海岛型超细复合纤维开纤剥离废水资源化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球的对苯二甲酸(TA)生产不能满足日益增长的消费需求,而海岛纤维开纤剥离废水中高浓度的TA和难降解的低聚物及各种助剂等使得海岛纤维开纤剥离废水成为纺织印染行业污染大、难处理的新型废水。本文主要研究从海岛纤维废水中回收TA资源,探讨不同的回收技术,将TA资源化利用,对各个工艺技术回收得到的TA品质等相关指标进行了探讨。得出主要的研究结论:
     从海岛纤维开纤剥离废水产生的过程中,研究了在不同的开纤剥离工艺情况下,纤维的失重率、废水中COD含量、TA含量的变化情况,为最佳的开纤剥离工艺找到废水中主要污染物的含量及其变化,研究认为水溶性聚酯和聚酯(COPET/PET)型海岛纤维开纤剥离工艺最佳条件为:温度为90℃、碱溶液浓度为3%、开纤时间30min,此时,纤维海成分已完全溶解,纤维的失重率为30~35%,岛成分清晰可见。开纤剥离废水中主要的污染物是TA钠盐和乙二醇(EG),废水水质和水量随开纤剥离工艺条件的变化而变化,大部分废水COD为25000mg/L,TA为18000mg/L,实验室模拟废水与工厂实际废水监测结果相符合。
     对开纤剥离废水进行酸析,酸析过程大致可分为三个阶段:酸析开始段、快速酸析段和酸析结束段。当pH<3.47时,TA酸化趋于稳定,统一控制酸析pH为3。酸析过程中,随着温度的升高,沉淀比阻降低,随着加酸浓度升高,沉淀比阻增大,加酸速度太小,反应时间长,在加热搅拌过程中,溶剂水挥发很快,过长的反应时间,使溶剂损失太多,增加溶质过饱和度,产生大量微晶,适当增加搅拌强度,可以降低过饱和度,同时使大粒晶体摩擦、撞击而破碎。通过试验得出在温度为70℃左右,加酸速度在5~8ml/min,酸浓度为10~20%,搅拌速度为260~390r/min的条件下TA粒径大于45μm,容易沉淀过滤。
     酸析单因素对回收TA品质的影响趋势研究得出,温度升高,灰分减小,340mm透过率升高;回收TA的灰分、340nm透过率随酸浓度的升高而变差,当加酸浓度为10%时,灰分较低,340nm透过率较高;加酸速度在5ml/min时,TA在340nm处的透过率较低,灰分较高;当搅拌速度为390r/min时,回收的TA性能良好,此时回收的TA灰分为1000×10~(-6),340nm透过率为86.7%。通过正交实验得出酸析最佳的控制条件是温度为70℃,酸浓度10%、加酸速度4ml/min和搅拌速度为390r/min回收得到的TA品质较好。
     活性炭对开纤剥离废水回收的TA有很好的吸附净化效果,对TA的吸附符合Langrnuir和Freundlich等温吸附方程。Langmuir等温吸附方程为:1/q=0.0037+0.7165/Ce,相关系数R~2为0.9348;Freundlich等温吸附方程为q=4.67Ce~(0.6167),相关系数R~2为0.9308。活性炭用量对TA品质有重要的影响。对于高浓度废水来说,当活性炭用量过小时,除杂作用有限,用量过大,回收率低。为了既能充分发挥吸附净化的作用又不使TA损失过多,高浓度废水的活性炭用量最佳在6g/L左右,在适宜的炭量范围内,吸附振荡时间对净化的效果影响很大,必须在适当的时间后,杂质的去除才能饱和,高浓度废水的最佳振荡时间在60min。废水水质改变时,活性炭的用量和吸附时间对回收TA的品质有同样的影响趋势。对于自制废水,由于COD、TA浓度低、含杂量较少,最佳的使用炭量、振荡时间为4g/L和30min。工厂废水最佳的活性炭用量、振荡时间为6g/L和90min。
     采用由最佳酸析工艺和活性炭吸附工艺相联合的处理工艺后,可以明显改善回收TA的质量,但仅通过一种净化方法,回收的TA还会残留一些杂质,不能达到实际使用的要求,通过采用联合处理过程,将各种净化方法相结合处理后回收的TA的质量大幅提高,其中,TA灰分含量比直接酸析、优化酸析和活性炭吸附分别提高了64%,52%和43%,340nm处的透过率分别提高了25%,24%和23%,总酸含量可达到97%,酸值达到670.5mg KOH/g,部分指标甚至已达到了工业TA的标准。
     从废弃资源再利用的角度,分不同用途要求,研究回收再利用的TA指标,主要提出了TA的外观、纯度、总酸含量、酸值、灰分、色泽和光密度等指标,为TA资源化提供一些参考。
     从环境、经济和社会三个方面分析了从海岛纤维废水中回收TA的效益,研究指出回收TA符合循环经济和可持续发展的方针。
The island-sea fabric alkali hydrolysis process wastewater is a kind of the populartextile industrial wastewater in China due to its high concentration of terephthalie acid (TA)and the poorly biodegradable polyester oligomer and chemical promoters. And nowadays, theglobal TA production can not be satisfied with the industrial needs, The recovery of TA fromisland-sea fabric alkali-hydrolysis process wastewater, as well as different recoverytechnologies and TA reuse criterion factors were investigated in this article. The results wereshowed in the following.
     Basing on wastewater from the island-sea fabric alkali-hydrolysis process, fiberweightlessness rate, COD concentration, TA concentration and other pollutants wereinvestigated. The optimal hydrolysis process condition was temperature 90~C, alkali solutionconcentration 3 percent, hydrolysis time 30min. In the condition, the sea component has beendissolved completely. The fiber weightlessness rater was from 30 to 35 percent. Islandcomponent can be seen dearly. The main pollutants in wastewater were TA and ethyleneglycol (EG). The quality and quantity of wastewater changed with different hydrolysiscondition. COD and TA concentration in most amount wastewater was 25000 mg/L and18000 mg/L. The lab experiment results were same with the factory monitoring.
     The wastewater from island-sea fabric alkali-hydrolysis process was acidified withsulfuric acid. The acidification process included three progress which were starting progress,quick acidification progress and ending progress. TA concentration was stable when pH wasno more than 3.47, so the acidification pH was controlled to 3. During the acidification, thedeposition risistance decreased with temperature increase and improved with the sulfuric acid concentration. The adding velocity was slowly, the more time was needed to acidify. Duringthe stirring progress, solvent will volatilize. The more time will reduce the solvent. Thedegree of supersaturation will increase with the acidification time. The smaller particle willbe produced. The optimal condition was temperature 70~C, adding sulfuric acid velocity wasfrom 5 to 8ml per minute, sulfuric acid concentration was from 10 to 20 percent, the stirringvelocity was from 260 to 390 r per minute. In this condition, TA particle diameter could bemore than 45urn and it was easy to be deposited.
     Basing on the effect of single acidification factor on the characters of TA, the researchwas showed in the following. The TA ash content decreased with the temperatureimprovement and increased with the sulfuric acid concentration. The 34Ohm transmittanceincreased with temperature improvement and decreased with the sulfuric acid concentration.When sulfuric acid concentration was 10 percent, the TA ash content was small, TA 340nmtransmittance was high. When sulfuric acid velocity was 5ml/min, the TA ash content washigh and 340nm transmittance was small. When stirring velocity was 390r/min, the ashcontent was good. The value of ash content was 1000×10~(-6), value of 340nm transmittancewas 86.7%. The optimal acidification condition was temperature 70℃, adding sulfuric acidvelocity was 4ml/min, sulfuric acid concentration was 10 percent, the stirring velocity wasfrom 260 to 390 r per minute. In this condition, TA characters were good.
     Active carbon was good to adsorb TA in wastewater from island-sea fabricalkali-hydrolysis process. The adsorption could be characterized by Langmuir wasothermand Freundlieh wasotherm. The equations were showed in the following. Langmuir,1/q=0.0037+0.7165/Ce, correlation coefficient was 0.9348, Freundlich q=4.67Ce~~(0.6167),correlation coefficient was 0.9308. The active carbon amount had much effect on TAcharacters. To high concentration wastewater, when active carbon amount was small, theeffect on decrease impurities was small, and when the amount was too high, the recovery rateof TA was too small. In order to make the effect maximization, the amount of active carbonwas from 3 to 5 g per liter. During the optimal active carbon amount, the adsorption time alsohad effect on the TA characters. Only in the optimal adsorption time, the impurities could bepurified. The optimal adsorption time was 60 minute. When wastewater quality changed, theamount of active carbon and the adsorption time had the same effect on the TA characters. When the COD and TA concentration was less than 15000 mg per liter and 8000 mg per liter,the amount of active carbon and the adsorption time were 3g per liter and 30min.When theCOD and TA coneentration was more than 15000 mg per liter and 8000 mg per liter, theamount of active carbon and the adsorption time were 5.5 g per liter and 90min.
     When wastewater from island-sea fabric alkali-hydrolysis process was treated with thecombined technology by optimal acidification technology and active carbon adsorption, TAcharacters were improved. But treated by a single technology, TA character can not besatisfied the actual use criterion. The impurities stored in the sample. Used by the combinedtechnology, comparing with the directed acidification technology, optimal acidificationtechnology and active carbon adsorption, the TA ash content was increased 64, 52 and 43percent, the 340nm transmittance was improved 25, 24 and 23 percent. The total acidcontent reached to 97%, the acid value reach to 670.2 nag KOH/g. Some factor had beenreached the fiber grade.
     Basing on the recovery waste material and reuse, from different use criterion, the TAreuse factors were brought out. The main factors were appearance, purity, total acid content,the acid value, colour and 340nm transmittance. This will give some information to TArecovery and reuse.
     Environmental benefit, economic benefit and social benefit were discussed in theresearch. TA recovery and reuse were satisfied with the circular economy and sustainabledevelopment stratagem.
引文
[1] 丁协安.华伟杰,复合纤维[M].北京:中国石化出版社,1995
    [2] 板垣宏.21世纪的化学纤维工业[J].合成纤维工业,1997,20(1):35~40
    [3] 安树林.海岛纺丝—超细纤维—人造皮革[J].纺织学报,2000,21(1):48
    [4] 汪乐江,李玉林.裂片型复合超细纤维生产技术及纺织产品的开发[J].合成纤维工业,1994,17(4):22-27
    [5] 颜冬梅,李淑华.并列复合纤维及其生产讨论[J].北京化纤,2000,(2):9-12
    [6] 许元巨.Hills公司研发超细海岛型纤维新技术[J].产业用纺织品,2000,19(125):20
    [7] 王红定,肖哲.复合超细纤维的开发与发展[J].合成纤维工业,2002,25(1):37-39
    [8] 应宗荣,吴大诚.水溶性聚酯的结构和性能[J].应用化学,1998,10:59-61
    [9] 邓清文.海岛纤维生产工艺探讨[J].山东纺织科技,1999,(5):27-29
    [10] 赵华山,姜胶东,吴大诚等.高分子物理[M].北京:纺织工业出版社,1982
    [11] 金立国.海岛型超细纤维的开发与现状[J].合成纤维,2002,31(6):3-5
    [12] 林志武,柯家骥,连培榕.海岛型复合纤维中超细纤维的细度及其含量的测试[J].国纤检,2002,(3):34-35
    [13] High Performanaee Fiber [J], 4-5, Feb. 2001
    [14] C. R. Prayag P. K. Dutta, Synthetic Fibers[J], 4-7, Mar. 2001
    [15] 周晓沧,肖建宇.新合成纤维材料及其制造[M].北京:中国纺织出版社,1998
    [16] 颜冬梅,李淑华.并列复合纤维及其生产讨论[J].北京化纤,2000,(2):9-12
    [17] Ahmed EI-Salmawy etc., Stueture and properties of bicomponent core-sheath fibers from PET and biodegradable aliphatic polyesters [J], Textile Research Journal, 2001(2): 145-153
    [18] D. P. Chattapadhyay A. Konar, Colourage, 1999
    [19] 陈英,俞宏.海岛型复合纤维的碱处理工艺[J].北京服装学院学报,1999,19(2):1-5
    [20] 杨兰容,陈克强.碱减量对超细织物染色性能的影响[J].印染,2001,(5):15-19
    [21] 戴孟卓.多组分共聚酯纤维的碱减量处理[J].苏州丝绸工学院学报,2001,21(4):8-13
    [22] 郭静,徐德增,赵军等.COPET/PET海岛复合纤维的碱减量处理及其对纤维结构的影响[J].合成纤维,2003,(4):27-28
    [23] 应宗荣,吴大诚.水溶性聚酯/PET共混物的结构与性能[J].工程塑料应用,1998,26(6):5-7
    [24] 王双睿,张博.影响海岛法纺PET超细纤维剥离性的因素[LT].聚酯工业,2003,16(3):29-31
    [25] 应宗荣,吴大诚.水溶性聚酯的溶解性能[J].合成技术及应用,1999,13(4):7-9
    [26] 吴霞玲,宋心远,杨华芬.海岛型超细纤维的组成和剥离的研究[J].染整技术,2003,24(3):1-4
    [27] 吴霞玲,宋心远,郑敏,复合碱对CDP/PET海岛型超细纤维的剥离效果[J].印染,2003,(2):5-6
    [28] Takashi Nakamura etc., Dyeing Properties of a polyester ultrafine fiber[J], Textile Research Journal,2001(11): 961-968
    [29] Shouhua Niu etc., Effect of heat-setting temperature on the hydrazine treatment of poly(ethylene terephthalate) partially oriented yarn [J], Textile Research Journal, 1992(10): 575-579
    [30] 戴建平.海岛型复合超细纤维的碱处理研究[J].江苏丝绸,2003,(2):15-17
    [31] 马新成,潘艳艳.海岛型超细纤维产品的染整工艺初探[J].丝绸,2002,(9):52-53
    [32] 黄有佩.涤/锦复合海岛纤维生产技术[J].合成纤维,2001,30(6):39-40
    [33] 李娜,高绪珊,童俨.涤/锦复合超细纤维结构与性能的关系[J].合成纤维,1999,28(4):8-12
    [34] 陈雄.海岛纤维织物开纤及对染整质量的影响[J].浙江印染信息与技术,2003,(6):27-29
    [35] 胡福增,陈国荣,杜永娟等.材料表界面[M].上海:华东理工大学出版社,2001
    [36] 张济邦.涤纶纤维碱减量[J].印染,20(9),1994,36-41
    [37] 朱善长.涤纶织物渗透碱减量工艺的探讨[J].印染,1997,23(4):15-17,25
    [38] 彭孝蓉,蒋学军,杨东洁等.双组分海岛型超细纤维及其染整工艺研究[J].染料与染色,2003,40(6):327-330
    [39] Keqiang Chen etc., Analyzing the Dyeing Behavior and Chromaticity Characterwastics of Polyester Microfibers[J], Textile Research Journal, 2001(4): 367-3371
    [40] 詹伯君,戴林富.碱减量废水处理技术研究[J].工业用水与废水,2000,31(4):24-27
    [41] 沈东升,冯孝善.我国印染废水处理技术的现状和发展趋势[J].环境污染与防治,1996,18(1):26-28
    [42] 王淦.印染厂碱减量废水处理工艺探讨[J].中国给水与排水,2000,16(8):21-23
    [43] 刘小林.碱减量—印染混合污水的处理[J].工业用水与废水,2000,31(2):19-22
    [44] 吴星义,徐根良,何志桥.TA对印染废水处理效果的影响[J].环境污染与防治,2001,23(2):84-86
    [45] 金漫彤,何志桥.TA废水处理技术研究[J].丝绸,2003,(10):37-39
    [46] 沈东升,任意芬,冯孝善.印染碱减量废水处理[J].中国给水排水,1997,13(5),32-34
    [47] 姚宏伟,王心如,施爱民等.对苯二甲酸、乙二醇、联苯—联苯醚长期低剂量接触对工人健康的影响[J].中国公共卫生,1999,15(11):1006—1007.
    [48] 姚宏伟,王心如,施爱民等.对苯二甲酸和乙二醇及联苯—联苯醚对职业人群肝肾损伤的研究[J].中华劳动卫生职业病杂志,2002,20(1):5—9.
    [49] 陈锡涛,周仁珍.对苯二甲酸和烷基苯对金鱼和草鱼的急性毒理研究.见:徐晓百等编.有毒有机物环境行为和生态毒理论文集[M].1990,中国科技出版社,北京,310-312.
    [50] 郭茂新,周惠华.碱减量废水处理技术试验研究[J].工业用水与废水,2000,31(2),23-25
    [51] H.R.琼著,龙腾悦,邓荣森译.纺织工业污染控制[M].北京:纺织工业出版社,1980,11-13
    [52] 王菊思,许坤.徐良才.对苯二甲酸生产废水的治理研究[J].环境科学,1988,9(4),46-52
    [53] 中国发明专利申请公开说明书,1033176
    [54] 许坤,徐良才,董惠如等.絮凝沉淀法处理碱性对苯二甲酸废水的研究[J].环境化学,1987,6(2),33-38
    [55] 乌锡康.有机化工废水治理技术[M].北京:化学工业出版社,1992,118-146
    [56] 谢福岭.对苯二甲酸和聚酯废水综合处理探讨[J].工业水处理,2001,21(3),40-43
    [57] 官宝红,徐根良等.对苯二甲酸废水处理技术[J].水处理技术,2002,25(23)129-133
    [58] Ribbons D. W., Evans W. C.. Oxidative metabolwasm of phthalic acid by soil pseudomonads. Journal of Biochemwastry, 1960, 6: 310-318.
    [59] Aftring R. P, Chalker B. E., Taylor B. F.. Degradation of phthalic acids by denitrifying, mixed cultures of bacteria. Applied of Environmental Microbiology, 1981, 41 (5): 1177-1183.
    [60] Engdhardt G, Wallnofer P. R., Rast H. G, et al. Metabolwasm of O-phthalic acid by different gram-negative and gram-positive soil bacteria. Arch. Microbiology, 1976, 109: 109-114.
    [61] 邹惠仙,马文满.微生物降解对苯二甲酸的研究[J].中国环境科学,1982,2(5):43-46
    [62] 邹惠仙.微生物降解对苯二甲酸的动力学研究[J].科学通报,1983,28(22):1374-1377
    [63] 林稚兰,熊小燕,钱存柔.应用生物降解处理石油化工废水[J].环境化学,1986,5(4):7-13.
    [64] 万登榜,马文漪.微生物降解邻苯二甲酸(O-PA)的动力学[J].环境科学,1987,8(5):2-5.
    [65] 万登榜,彭建国等.微生物降解对苯二甲酸的动力学研究——分批培养研究[J].见:徐晓百等编.有毒有机物环境行为和生态毒理论文集[M].1990,中国科技出版社,北京,164-171.
    [66] 齐雯钰.精对苯二甲酸生产废水厌氧处理微生物特性的研究[J].中国沼气,1992,10(4):5-10
    [67] Fajardo C., Guyot J P., Macarie H and Monroy O.. Inhibition of anaerobic digestion by terephthalic acid and its aromatic by products[J]. Water Science and Technology, 1997, 36(6-7): 83-90.
    [68] Lefevre C., Mathieu C., Tidjani A., et al. Comparative degradation by microorganwasms of terephthalic acid, 2, 6-naphthalene dicarboxylic acid, their esters and polyesters. [J] Polymer Degradation and Stability, 1999, 64(1): 9-16.
    [69] 何星海,张忠祥,马世豪.对苯二甲酸(TA)的可生物降解性的研究[J].环境科学,1992,13(3): 18-25.
    [70] 佟宏,白毓谦.对苯二甲酸的微生物降解[J].环境科学学报,1990,10(4):464-470.
    [71] 李小明,陈坚,伦世仪.含对苯二甲酸有机废水厌氧降解动力学[J].中国环境科学,2000,20(1):27-30
    [72] Andrew J. F. The Monod Equation: a revwasit and a generalization to substrate inhibition situation [J]. Biotechnology and Bioengineering, 1968, 10: 707-711.
    [73] 彭建国,丘昌强.对苯二甲酸在水环境中的归势研究[J].见:徐晓百编.有毒有机物环境行为和生态毒理论文集[M].1990,中国科技出版社,北京,158-163.
    [74] 包志成,王相明等.向阳污水厂COD超标问题研究[J].环境化学,1985(专辑):88-95.
    [75] 李刚,中立贤.精对苯二甲酸生产废水处理技术[J].中国沼气,1995,13(4):1-6.
    [76] Martin Alexander., B K Lustiguman. Effect of Chemical Structure on Microbial Degradation of Substituted Benzenes [J]. Agr Food Chem, 1996,14(4): 410-413
    [77] Cheng, Sheng-shung, He Chiou-yuan, Wu Jor-homg. Pilot study of UASB process treating PTA manufacturing wastewater[J]. Water Science and Technology, 1997, 36(6~7), 75-82
    [78] Macairie H, Noyola A, Guyot J P. Anaerobic treatment of a petrochemical wastewater from a terephthalic acid plant [J]. Water Science and Technology, 1992,25(7): 223-235
    [79] 陈玉香,辛亮明.厌氧复合床处理精对苯二甲酸生产废水的研究[J].抚顺石油化工研究院院报,1991,2:85-91。
    [80] Xin L M, Chen Y X, Zeng X D. The anaerobic biological treatment of high strength petrochemical wastewater by hybrid reactor[J]. Proc Int Conf Pet. Beijing: Refine Petrochem Prcess, 1991: 120-126
    [81] Kleerebezem R, Ivalo, M, Pol L W H, Letting a G, High rate treatment of terephthalate in anaerobic hydrid reactors[f]. Biotechnology Progress, 1999,15(3): 347-357
    [82] Ziogou K., Kirk P. W. W., Lester J. N.. Behavior of phthalic acid esters during batch anaerobic digestion of sludge [J]. Water Research, 1989, 23 (6): 743-748.
    [83] 韩洪军,刘立凡等.UASB-AF处理高浓度涤纶聚酯废水试验研究[J].中国沼气,1999,17(3),13-16
    [84] Young J. C., Kim I. S., Page I. C., Wilson D. R., Brown G J. and Cocci A. A.. Two-stage anaerobic treatment of purified tetephthalic acid production wastewater [J]. Water Science and Technology, 2000, 42 (5-6): 277-292.
    [85] Keyser P., Pujar B. G., Eaton R. W., et al. Biodegradafion of the phthalates and their esters by bacteria[J]. Environment Health Perspective, 1976, 18: 159-166.
    [86] Chakrabanty A. M.. Biodegradation and detoxification of environmental pollutants [M]. Boca. Ratom. Florida: CRC Press Inc., 1982: 110.
    [87] 郑荣泉.美国AROCO公司对苯二甲酸废水处理技术浅析[J].化工环保,1991,11(3):152-156
    [88] 全国红,林红卫,鲁玉龙.印染废水的处理和综合利用技术[J].给水排水,2000,26(2),40-41
    [89] 蔡则成,周芬芬.生物接触氧化法处理涤纶废水[J].合成纤维,1989,6(6),29-32
    [90] 赵洪波.生物膜A/O法处理PTA废水的试验研究[J].环境科学,1994,15(6)47-50,60
    [91] 谢福岭.对苯二甲酸和聚酯废水综合处理探讨[J].工业水处理,2001,21(3),40-43
    [92] 李付章,李国有.浅谈聚酯工程PTA污水处理工艺设计[J].石油化工设计,2002,19(3),22-25
    [93] 陈荣林,许晓炜.兼氧生物膜氧化沟作为预处理装置在处理涤纶污水中的应用[J].环境工程,1996.6,4-9
    [94] 纪轩.废水处理技术问答[M].北京,中国石化出版社,2003,42-69
    [95] 邹家庆.工业废水处理技术[M].北京,化学工业出版社,2003,5-28
    [96] 丁忠浩.有机废水处理技术及应用[M].北京,化学工业出版社,2002,32-71
    [97] Moo Hwan Cho.. Biological treatment of ethylene glycol in polyester weight-loss wastewater using jet-loop reactor[J]. Korean J. Biotechnol. Bioeng., 1999,14(1): 119-123.
    [98] 许灵群,吴顺志,陆文忠.利用印染厂碱减量废水脱除烟气中SO_2的模拟试验研究[J].煤矿环境保护,2002,15(3)
    [99] 金雪标.碱减量废水处理方法[P].中国专利:CN1033176,1998—3—18.
    [100] 石龙宝等.PCM对涤纶碱减量废水预处理的研究[J].青岛大学学报,1997,12(3):10—13.
    [101] 刘小林.碱减量-印染混合污水的处理[J].工业用水与废水,2000,31(2),19-22
    [102] 陈杭飞,史惠祥等.杭州拱宸桥纺织联片污水治理工程[J].环境工程,1997,17(2):13-15
    [103] 王国庆,金月祥,沈寅松.仿真丝绸生产中碱减量及染整废水的治理[J].环境保护,1998.2:21-23
    [104] Washubashi K, Fujwashima A, Watanabe T, Hashimoto K. Detection of active oxidative species in TiO2: photocatalyswas using the fluorescence technique[J]. Electrochemwastry Communication, 2002, 2(3),207-210
    [105] 周海峰,詹伯君.兼氧生物膜法在SBR工艺在碱减量废水处理中的应用[J].环境工程,1999,17(6), 18-20
    [106] 马汉译,谢可蓉,黄天岳等.涤纶仿真丝印染废水治理技术的研究极其应用[J].环境工程,1999,17(2),22-24
    [107] Xin L M, Chen Y X, Zhen X D. The anaerobic biological treatment of high strength petrochemical wastewater by hybrid reactor. Proc. Int. Conf. Pet [C]. Beijing: Refine Petrochem. Press, 1991, 120-126
    [108] Moo Hwan Cho.. A study on physicochemical treatment of terephthalic acid in polyester weight-loss wastewater[J]. Journal of Korean Society of Environmental Engineers, 1998, 20(7): 927-936
    [109] Moo Hwan Cho.. Treatment of polyester weight-loss wastewater using agar-acrylamide microbial immobilization[J]. Environmental Research, 1995, 15(1): 83-92.
    [110] 陈筛林,丁富新,杨海光等.环流反应器中对苯二甲酸废水的生物降解[J].清华大学学报:自然科学版,2003,43(6):746—749.
    [111] 李燕立,金玉顺,张大省.聚酯水解产物的回收和利用[J].聚酯工业,1998,1,17-19
    [112] Park, Sang F; Chang, Tae S; Lee, Young K; Choi, Kyu W, Process for preparing polymer grade terephthalic acid, U.S. Patent 5210292, 1993
    [113] Kohei Nakaguchi; Osaka Hirokazu, Process for Purifying terephthalic acid, U.S. Patent 3465035, 1969
    [114] Miyashita Setsuo, Hayashi Kotaro, Kondo Yukie. Use of terephthalic acid contained in alkali weight-reduction process wastewater, Kako Gijutsu (Osaka), 33(5), 315-318 1998 Sen'washa
    [115] Motojima Kenji, Method of Recovering High-Purity Terephthalic Acid from Terephthalic acid-Containing Waste Liquid, JP Patent 61-43140, 1986
    [116] Tankazuo, Method for Recovering Terephthalic Acid, JP Patent 60-233033, 1985
    [117] Numata Tatsuo, Sulfimide Derivative, ITS Preparation and Herbicidal Andplant Growh, JP Patent 60-19784, 1985
    [118] 陈定良.从碱减量废水中回收对苯二甲酸.[P]中国专利:CN1257064,2000,6,21
    [119] 施祖培.中国聚酯原料工业的发展[J].金山油化纤,2001,4,36-41
    [120] Shibata Masahwasa, Method for Recovering Available Compoment from Wasteliquid Generated, JP Patent 60-216884, 1985
    [121] Mitsubwashi Chem, Recovery of terephthalic acid from weight reduction of polyester, JP Patent 60-163843, 1985
    [122] Keerebezem R, Pol L W H. Letting G. Anaerobic biodegradability of phthalic acid ospmers and related compounds, Biodegradation, 1999, 10(1), 63-73
    [123] Karayannidwas, G P. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis.Advances in Poly ethnology. 2002,21(4):250-259
    [124] Kosmidwas, Vassilwas A, Achilias, Dimitrwas S, Karayannidwas, George P. Poly(ethylene terephthalate) recycling and recovery of pure terephthalic acid. Kinetics of a phase transfer catalyzed alkaline hydrolysis. Macromolecular Materials and Engineering.2001.286(10): 640-645
    [125] Karayannidwas, G P. Poly (ethylene terephthalate) recycling and recovery of pure terephthalic acid by alkaline hydrolysis, Advances in Poly Teehnology, 2002, 21(4), 250-259
    [126] Kosmidwas, Vasailwas A, Achilias, Dimitrwas S, Karayannidwas, George P. Poly (ethylene terephthalate) recycling and recovery of pure terephthalic acid. Kinetics of a phase transfer catalyzed alkaline hydrolysis, Macromolecular Materials and Engineering, 2001, 286(10), 640-647
    [127] Yazaki Masakzau, Sakana kozaburo, Funakoshi Nobuyki, Tanaka Kazuo, Method and apparatus for industrial recovery of terephthalic acid from pulverrixed poly (ethylene terephthalate). Jpn. Kokai Kokkyo Koho JP 2002155019A2 28 May 2002 13pp
    [128] Yazaki Masakzau, Sakana kozaburo, Funakoshi Nobuyki, Tanaka Kazuo, Recovery of terephthalic acid from pulverrixed poly (ethylene terephthalate). Jpn. Kokai Kokkyo Koho JP 2002155011 A2 28 May 2002 13pp
    [129] Yazaki Kimikazu, Sakana Kozaburo, Funakoshi Nobuyki, Tanaka Kazuo, Industrial recovery of terephthalic acid from pulverrixed poly (ethylene terephthalate). Jpn.Kokai Kokkyo Koho JP 2002155012 A2 28 May 2002 11pp
    [130] Yazaki Kimikazu, Sakana Kozaburo, Funakoshi Nobuyki, Tanaka Kazuo, Industrial recovery of terephthalic acid from pulverrixed poly (ethylene terephthalate). Jpn.Kokai Kokkyo Koho JP 2002155020 A2 28 May 2002 14pp
    [131] 上海化学纤维工业公司,涤纶生产基本知识[M].纺织工业出版社,1978,92~93
    [132] 中国发明专利申请公开说明书,1033176
    [133] 李善吉,俞信强,伍胜君.利用涤纶废丝制备对苯二甲酸和对苯二甲酸二甲酯[J].广东化工2001,4,36 37
    [134] Roh Hang-Duk; Bae Dongmok, Process for Manufacturing terephthalic acid, U.S. Patent. 6310239,2001
    [135] Lee Sang-ho. Purification of wastewater generated from polyeater plant. Republic Korea KR 9502549 B1 21 Mar 1995
    [136] Miyashita Setsuo, Hayashi Kotaro, Kondo Yukie. Use of terephthalic acid eontaind in alkali weight-reduction process wastewzter [J]. Kako Gijutsu (Osaka). 1998, 33(5): 315-318
    [137] Chidambara RajC B, Ramkumar N, Biodegradation of acetic, benzoic, wasophthalic, toluic and terephthalic acids using a mixed culture: effluents of PTA production, Process Safety and Environmental Protection [J]: Transactions of the Institution of Chemical Engineers. Part B,1997,75(4): 245-256
    [138] Liu C H, H Ma Y S, Lin J G. Efficiency evaluation of PTA wastewater treatment with the ultrasond/H_2O_2 process. Modeling, Measuring and Prediction International Conference on Water Pollution.Proceedings 1997 Ashurst, Engl Computional Mechanics Publ.1997: 767-776
    [139] S. R. Karmakar etc., Investigations into the dyeing behaviour of acrylic and CDPET fibers[J]. Colourage, Annual 1996:47-58
    [140] Kohei Nakaguchi; Osaka Hirokazu, Process for Purifying terephthalic acid, U.S. Patent 3465035, 1969
    [141] Miyashita Setsuo,Hayashi Kotaro, Kondo Yukie. Use of terephthalic acid contained in alkali weight-reduction process wastewater, Kako Gijutsu (Osaka), 33(5), 315-18 1998 Sen'washa
    [142] Md. Zulhash Uddin etc., Dyeing Conventional and Mierofiber Polyester with Dwasperse Dyes, [J] Textile Research Jounal,2002(1): 77-78
    [143] Li Xiao-Ming, Zeng Guang-Ming, Liu Jing-Jin, Chen Jian, Liu Shi-Yi. A two-stage anaerobic system for biodegrading wasterwater containing terephthalic acid and high strengh easily degradable pollutants[J].Journal of Environment Sciences. 2002, 14(4): 474-481
    [144] F. Dieval etc., Determining polyester fiber and microfiber structure by iodine sorption, [J] Textile Research Journal, 2001(1): 67-74
    [145] 关颖男,施大德.试验设计方法入门[M].冶金工业出版社,1985
    [146] 俭济斌.多因素试验正交优选法[M].科学出版社,1976
    [147] 王秀萍.印染废水中对苯二甲酸的测定及其对水质和生化效果的表征[J].化工科技,2000,8(1):47-49.
    [148] 王红丹,沈林.化纤废水中对苯二甲酸的导数紫外光度法测定[J].仪化科技,1993,8(1):4-7.
    [149] 姚宏伟.紫外分光光度法测定尿中对苯二甲酸[J].中华劳动卫生职业病杂志,1995,13(6):367-368.
    [150] 国家环保总局.水与废水分析监测标准方法[M].北京:环境科学出版社,第四版,2002
    [151] 化工部人事教育司,结晶[M].北京:化学工业出版社,1997,6-12
    [152] Perry. J. L., Chemical engineer's Handbook.[M]McGraw-Hill N.Y., 1973, 8-26
    [153] Lifshilz E M, PitaevskiiL P, Physcical Kinetics.[M]New York: Oxford, 1981, 427-432
    [154] E B 哈姆斯基,化学工业中的结晶[M].古涛、叶铁林译,北京:化学工业出版社,1984,13-56
    [155] Botsarwas G D, Secondary nucleation-a review, Industrial Crystallization, Plenum Press, N. Y 1976, 46-95
    [156] Bennema P, Theory and experiment for crystal growth from solution: implications for industrial crystallization, Industrial Crystallization, Plenum Press, N. Y. 1976, 81-86
    [157] 林敏杰.PTA粒径增大方法的探讨. [J]聚酯工业,1999,12(4),48-50
    [158] Marquefing M. Crystal aging of terephthalic acid in 90% acetic acid solution [D].Polytechnie University, New York, 1989
    [159] (美)R.H.Ptrry.PERRY,化学工程手册(第六版下册)[M].北京:化学工业出题社,1993,18-88
    [160] 周肇义.化学工程手册(第4篇)[M].北京:化学工业出版社,1987,117-120
    [161] 章非娟.水污染控制工程试验[M].高等教育出舨社.1987
    [162] 张也影.流体力学[M.高等教育出版社.1998
    [163] Brown P M, Marquering M. Purification of terephthalic acid by crystal aging [J].Ind.Eng.Chem.Res, 1990,29,2089-2093.
    [164] 姜守忠.运用晶体学理论分析影响精对苯二甲酸质量的主要因素[M].聚酯工业,1994,12,18-27
    [165] 谭天恩,麦本熙,丁惠华.化工原理[M].第二版.北京;化学工业出版社1990, 106-122
    [166] 徐宝琨.结晶学[M].吉林大学出版社,1991,12-59
    [167] 邱关明.结晶化学[M].华中工学院出版社.1986,15-46
    [168] 丁绪淮,谈遒.工业结晶[M].北京,化学工业出版社,1985,2-16
    [169] Fithel D E, Imbell J M, The effects of mixing on precipitation in strring tank reactor, AIChE J., 1990, 56:511
    [170] Pohorechi R, Baidyga J, The effects of micromixing and manner of reactor feeding on precipitation in stirred tank reactor, Chem Eng Sci, 1988, 43: 1949
    [171] Pohorechi R, Baidyga J, The use of new mew model of micromixing for determitation of size in precipitation in stirred tank reactor, Chem Eng Sci, 1983, 4-79
    [172] 王宗明.实用红外光谱学[M].北京:石油工业出版社,1982,196-245
    [173] 袁惠新.分离工程[M].北京:中国石化出版社,2002,49-56
    [174] 王菊思,许坤,徐良才.对苯二甲酸生产废水的治理研究.[J]环境科学,1988,9(4),46-52
    [175] 王显楼.涤纶生产基本知识[M].北京:纺织工业出版社,1993.12,17-25
    [176] 张师民.聚酯的生产和应用[M].北京:中国石化出版社,1997,21-98
    [177] 贝聿泷,徐帜.聚酯纤维手册[M].北京:纺织工业出版社,1992,53-76
    [178] 液体化学产品颜色测定法(Hazen单位—铂—钴色号),GB3143-82
    [179] 中华人民共和国石油化工行业标准—工业用精对苯二甲酸,SH1612.1-95
    [180] (日)炭素材料学会,高尚愚,陈维译.活性炭基础与应用[M].中国林业出版社,1984:318-339
    [181] (德)H.凯利,E.巴德,魏同成译.活性炭及其工业应用[M].中国环境科学出版社.1990:178-191
    [182] (美)J.W.哈斯勒,林秋华译.活性炭净化[M].中国建筑工业出版社,1980,91-129
    [183] 杨书铭,黄长盾.印染废水处理[M].纺织工业出版社,1987: 187-190
    [184] 曹玉登.煤制活性炭及污染治理[M].中国环境科学出版社,1995
    [185] Clark R. M. and Lykins B. W. , Granular Activated Carbon, Lewwas Publiher, 1989
    [186] Jib-Fen Kuo, James F. Stahl, Chin-lin Chen, Paul V. Bohlier, Dual Role of Activated Carbon Process for Water Reuse. Water Environment Research. 1998, Vol.70, No.2, March/April
    [187] 张林生主编.印染废水处理技术及典型工程[M].化学工业出版社,2005
    [188] Dong-Koo Lee, Tae-Sun Chang Chae-Ho Shin. Thermal Treatment of Crude Terephthalic Acid Recovered from Weight-Reduction Wastewater.[J]J of Ind.Eng.Chem, 2002,8(5), 405-409
    [189] 候毓汾.染料化学[M].北京:化学工业出版社, 1994,478-479
    [190] 张壮余,吴祖望.染料应用[M].北京:化学工业出版社 1991,381-384
    [191] (日)阿部芳郎.洗涤剂通论[M].北京:中国轻工业出版社 1992,27-92
    [192] 宋启煌.精细化工工艺学[M].北京:化学工业出版社,1995,26-27
    [193] J.A.Dean,兰氏化学手册[M].北京:科学出版社,2003.5, 1312-1316
    [194] C-Y Kao, W-H Cheng, Investigation of Alkaline Hydrolysis of Polyethylene Terephthalate by Differential Scanning Calorimetry and Thermogravimetric Analyswas.[J]Journal of Applied Polymer Science, Vol.70(1998), 1939-1945
    [195] Rob Hang-Duk; Bae Dongmok, Process for Manufactring terephthalic acid, U.S. Patent. 6310239 2001
    [196] Johnson, Process for the purification terephthalic acid, U. S. Patent, 4447646, 1984.5
    [197] John C Crittenden, Removal if Dissolved Organic Carbon Using Granular Activated Carbon, Wat. Res, 1993, 27(4), 715-721
    [198] 宋启煌.精细化工工艺学[M].北京:化学工业出版社,1995,26-27
    [199] Ruthven. D. M., Principles of Adsorption and Adsorption Processes, Wiley: New York, 1984
    [200] 李良园.上海发展循环经济研究[M].上海交通大学出版所,2000
    [201] 王鑫根.国内外PTA的市场分析[J].石油化工技术经济,2003,19(3)27-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700