogen was using conventional immunization procedures and hybridoma techniques, by cell fusion, screening out 15 specific anti-human heparanase monoclonal antibodies, identified by the sub-class of which 3 strains suitable for use in the diagnosis reagent IgG1.
     3. By immunohistochemistry, ELISA, and Western to get the heparin on the enzyme specificity of monoclonal antibodies and titers of identification, the results show that the prepared 3 heparanase specific antibody, and the high titer monoclonal antibodies.
     Conclusion
     1. We used PCR cloning of human heparanase protein coding genes. High-purity human heparanase protein was obtained by the identification of the heparanase protein molecular weight determination consistent with the theoretical molecular weight, which can be used for heparanase monoclonal antibodies.
     2. We have successfully prepared three specific human heparanase monoclonal antibodies. These three human heparanase monoclonal antibodies were identified by ELISA, Western Blot and immunohistochemistry, confirming the high specificity and high titer. The study suggests that our preparation of heparanase monoclonal antibodies may be used to heparanase as a target for cancer diagnosis and treatment.
引文
[1] Vlodavsky I,Friedmann Y,Elkin M,Aingorn H,Atzmon R.,Ishai-Michaeli R,Bitan M, Pappo O,Peretz T,Michal I,Spector L,Pecker I.Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat.Med. 1999; 5(7): 793 -802
    [2] Hulett M.D, Freeman C, Hamdorf B.J, Baker R.T, Harris M.J and Parish C.R, Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat.Med. 1999;5(14):803–809
    [3] McKenzie E,Tyson K,Stamps A,Smith P,Turner P,Barry R,Hircock M, Patel S, Barry E, Stubberfield C,Terrett J and Page M,Cloning and expression profiling of Hpa2,a novel mammalian heparanase family member. Biochem Biophys.Res.Commun.2000;276(3): 1170-1177
    [4] Eccless A.Heparanase:breaking down barriers in tummor.Nat Med.1999, 5(7): 735-736
    [5] Gohji K,Okamoto M,Kitazawa S,Toyoshima M,Dong J,Katsuoka Y.Heparanase protein and gene expression in bladder cancer.J Urology.2001;166(4):1286-1290
    [6] Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for itsrole in colonic tumorigenesis. Am J Pathol .2000,157(4): 1167–1175
    [7] Tang W,Nakamura Y,Tsujimoto M,Sato M,Wang X,Kurozumi K.Heparanase:a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol.2002,15(8): 593–598
    [8]蔡永国,房殿春,杨仕明,罗元辉,杨梦华,王东旭.肝素酶mRNA在胃癌组织中的表达及其与c-met表达的关系.中华医药杂志.2004;84(12):974-978
    [9] Maxhimer JB,Quiros RM,Stewart R,Dowlatshahi K,Gattuso P,FanM.Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery. 2002. 132(9):326–333
    [10] Ikuta M,Podyma KA,Maruyama K,Enomoto S,Yanagishita M. Expression of heparanase in oral cancer cell lines and oral cancer tissues. Oral Oncol.2001;37(18):177–184
    [11] Mikami S,Ohashi K,Usui Y,Nemoto T,Katsube K,Yanagishita M,Nakajima M, Nakamura K, Koike M. Loss of syndecan-1 and increased expression of heparanase ininvasive esophageal carcinomas[J]. Cancer Res . 2001,92(10): 1062–1073
    [12] Koliopanos A,Friess H,Kleeff J,Shi X,Liao Q,Pecker I,Vlodavsky I,Zimmermann A, Buchler MW. Heparanase expression in primary and metastatic pancreatic cancer[J]. Cancer Res.2001,61(12):4655–4659
    [13] Marchetti D,Nicolson GL.Human heparanase:a moleculardeterminant of brain metastasis[J].Adv Enzyme Regul.2001;41(41):343–359
    [14] Xu X,Quiros RM,Maxhimer JB,Jiang P,Marcinek R,Ain KB. Inverse correlation between heparan sulfate composition and heparanase-1 gene expression in thyroid papillary carcinomas:a potential role in tumor metastasis[J].Clin Cancer Res.2003,9(12):5968 -5979
    [15] Ogishima T,Shiina H,Breault JE,Tabatabai L,BassettWW,Enokida H.Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer[J].Clin Cancer Res.2005,11(18): 1028–1036
    [16] Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M, Peretz T, Friedmann Y.Mammalian heparanase: involvement in cancer metastasis, normal development and angiogenesis[J]. Semin Cancer Biol,2002,12(2):121–129
    [17]杨仕明,汤旭东,陈婷,熊震,陈陵,蔡永国,房殿春.肝素酶:一种新的广谱的肿瘤转移相关抗原在中晚期肿瘤免疫治疗中的作用研究进展[J].世界华人消化杂志,2007;15(8):849-854
    [18]陈陵,杨仕明,房殿春,王东旭.肝素酶:抗肿瘤转移的新靶点.世界华人消化杂志[J],2004,12(2):439-442
    [19] Goldshmidt O,Zcharia E,Aingorn H,Guatta-Rangini Z,Atzmon R,Michal I,Pecker I, Mitrani E,Vlodavsky I.Expression pattern and secretion of human and chicken heparanase are determined by their signal peptide sequence[J].J Biol Chem, 2001,276(31): 29178–29187
    [20] Cohen E,Atzmon R,Vlodavsky I,Ilan N.Heparanase processing by lysosomal/endosomal protein preparation[J]. FEBS Lett . 2005,579(11): 2334–2338
    [21] Cai YG,Fang DC, Chen L,Tang XD,Chen T,Yu ST,Luo YH,Xiong Z,Wang DX,Yang SM.Dendritic cells reconstituted with a human heparanase gene induce potent cytotoxic T-cell responses against gastric cancer tumor cells in vitro.Tumor Biol .2007;28:238-246
    [22] Sommerfeldt N,Beckhove P, Ge Y,Schutz F,Choi C,Bucur M,Domschke C,Sohn C, Schneeweis A,Rom J,Pollmann D,Leucht D,Vlodavsky I,Schirrmacher V.Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes. Cancer Res, 2006:66(15):7716-7723
    [23]汤旭东,万瑛,陈婷,熊震,陈陵,余松涛,罗元辉,杨仕明.小鼠肝素酶H-2Kb限制性CTL表位的预测及其MHC-I亲合力分析.重庆医学.2007;36(9):820-822
    [24]陈婷,万瑛,汤旭东,房殿春,余松涛,熊震,罗元辉,杨仕明.人肿瘤相关抗原肝素酶HLA-A2.1限制性CTL表位的预测及初步鉴定.第三军医大学学报.2007;29(21)
    [25] Napoli C,Lemieux C,Jorgensen R.Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans[J].Plant Cell. 1990,2(4):279-289
    [26] Westermarck J,Kahari VM.Regulation of matrix metalloproteinase expression in tumor invasion.Faseb J 1999;13:781-792
    [27] Eccles SA.Heparanase: breaking down barriers in tumors.Nat Med 1999;5: 735-736
    [28] Finkel E.Potential target found for antimetastasis drugs.Science 1999;285: 33-34
    [29] Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 1999;5:803-809
    [30] Parish CR,Freeman C,Brown KJ,Francis DJ,Cowden WB.Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res.1999;59:3433-3441
    [31] Toyoshima M,Nakajima M.Human heparanase: purification, characterization, cloning and expression.J Biol Chem.1999;274:24153-24160
    [32] Hulett MD,Freeman c,Hamdorf BJ,Barker RT,Harris MJ,Parish CR.Cloning of mammalian heparanase,an important enzeme in tumor innvasion and metastasis.Nat Med.1999;5:803-809
    [33] Kussie PH,Hulmes JD,Ludwig DL,Patel S,Navarro EC,Seddon AP,Giorgio NA,Bohlen P.Cloning and functional expression of a human heparanase gene.Biochem Biophys Res Commun.1992;261(1):183-187
    [34] Vlodavsky I,Elkin M,Pappo O,Aingorn H,Atzmon R,Ishai-Michaeli R,Aviv A, Pecker I,Friedmann Y.Mammalian heparanase as mediator of tumor metastasis and angiogenesis.Isr Med Assoc J.2000;2:37-45
    [35] Pikas DS,Li JP,Vlodavsky I,Lindahl U.Substrate specificity of heparanases from human hepatoma and platelets.J Biol Chem.1998;273:18770-18777
    [36] Marchetti D,Li J,Shen R.Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase.Cancer Res.2000;60: 4767-4770
    [37] Pillarisetti S,Paka L,Sasaki A,Vanni-Reyes T,Yin B,Parthasarathy N,Wagner WD,Goldberg IJ.Endothelial cell heparanase modulation of lipoprotein lipase activity. Evidence that heparan sulfate oligosaccharide is an extracellular chaperone. J Biol Chem.1997;272:15753-15759
    [38] Goldshmidt O,Zcharia E,Cohen M,Aingorn H,Cohen I,Nadav L,Katz BZ, Geiger B,Vlodavsky I.Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J.2003;17:1015-1025
    [39] Kuniyasu H,Chihara Y,Kubozoe T,Takahashi T.Co-expression of CD44v3 and heparanase is correlated with metastasis of human colon cancer.Int J Mol Med 2002;10:333-337
    [40] Dong J, Kukula AK, Toyoshima M, Nakajima M. Genomic organization and chromosom e localization of the newly identified human heparanase gene. Gene .2000;253:171-178
    [41] Quiros RM,Kim AW,Maxhimer J,Gattuso P,Xu X,Prinz RA.Differential heparanase-1 expression in malignant and benign pheochromocytomas.J Surg Res. 2002;108:44-50
    [42] Thomas J G, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins fom E. Coli: to fold or refold. Appl Biochem Biotechnol,1997,66(3)
    [43] Muller , C. and U. Rinas. 1999 Renaturation of heterodimeric platelet derived growth factor from inclusion bodies of recombinant Escherichia coli using size-exclusion chromatography. J .Chromatogr. A. , 855 (1) : 203~213.
    [44] Yoshii , H. , T. Furuta. , T. Yonehara et al . 2000 Refolding of denaturedPreduced lysozyme at high concentration with diafiltration. Biosci . Biotechnol . Biochem , 64 (6) : 1159~1165.
    [45] Goldberg M E, Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation . Fold Des, 1996,1(1)
    [46] Westra D.F.,ET AL., Immobilised metal-ion affinity chromatograpy purification ofhistidine-tagged recombinant proteins,a wash step with low concentration of EDTA. J Chrom.B.2001.760(1): 129-136
    [47] Wigneshweraraj, S.R.,et al.,Regulatory sequence in sigma 54 localise near the start of DNA melting.J Mol Biol,2001.306(4):p.681-701
    [48] Michele C. Smith$§, ThomasC . Furman$, ThomasD . Ingoliaq, and CharlesP idgeon. Chelating Peptide-immobilized Metal Ion Affinity Chromatography. Vol. 263, No. 15, Issue of May 25, pp. 7211-7215, 1988
    [49] E. Hochulia, H. D?belia and A. SchacheraNew metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues。Journal of Chromatography AVolume 411, 1987; 177-184
    [50] Horton RM, Cai ZL, Ho SN, Pease LR. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528-35.
    [51] Xie Y, Wetlaufer D B. Control of aggregation in protein refolding: the temperature-leap tactic. Protein Sci, 1996,5(3)
    [52] HarveyDJ. Identification of protein-bound carbohydrates by masss pectrometry [J]. Proteomic, 2001; 1(2):311-328.
    [1] K?hler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975; 256(5517): 495-497
    [2] Okada Y, Tadokoro J. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells:II.Quantitative analysis of giant polynuclear cell formation. Exp Cell Res 1962; 26(1):108-118
    [3] Kearney JF, Radbruch A, Liesegang B, Rajewsky K. A New Mouse Myeloma Cell Line that Has Lost Immunoglobulin Expression but Permits the Construction of Antibody-Secreting Hybrid Cell Lines. J Immunol, 1979; 123(4):1548 -1550
    [4] Joyce JA, Freeman C, Meyer-Morse N, Parish CR, Hanahan D. A functional heparan sulfate mimetic implicates both heparanase and heparan sulfate in tumor angiogenesis and invasion in a mouse model of multistage cancer. Oncogene. 2005;24(25):4037-51
    [5] Tang XD, Wan Y, Chen L, Chen T, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM. H-2Kb-restricted CTL epitopes from mouse heparanase elicit an antitumor immune response in vivo. Cancer Res. 2008; 68(5):1529-1537.
    [6] Beckhove P, Helmke BM, Ziouta Y, Bucur M, D?rner W, Mogler C, Dyckhoff G, Herold-Mende C. Heparanase expression at the invasion front of human head and neck cancers and correlation with poor prognosis. Clin Cancer Res. 2005;11(8):2899-906.
    [7] Cai YG, Fang DC, Chen L, et al. Dendritic cells reconstituted with a human heparanase gene induce potent cytotoxic T-cell responses against gastric tumor cells in vitro. Tumor Biol 2007;28(4):238-246
    [8] Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia. 2008;10(9):977-986.
    [9] Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M, Peretz T, Friedmann Y. Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol. 2002;12(2):121-9.
    [10] Vlodavsky I,Friedmann Y,Elkin M,Aingorn H,Atzmon R,Ishai-Michaeli R,Bitan M, Pappo O,Peretz T,Michal I, Spector L,Pecker I. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis[J].Nat Med.1999;5(7): 793-802
    [11] Hulett MD,Freeman C,Hamdorf BJ,Baker RT,Harris MJ,Parish CR.Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis[J]. Nat Med. 1999;5(7):803-809
    [12] Kussie PH,Hulmes JD,Ludwig DL,Patel S,Navarro EC,Seddon AP,Giorgio NA,Bohlen P.Cloning and functional expression of a human heparanase gene[J]. Biochem Biophys Res Commun.1999;261(1):183-187
    [13] Toyoshima M,Nakajima M.Human heparanase.Purification, characterization, cloning,and expression[J].J Biol Chem. 1999;274(34):24153-24160
    [14] Goldshmidt O,Zcharia E,Aingorn H,Guatta-Rangini Z,Atzmon R,Michal I,Pecker I, Mitrani E,Vlodavsky I.Expression pattern and secretion of human and chicken heparanase are determined by their signal peptide sequence[J].J Biol Chem. 2001;2 76 (31):29178-29187
    [15] Parish CR,Freeman C,Brown KJ,Francis DJ,Cowden WB.Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity[J]. Cancer Res.1999;59(14):3433-3441
    [16] [Fairbanks MB,Mildner AM,Leone JW,Cavey GS,Mathews WR,Drong RF,Slightom JL,Bienkowski MJ,Smith CW,Bannow CA,Heinrikson RL.Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer[J]. J Biol Chem. 1999;274(42):29587-29590
    [17] McKenzie E,Young K,Hircock M,Bennett J,Bhaman M,Felix R,Turner P,Stamps A,McMillan D,Saville G,Ng S,Mason S,Snell D,Schofield D,Gong H,Townsend R, Gallagher J,Page M, Parekh R, Stubberfield C. Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells[J]. Biochem J. 2003;373(2):423-435
    [18] Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N. Heterodimer formation is essential for heparanase enzymatic activity[J].Biochem Biophys Res Commun. 2003; 308 (4):885-891
    [19] Mckenzie EA.Heparanase:a target for drug discovery in cancer and inflammation [J].British journal of Pharmacology.2007,151(1):1-14
    [20] Kurosumi M,Takei H. Significance and problems of histopathological examination and utility of real-time reverse transcriptase-polymerase chain reaction method for the detection of sentinel lymph node metastasis in breast cancer. Breast Cancer. 2007;14(4):342-9.
    [21] Miyake H, Kurahashi T, Hara I, Takenaka A. Significance of micrometastases in pelvic lymph nodes detected by real-time reverse transcriptase polymerase chain reaction in patients with clinically localized prostate cancer undergoing radical prostatectomy after neoadjuvant hormonal therapy. BJU Int. 2007 Feb;99(2):315-20.
    [22] Cohen I,Pappo O,EIkin M,et al. Heparanase promotes growth,angiogenesis and survival of primary breast tumors.Int J Cancer.2006;118(7):1609-1617.
    [23] Fjeldstad K,Kolset SO. Decreasing the metastatic potential in cancers-targeting the heparin sulfate proteoglycans.Curr Drug Targets.2005;6(6):665-682.
    [24] Nobuhisa T,Naomoto Y,Ohkawa T,et al. Heparaanase expression correlates with malignant potential in human colon cancer. J Cancer Res Clin Oncol.2005;131(4): 229-237.
    [25]蔡永国,房殿春,杨仕明等.肝素酶mRNA在胃癌组织中的表达及其与c-met表达的关系.中华医学杂志,2004;84(12):974-978.
    [26] Sanderson RD, Yang Y,Kelly T,et al. Enzymatic remodeling of heparin sulfateproteogly-cans within the tumor microenvironment:growth regulation and the prospect of new cancer therapies. J Cell Biochem.2005;96(5):897-905.
    [27] Hulett MD, Freeman C, Hamdorf BJ,et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med, 1999,5(7):803-809.
    [28] Inoue H, Mimori K, Utsunomiya T, Sadanaga N, Barnard GF, Ueo H, Mori M. Heparanase expression in clinical digestive malignancies. Oncol Rep. 2001 May-Jun;8(3):539-42.
    [29] Nobuhisa T,NaomotoY,Ohkawa T,et al.Heparanase expression correlates with malignant potential in human colon cancer.J Cancer Res Clin Oncol .2005;131(4):229-237.
    [30] Boyd DD,Nakajima M.Involvement of heparanase in tumor metastases:a new target in cancer therapy?J Natl Cancer Inst. 2004;96(16):1194-1195.
    [31] Sato T, Yamaguchi A, Goi T, et al. Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis ,hematogenous metastasis, and prognosis. J Surg Oncol.2004;87(4):174-181.
    [32] Zhang Y, Wang Y, Fu Z, Shen F. Heparanase, a key target for gene therapy against human malignancies. Scientific World Journal. 2007 Dec 17;7:1965-7.
    [33] Yang DJ,Kim EE,Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med. 2006;20(1):1-11.
    [34] Souza GR,Christianson DR, Staquicini FI,et al. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc Natl Acad Sci USA.2006;103(5):1215-1220.
    [35] Li L, Yazaki PJ, Anderson AL,et al. Improved biodistribution and radioimmunoimaging with poly(ethylene glycol)-DOTA-conjugated anti-CEA diabody. Bioconjug Chem.2006 ;17(1):68-76.
    [36] Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med. 2006;57:99-118.
    [37]陈伟,张绍祥,丁仕义,等. Iodogen法标记磁共振单克隆抗体靶向对比剂的实验研究.第三军医大学学报,2002年第6期.
    [38] Kim JW, Lee HS. Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthopic mouse hepatoma model. Int J Mol Med. 2004;14(4):529-35.
    [39] Janssen M, Frielink C, Dijkgraaf I,et al. Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation. Cancer Biother Radiopharm. 2004;19(4):399- 404.
    [40] Sleister H M, Rao A G. Subtractive immunization : a tool for the generation of discriminatory antibodies to proteins of similar sequence. Immunol Meth. 2002; 261 (122) : 213-220.
    [41] Matthew W D , Sandrock A W. Cyclophosphamide treatment used to manipulate the immune response for the production of monoclonal antibodies. J Immunol Methods, 1987;100 (1- 2) : 73282.
    [42] Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol. 2005; 23(9):1137-1146.
    [43] Chhatre S, Jones C, Francis R, et al. The integrated simulation and assessment of the impacts of process change in biotherapeutic antibody production. Biotechnol Prog. 2006; 22(6):1612-1620.
    [44] The next generation? Nat Biotechnol, 2006, 24(11):1300.
    [45] Grace H, Wong W. Chinese biotech: the need for innovation higher standards. Nat Biotechnol, 2006, 24(2):221-222.
    1.孙宁,尤云峰.恶性肿瘤微转移的临床研究.临床肿瘤学杂志,2004,9(2):208-214.
    2.陈意生,史景泉主编.肿瘤分子细胞生物学.北京:人民军医出版社,2004:51-57.
    3. Paget S.The distribution of secondary growths in cancer of the breast.Lancet, 1889, 1:571-573.
    4. Burchill SA, Bradbury MF, Pittman K, et al. Detection of epithelial cancer cells in peripheral blood by reverse transcriptase-polymerase chain reaction. Br J Cancer, 1995;71:278-281.
    5. Stetler Sftevwenson WG,Aznavoorian S,and Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Ann Rev Cell Biol,1993;9:541-573.
    6. Lafrenie, -R-M; Buchanan,-M-R; Orr,-F-W. Adhesion molecules and their role in cancer metastasis. Cell-Biophys. 1993 Aug-Dec; 23(1-3): 3-89.
    7. J. T. Price, H. M. Wilson and N. E. Haites. Epidermal growth factor (EGF) Increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. European Journal of Cancer,1996 Oct,11(32):1977-1982.
    8. Tsuchiya,-Y; Sawada,-S; Yoshioka,-I; Ohashi,-Y; Matsuo,-M; Harimaya,-Y; Tsukada,-K; Saiki,-I. Increased surgical stress promotes tumor metastasis. Surgery. 2003 May; 133(5): 547-55.
    9. Tozawa,-K; Kawai,-N; Hayashi,-Y; Sasaki,-S; Kohri,-K; Okamoto,-T. Gold compounds inhibit adhesion of human cancer cells to vascular endothelial cells. Cancer-Lett. 2003 Jun 196(1): 93-100.
    10. Tantivejkul K, Kalikin LM, Pienta K. Dynamic process of prostate cancer metastasis to bone. Journal of cellular biochemistry. 2004 Mar 91 (4): 706-717.
    11. Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD. Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clinical&Experimental matastasis.2005 Jan 22 (1): 11-24.
    12. Ghadjar P, Coupland SE, Na IK, Noutsias M, Letsch A, Stroux A, Batter S, Buhr HJ, Thiel E, Scheibenbogen C, Keilholz U. Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. Journal of clinical oncology.2006 Apr 24 (12):1910-1916.
    13. Srivastava A. Pastor-Pareja JC. Igaki T. Pagliarini R. Xu T. Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proceedings of the national academy of sciences of the united states of America.2007 Feb 104 (8):2721-2726.
    14. Ruffini PA. Morandi P. Cabioglu N. Altundag K. Cristofanilli M. Manipulating the chemokine-chemokine receptor network to treat cancer. Cancer. 2007 Jun 109 (12): 2392-2404.
    15. Lu X. Kang YB. Organotropism of breast cancer metastasis. Journal of mammary gland biology and neoplasia.2007 Sep 12 (2-3): 153-162.
    16. Fidler IJ.Tumor heterogeneity and the biology of cancer invasion and metastasis[J].Cancer Res,1978,38(9):2651-2660.
    17. George Poste. Isaiah J. Fidler.The pathogenesis of cancer metastasis. Nature 283, 139-146 (10 January 1980).
    18. Dennis,-J-W; Carver,-J-P; Schachter,-H. Asparagine-linked oligosaccharides in murine tumor cells: comparison of a WGA-resistant (WGAr) nonmetastatic mutant and a related WGA-sensitive (WGAs) metastatic line. J-Cell-Biol. 1984 Sep; 99(3): 1034-44.
    19. Wu,-B-Q. Establishment of highly metastatic human tumor cell line in nude mice. Zhonghua-Zhong-Liu-Za-Zhi. 1985 Sep; 7(5): 324-8.
    20. Laferte,-S; Fukuda,-M-N; Fukuda,-M; Dell,-A; Dennis,-J-W. Glycosphingolipids of lectin-resistant mutants of the highly metastatic mouse tumor cell line, MDAY-D2. Cancer-Res. 1987 Jan ; 47(1): 150-9.
    21. Yamori,-T; Tsuruo,-T. Signal transduction of insulin-like growth factor I in a highly metastatic tumor cell line. Gan-To-Kagaku-Ryoho. 1993 Feb; 20(3): 393-8.
    22. Abe,-Y; Tsutsui,-T; Mu,-J; Kosugi,-A; Yagita,-H; Sobue,-K; Niwa,-O; Fujiwara,-H; Hamaoka,-T. A defect in cell-to-cell adhesion via integrin-fibronectin interactions in a highly metastatic tumor cell line. Jpn-J-Cancer-Res. 1997 Jan; 88(1): 64-71.
    23. Mao,-H; Zhang,-L; Wang,-Y; Wen,-P; Cui,-S. Influence of icariin on cell membrane of highly metastatic human lung tumor cell line. Zhong-Yao-Cai. 1999 Jan; 22(1): 35-6.
    24. Rozic,-J-G; Chakraborty,-C; Lala,-P-K. Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. Int-J-Cancer. 2001 Aug 15; 93(4): 497-506.
    25. Singh,-A-P; Moniaux,-N; Chauhan,-S-C; Meza,-J-L; Batra,-S-K. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer-Res. 2004 Jan 15; 64(2): 622-30.
    26. J. A. DICKSON & H. A. ELLIS. Stimulation of tumour cell dissemination by raised temperature (42°C) in rats with transplanted Yoshida tumours. Nature. 1974 March;248,354– 358.
    27. Alvan R. Feinstein. Symptoms as an Index of Biological Behaviour and Prognosis in HumanCancer. Nature. 1966 Jan;209, 241– 245.
    28. Tozawa,-K; Kawai,-N; Hayashi,-Y; Sasaki,-S; Kohri,-K; Okamoto,-T. Gold compounds inhibit adhesion of human cancer cells to vascular endothelial cells. Cancer-Lett. 2003 Jun ; 196(1): 93-100.
    29. Cavanaugh,-P-G; Nicolson,-G-L. Partial purification of a liver-derived tumor cell growth inhibitor that differentially inhibits poorly-liver metastasizing cell lines: identification as an active subunit of arginase. Clin-Exp-Metastasis. 2000; 18(6): 509-18.
    30. John L. Langowski, Xueqing Zhang, Lingling Wu, Jeanine D. Mattson, Taiying Chen, Kathy Smith, Beth Basham, Terrill McClanahan, Robert A. Kastelein and Martin Oft. IL-23 promotes tumour incidence and growth. Nature. 2006 July;442, 461-465.
    31. Li Ma, Julie Teruya-Feldstein & Robert A. Weinberg. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007 October;449, 682-688.
    32.沈岩,Vogel I,Kalthoff H ,等.不同转移能力肿瘤细胞间转移相关特征的比较研究[J]中华肿瘤杂志,2000,22(3):201-204.
    33.曹世龙.肿瘤学新理论与新技术[M].第1版上海:上海科技教育出社,1997:290-300.
    34. Shimizu K,Kubo H,Yamaguchi K, et al.Suppression of VEGFR 3 signaling inhibits lymph node metastasis in gastric cancer[J].Cancer Sci,2004,95(4):328-333.
    35. Niki T,Iba S,Tokunou M,et al.Expression of vascular endothelial growth factors A、B、C and D and their relationships to lymph node status in lung adenocarcinoma[J]. Clin Cancer Res,2000,6(6):24312-439.
    36. Leu AJ,Berk DA,Lymboussaki A,et al. Absence of functional lymphatics within a marine sarcoma:a molecular and functional evaluation [ J ] .Cancer Res,2000, 60(16): :4324-4327.
    37. McCarter MD,Clarke JH,Harken,AH. Lymphangiogenesis is pivotal to the trials of a successful cancer metastasis.[J].Surgery,2004,135(2):121-124.
    38. Patricia S. Steeg. Cancer biology: Emissaries set up new sites. Nature 438, 750-751 (8 December 2005).
    39. Rosandra N. Kaplan, Rebecca D. Riba, Stergios Zacharoulis, Anna H. Bramley, Lo?c Vincent, Carla Costa, Daniel D. MacDonald, David K. Jin, Koji Shido, Scott A. Kerns, Zhenping Zhu, Daniel Hicklin, Yan Wu, Jeffrey L. Port, Nasser Altorki, Elisa R. Port, Davide Ruggero, Sergey V. Shmelkov, Kristian K. Jensen1, Shahin Rafii and David Lyden.VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827 (8 December 2005).
    40. Patricia S. Steeg.Cancer biology: Emissaries set up new sites. Nature 438, 750-751 (8 December 2005).
    41. Antoine E. Karnoub, Ajeeta B. Dash, Annie P. Vo, Andrew Sullivan, Mary W. Brooks, George W. Bell, Andrea L. Richardson, Kornelia Polyak, Ross Tubo & Robert A. Weinberg.Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007 October:449, 557-563.
    42. Gaorav P. Gupta, Don X. Nguyen, Anne C. Chiang, Paula D. Bos, Juliet Y. Kim, Cristina Nadal, Roger R. Gomis, Katia Manova-Todorova, Joan Massagu??.Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007 Apr 446, 765 - 770 .
    43. Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle. 2006 Aug;5(16):1744-50. Epub 2006 Aug 15.
    44. Kodera Y, Nakanishi H, Ito S, Nakao A. Clinical significance of isolated tumor cellsand micrometastases in patients with gastric carcinoma. Gan To Kagaku Ryoho. 2007 Jun;34(6):817-23.
    45. Takeuchi H, Kitajima M, Kitagawa Y. Sentinel lymph node as a target of molecular diagnosis of lymphatic micrometastasis and local immunoresponse to malignant cells. Cancer Sci. 2007 Dec 7 [Epub ahead of printl.
    46. Saito H, Osaki T, Murakami D, Sakamoto T, Kanaji S, Ohro S, Tatebe S, Tsujitani S, Ikeguchi M. Recurrence in early gastric cancer--presence of micrometastasis in lymph node of node negative early gastric cancer patient with recurrence. Hepatogastroenterology. 2007 Mar;54(74):620-4.
    47. Liu Z, Jiang M, Zhao J, Ju H. Circulating tumor cells in perioperative esophageal cancer patients: quantitative assay system and potential clinical utility. Clin Cancer Res. 2007 May 15;13(10):2992-7.
    48. Shinji S, Naito Z, Ishiwata T, Tanaka N, Furukawa K, Suzuki H, Kan H, Tsuruta H, Matsumoto S, Matsuda A, Teranishi N, Tajiri T. Clinical and biological significance of lymph node micrometastasis in colorectal cancer. J Nippon Med Sch. 2007 Feb;74(1):77-80.
    49. Ferrucci PF, Rabascio C, Gigli F, Corsini C, Giordano G, Bertolini F, Martinelli G. A new comprehensive gene expression panel to study tumor micrometastasis in patients with high-risk breast cancer. Int J Oncol. 2007 Apr;30(4):955-62.
    50. Guney K, Yoldas B, Ozbilim G, Derin AT, Sarihan S, Balkan E. Detection of micrometastatic tumor cells in head and neck squamous cell carcinoma. A possible predictor of recurrences? Saudi Med J. 2007 Feb;28(2):216-20.
    51. Noura S, Yamamoto H, Ohnishi T, Masuda N, Matsumoto T, Takayama O, Fukunaga H, Miyake Y, Ikenaga M, Ikeda M, Sekimoto M, Matsuura N, Monden M. Comparative detection of lymph node micrometastases of stage II colorectal cancer by reverse transcriptase polymerase chain reaction and immunohistochemistry. J Clin Oncol. 2002 Oct 15;20(20):4232-41.
    52. Kurosumi M,Takei H. Significance and problems of histopathological examination and utility of real-time reverse transcriptase-polymerase chain reaction method for the detection of sentinel lymph node metastasis in breast cancer. Breast Cancer. 2007;14(4):342-9.
    53. Kodera Y, Nakanishi H, Ito S, Nakao A. Clinical significance of isolated tumor cells and micrometastases in patients with gastric carcinoma. Gan To Kagaku Ryoho.2007 Jun;34(6):817-23.
    54. Shores CG, Yin X, Funkhouser W, Yarbrough W. Clinical evaluation of a new molecular method for detection of micrometastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2004 Aug;130(8):937-42.
    55. Miyake H, Hara I, Kurahashi T, Inoue TA, Eto H, Fujisawa M. Quantitative detection of micrometastases in pelvic lymph nodes in patients with clinically localized prostate cancer by real-time reverse transcriptase-PCR. Clin Cancer Res. 2007 Feb 15;13(4):1192-7.
    56. Miyake H, Kurahashi T, Hara I, Takenaka A. Significance of micrometastases in pelvic lymph nodes detected by real-time reverse transcriptase polymerase chain reaction in patients with clinically localized prostate cancer undergoing radical prostatectomy after neoadjuvant hormonal therapy. BJU Int. 2007 Feb;99(2):315-20.
    57. Nosotti M, Falleni M, Palleschi A, Pellegrini C, Alessi F, Bosari S, Santambrogio L. Quantitative real-time polymerase chain reaction detection of lymph node lung cancer micrometastasis using carcinoembryonic antigen marker. Chest. 2005 Sep; 128(3):1539-44.
    58. Liu XY, Chen G, Wang Z, Liu FY. Clinical significance of detecting mucin 1 mRNA in diagnosing occult lymph node micrometastasis in esophageal cancer patients. Ai Zheng.2007 Feb;26(2):194-9.
    59. Suo J, Wang Q, Jin HJ, Li H, Zhao H. K-19 mRNA RT-PCR in detecting micrometastasis in regional lymph nodes of gastric cancer. World J Gastroenterol. 2006 Aug 28;12(32):5219-22.
    60. Li BD, Zhao QC, Zhu YT, Zhang FQ, Dou KF. Significance of glypican-3 mRNA expression in hepatocellular carcinoma tissues and peripheral blood cells. Zhonghua Wai Ke Za Zhi. 2006 Apr 1;44(7):458-62.
    61. Gallego S, Llort A, Roma J, Sabado C, Gros L, de Toledo JS. Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol. 2006 Jun;132(6):356-62.
    62. Wang YD, Wu P, Mao JD, Huang H, Zhang F. Relationship between vascular invasionand microvessel density and micrometastasis. World J Gastroenterol. 2007 Dec 14;13(46):6269-73.
    63. Schellingerhout D,Bogdanov AA Jr. Viral imaging in gene therapy non invasive demonstration of gene delivery and expression. Neuroimaging Clin N Am,2002,12:571.
    64. Hogemann D, Basilion JP.“Seeing inside the body”:MR imaging of gene expression. Eur J Nucl Med Mol Imaging,2002,29:400.
    65. Massoud TF,Gambhir SS. Molecular imaging in living subjects:seeing fundamental biological processes in a nes lignt. Genes Dev,2003,17:545.
    66. Partain CL.Focus on molecular imaging. J Magn Reson Imaging,2002,16:333.
    67. LI KC. Special issue:molecular imaging. J Magn Reson Imaging,2002,16:335.
    68. Weissleder R.Molecular imaging:exploring the next frontier.Radiology,1999,212 (3):609-614.
    69. Blasberg R.Imaging gene expression and endogenous molecular processes:mole-cular imaging. J Cereb Blood Flow Metab,2002,22:1157.
    70. Cohen I,Pappo O,Elkin M,et al. Heparanase promotes growth,angiogenesis and survival of primary breast tumors.Int J Cancer.2006;118(7):1609-1617.
    71. Fjeldstad K,Kolset SO. Decreasing the metastatic potential in cancers-targeting the heparan sulfate proteoglycans.Curr Drug Targets.2005;6(6):665-682.
    72. Nobuhisa T,NaomotoY,Ohkawa T,et al.Heparanase expression correlates with malignant potential in human colon cancer.J Cancer Res Clin Oncol.2005; 131(4):229-237
    73. Boyd DD,Nakajima M.Involvement of heparanase in tumor metastases:a new target in cancer therapy?J Natl Cancer Inst. 2004;96(16):1194-1195.
    74. Sato T, Yamaguchi A, Goi T, et al. Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis ,hematogenous metastasis, and prognosis. J Surg Oncol.2004;87(4):174-181.
    75.蔡永国,房殿春,杨仕明,等.肝素酶mRNA在胃癌组织中的表达及其与c-met表达的关系。中华医学杂志,2004;84(12):974-978.
    76. Sanderson RD,Yang Y,KellyT,et al.Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment:growth regulation and the prospect of new cancer therapies.J Cell Biochem.2005;96(5):897-905.
    77. Hulett MD, Freeman C, Hamdorf BJ,et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med, 1999,5(7):803-809.
    78. Inoue H, Mimori K, Utsunomiya T, Sadanaga N, Barnard GF, Ueo H, Mori M. Heparanase expression in clinical digestive malignancies. Oncol Rep. 2001 May-Jun;8(3):539-42.
    79. Nobuhisa T,NaomotoY,Ohkawa T,et al.Heparanase expression correlates with malignant potential in human colon cancer. J Cancer Res Clin Oncol.2005;131(4):229-237.
    80. Boyd DD,Nakajima M.Involvement of heparanase in tumor metastases:a new target in cancer therapy?J Natl Cancer Inst. 2004;96(16):1194-1195.
    81. Sato T, Yamaguchi A, Goi T, et al. Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis ,hematogenous metastasis, and prognosis. J Surg Oncol.2004;87(4):174-181.
    82. Zhang Y, Wang Y, Fu Z, Shen F. Heparanase, a key target for gene therapy against human malignancies. Scientific World Journal. 2007 Dec 17;7:1965-7.
    83. Weissleder R,Mahmood U.Molecular imaging. Radiolody,2001,219(2) :316-333.
    84. Danthi SN , Pand it SD , Lik CP.A primer on molecular biology for imager:VII.Molecular imaging probes.A cad Radiol,2004,11(9):1047-1105
    85. Massoud TF,Gambhir SS. Molecular imaging in living subjects:seeing fundamental
    86. biological processes in a new light.Genes Dev,2003,17(5):545-580.
    87. Chen J, Tung CH,Mahmcod U,et al. Imaging the expression of transfected gene in vivo.Cancer Res,1995,55(24):6126-6132.
    88. Sodee DB, Conant R, Chalfant M, et al Prelin inary imaging results using in-111 labeled CYT-356 (Prostascint) in the detection of recurrent prostate cancer Clin NuclMed,1996,21(10):759-767.
    89. Brassell SA,Rosner IL, Mcleod DG. Update on magnetic resonance imaging ProstaScint, and novel imaging in prostate cancer Curr Opin Urol 2005;15(3):163-166.
    90. Tem pany CM, M cNeil BJ. Advances in biomedical imaging. JAMA,2001,285(5):
    91. 562-567.
    92. Delikatny EJ,McNeil BJ , Advances in biomedical imaging. JAMA,2001, 285(5) :562-567
    93. HarisinghaniMG, Barentsz JO,Hahn PF,et al MR lymphangiography for detection of minimal nodal disease in patients with prostate cancer,A cad Radiol,2002,9 supp12:S312-313.
    94. HarisinghaniMG,Barentsz J,Hahn PF,et al Noninvasive detection of clinically occult lymph-node metastases in prostate cancer,N EnglJMed, 2003,348(25): 2491-2499.
    95.沈方云,现代纳米技术在前列腺癌分子成像与治疗技术中的应用.国际泌尿系统杂志,2006年9月第26卷第5期.
    96.陈伟,张绍祥,丁仕义,李前伟,张广元,谢兵.Iodogen法标记磁共振单克隆抗体靶向对比剂的实验研究.第三军医大学学报,2002年第6期.
    97. Coleman CN. Linking radiation oncology and imaging through molecular biology(or now that therapy and diagnosis have separated,it , s time to get together again!).Radiology,2003,228(1):29~31.
    98.孙昌进,周翔平,李平,等.通过分子生物学实现肿瘤影像诊断与放射治疗的融和.国外医学临床放射学分册,2005,28(2):121-124.
    99. Weissleder R,Mahmood U.Molecular imaging. Radiology,2001, 219(2):316-333.
    100.孙昌进,周翔平,杨志刚.分子影像学与肿瘤放射治疗的分子靶确认.国外医学肿瘤学分册,2005,32(2):103-106.
    101. Klibanov AL,Rasche PT,Hughes MS,et al. Detection of individual microbubbles of ultrasound contrast agents:imaging of free–floating and targeted bubbles.Invest Radio,2004,39(3) :187-195.
    102.谭开彬,高云华.纳米级微泡:一种新的超声造影剂.中国医学影像技术,2005,21(4):516-518.
    103. Ellegala DB,Leong-Poi H,Carpenter JE,et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted alpha(v)beta3.Circulation, 2003;108 (3):336-341.
    104. Leong-Poi H,Christiansen J , Klibanvo AL,et al.Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted toаv-integrins. Circulation, 2003;107:455-460.
    105.许川山,王志刚,冉海涛等.肿瘤靶向声学造影剂的研究现状与发展构想.中国医学影像技术,2005,21(11):1776-1778.
    106.秦建民,张阳德,王红阳等.纳米技术在肝脏疾病诊治与治疗中的应用.中华肝胆外科杂志,2004,10(9):646-648.
    107. Delamothe T.Nanotechnology:small science,big deal.BMJ,2005,330:544.
    108. Thrall JH, Nanotechnology and medicine.Radiology,2004,230:315-318.
    109.张修石,薛峰,隋淑华,蔡会龙等.近红外线光学成像诊断微小肝癌的初步研究.中国医学影像技术,2007,23(7):956-959.
    110.唐刚华,伍光远.正电子发射断层显像在泌尿系统肿瘤中的应用.同位素.2007,20(2):114-119.
    111. SHVARTS O,HAN KR,SELTZER M, et al. Positron Emission Eomography in Urologic Oncology. Cancer Control,2002,9(4):335-342.
    112. HWANG JJ,UCHIO EM,PATEL SV,et al.Diagnostic Localization of Malignant Bladder Pheochromocytoma Using 6-18F-fluorodopamine Positron Emission Tomography. J Urol,2003,169(1):274-275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700